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Filters on Computable Posets

Steffen Lempp and Carl Mummert

Abstract We explore the problem of constructing maximal and unbounded fil-
ters on computable posets. We obtain both computability results and reverse
mathematics results. A maximal filter is one that does not extend to a larger fil-
ter. We show that every computable poset has a 10

2 maximal filter, and there is a
computable poset with no 50

1 or 60
1 maximal filter. There is a computable poset

on which every maximal filter is Turing complete. We obtain the reverse math-
ematics result that the principle “every countable poset has a maximal filter” is
equivalent to ACA0 over RCA0. An unbounded filter is a filter which achieves
each of its lower bounds in the poset. We show that every computable poset has
a 60

1 unbounded filter, and there is a computable poset with no 50
1 unbounded

filter. We show that there is a computable poset on which every unbounded filter
is Turing complete, and the principle “every countable poset has an unbounded
filter” is equivalent to ACA0 over RCA0. We obtain additional reverse mathemat-
ics results related to extending arbitrary filters to unbounded filters and forming
the upward closures of subsets of computable posets.

1 Introduction

In this paper, we study maximal and unbounded filters on computable posets. We
obtain computability results and reverse mathematics results regarding the existence
of these filters.

We use the following terminology. A poset is a set P with a reflexive, antisym-
metric, transitive relation �. A poset 〈P, �〉 is computable if P is a computable
subset of N and � is a computable binary relation on P . A filter is a subset F of a
poset such that F is upward closed (if p ∈ F and p � q then q ∈ F) and for all
p, q ∈ F there is an r ∈ F with r � p and r � q. The entire poset is thus a filter
if every pair of elements is compatible. A filter is maximal if it is not contained in a
strictly larger filter. A filter F is unbounded if there is no p 6∈ F with p � q for all
q ∈ F .
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In Section 2, we study maximal filters. We show that every computable poset has
a 10

2 maximal filter. This result is optimal: there is a computable poset with no 60
1 or

50
1 maximal filter. There is also a computable poset P such that any maximal filter

on P is Turing complete. We obtain a reverse mathematics result: the principle that
every countable poset has a maximal filter is equivalent to ACA0 over RCA0.

In Section 3, we study unbounded filters. We show that every computable poset
has a 60

1 unbounded filter, and there is a computable poset with no 50
1 unbounded

filter. There is a computable poset P such that every unbounded filter on P is Tur-
ing complete. We obtain two reverse mathematics results. The principle that every
countable poset has an unbounded filter is equivalent to ACA0 over RCA0. We define
enumerated filters, which are analogous to 60

1 filters, and show that the principle
“Every sequence of enumerated filters on countable posets extends to a sequence of
unbounded enumerated filters” is equivalent to ACA0 over RCA0.

In Section 4, we show that the upward closure of a computable subset of a com-
putable poset may be Turing complete. The principle that every subset of a countable
poset has an upward closure is equivalent to ACA0 over RCA0.

There has been significant previous research on the computability aspects of linear
and partial orders. Downey [1] gives a thorough description of many results. We note
that Mummert [2] has shown that there is a computable poset with a computable
filter F such that the complete 61

1 set is one-one reducible to any extension of F to
a maximal filter.

The following results appeared in the Ph.D. thesis of Mummert [3]: Corollar-
ies 2.2 and 4.2 and Theorems 3.1, 3.5, and 3.6. The remaining results are due to both
authors.

1.1 Notation We use the following standard notation from computability theory.
We denotes the 60

1 set with index e and We,s denotes the subset of We which is
enumerated in s or fewer steps. 0′ denotes the canonical 60

1 complete set. The sym-
bol ≤wt t denotes weak (bounded) truth table reducibility of subsets of N. Readers
unfamiliar with these concepts may consult the texts by Rogers [4] or Soare [6].

Reverse mathematics is a program in mathematical logic which classifies theo-
rems based on the set-existence (comprehension) axioms required to prove the the-
orems. This classification is made using subsystems of second-order arithmetic. In
this paper, we use two subsystems of second-order arithmetic: RCA0, which contains
10

1 comprehension and 60
1 induction, and ACA0, which contains arithmetical com-

prehension and arithmetical induction. A complete definition of these subsystems,
along with a complete description of the goals of reverse mathematics, is given by
Simpson [5].

2 Maximal Filters

A filter on a computable poset is maximal if it is not strictly contained in another
filter on the poset.

Theorem 2.1 Every computable poset has a 10
2 maximal filter.

Proof Let P = {p0, p1, . . .} be a computable poset. Begin by forming the oracle
A = {〈p, q〉 ∈ P × P | ∃r(r � p ∧ r � q)}. This oracle is clearly 60

1 . Now
we define a maximal filter G = {qi | i ∈ N} on P inductively. At stage 0, let
q0 = p0. At stage i + 1, we will add two elements q2i+1 and q2i+2 to G. First we
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consider element pi+1 ∈ P . If 〈pi+1, q2i 〉 ∈ A then we may effectively let q2i+2 be
a common extension of q2i and pi+1 and let q2i+1 = pi+1. If 〈pi+1, q2i 〉 6∈ A, let
q2i+1 and q2i+2 both be q2i . It is not hard to show that G is a maximal filter on P . If
element pi is added to G then it is added no later than stage i ; thus G is computable
from A, so G is 10

2. �

Corollary 2.2 ACA0 proves that every countable poset has a maximal filter.

Proof The previous proof may be formalized in ACA0 using 60
1 comprehension to

form A. �

Theorem 2.3 There is a computable poset P such that 0′
≤wt t F for any maximal

filter F on P.

Proof Let K be any 60
1 set. For each k ∈ N, we construct a poset Pk inductively.

Pk begins with two incompatible descending sequences. These sequences will even-
tually become compatible if k ∈ K ; otherwise they will become two incompatible
infinite descending sequences. If the sequences do not merge, then exactly one of the
two maximal elements of the sequences will appear in any maximal filter, whereas
if the sequences do merge then both maximal elements must appear in the unique
maximal filter.

Formally, we let Pk = N and define the order �k with the following rules:

2m �k 2n if n ≤ m,

2m + 1 �k 2n + 1 if n ≤ m,

2m �k 2n + 1 if n ≤ m and k ∈ Km,

2(m + 1) + 1 �k 2n if n ≤ m and 2m + 2 �k 2m + 1.

As usual, Km denotes the set of numbers that enter K in no more than m steps of
its canonical enumeration. Clearly, �k is a computable partial order. If k 6∈ K then
2m ⊥ 2n +1 for all n, m, and no maximal filter can contain both 0 and 1. Otherwise,
for all sufficiently large m, n we have 2m � 2n + 1 and 2m + 1 � 2n, every two
elements are compatible, and the unique maximal filter contains 0 and 1.

The construction above is uniform in the sense that we may uniformly compute
the order �k from k. We may thus form the product poset P , which we now describe.
The elements of P are finite sequences of natural numbers. We order P by putting
ā � b̄ if and only if |ā| ≥ |b̄| and ai �i bi for all i ≤ |b̄|. Clearly, the order
on P is computable, and for any k ∈ N and any maximal filter F on P the set
πk F = {n ∈ N | ∃ā ∈ F(|ā| ≥ k ∧ n = ak)} is a maximal filter on Pk .

Note that for each k exactly one of the following options holds.

1. 0 ∈ πk F or 1 ∈ πk F , but not both.
2. 0 ∈ πk F and 1 ∈ πk F .

Beginning with k = 0 and proceeding inductively, we may effectively determine for
each k which of the options holds using no more than 2 queries for each new k. For
example, we first determine whether 0 or 1 is in π0 F . Assume that 0 ∈ π0 F . Then
we can determine whether 1 ∈ π1 F by asking whether 〈0, 1〉 ∈ F .

If the first option above holds for k then k 6∈ K . If the second option holds, then
k ∈ K . Thus K ≤wt t G for any maximal filter G on P . The theorem follows by
taking K = 0′. �
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Corollary 2.4 The principle that every countable poset has a maximal filter is
equivalent to ACA0 over RCA0.

Proof The proof of Theorem 2.3, relativized to an arbitrary oracle, may be formal-
ized in RCA0. �

Theorem 2.5 There is a computable poset with no 60
1 or 50

1 maximal filter.

Proof We informally view our poset P as an infinite product of posets 〈Pe | e ∈ N〉

and 〈Qe | e ∈ N〉. The construction of Pe ensures that We is not a maximal filter on
P , and the construction of Qe ensures that the complement of We is not a maximal
filter on P .

For each e, the poset Pe is built as follows. We first construct an infinite descend-
ing sequence 〈ai | i ∈ N〉. Now we wait until an element ai enters We. If no element
ai enters, then We is not a maximal filter on Pe. Whenever an element ai+1 enters
We, we add an element bi such that bi ≺ ai and bi ⊥ ai+1. We then extend ≺ so
that bi ≺ b j if i > j and so that ≺ remains transitive. Then we return to waiting. If
no element of the form bi is ever added to We, then the infinite descending sequence
〈bi 〉 generates a filter properly including We. If We ever includes any element of the
form bi , we stop adding any new elements of the form b j to the poset. In this case,
let i be the largest number such that bi was added to the poset; we know ai+1 is in
We, and bi ⊥ a j for all j ≥ i + 1 because we will add no more elements of the form
b j . Thus We is not a maximal filter on Pe.

For each e, the poset Qe is built as follows. We construct two infinite descending
sequences 〈ai 〉 and 〈b j 〉 as in the proof of Theorem 2.3. We wait to see whether
We ever includes a0 or b0. If it never does, we keep the infinite descending chains
incompatible, which means that the complement of We is not a filter on Qe. If We
ever includes a0 or b0, we cause the two chains to eventually be compatible, which
means that the complement of We is not a maximal filter on Qe.

To construct the poset P , we view each natural number as a code for a finite
sequence of natural numbers, and thus view P = N as a product poset with one
coordinate for each natural number. The order on coordinate 2i of P is similar to the
order on poset Pi , and the order on coordinate 2i + 1 of P is similar to the order on
Qi . We watch the effects of each 60

1 or 50
1 subset on the appropriate coordinate of

P and use the descriptions of Pe and Qe above to shape the order in that coordinate.
Because the elements of P are finite sequences and the order relations on Pe and Qe
are uniformly computable, the order on P will be computable. �

3 Unbounded Filters

A filter F on a poset P is unbounded if there is no p ∈ P \ F such that p � q for all
q ∈ F .

Theorem 3.1 Every computable poset has a 60
1 unbounded filter.

Proof Let P = 〈pi | i ∈ N〉 be a computable poset. We describe an enumeration
of an unbounded filter on P . At stage 0, let q0 = p0. At stage n + 1, if pi+1 ≤ qi
then let qi+1 = pi+1; otherwise, let qi+1 = qi . The upward closure of {qi | i ∈ N}

is easily seen to be a 60
1 unbounded filter on P . �
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Theorem 3.2 There is a computable poset P such that 0′
≤wt t F for any un-

bounded filter F on P.

Proof We use the computable posets 〈Pk, �k〉 from the proof of Theorem 2.3.
We form a computable poset P whose elements are sequences of the form
〈n, a0, a1, . . . , an〉 where n ∈ N and ak ∈ Pk for each k ≤ n. We order P by
putting 〈n, a0, . . . , an〉 ≺ 〈m, b0, . . . , bm〉 when n > m and ai ≺i bi for each i ≤ m.
Clearly, P is a computable poset; we call this the uniform product of the posets 〈Pk〉.

We now show that the projection of any unbounded filter on P to coordinate k +1
is an unbounded filter on Pk . Clearly, any unbounded filter on P is generated by
an infinite strictly descending sequence 〈ri 〉 on P . Let pi denote the element of
Pk in coordinate k + 1 of ri whenever this coordinate exists. The order relation
on P ensures that 〈pi 〉 is an infinite strictly descending sequence on Pk . Any such
sequence determines an unbounded filter on Pk .

Note that every unbounded filter on Pk is maximal; thus we have shown that any
unbounded filter on P uniformly computes a maximal filter on Pk for each k. The
remainder of the proof is similar to Theorem 2.3. �

We obtain a corollary by formalizing the previous proof in RCA0.

Corollary 3.3 The principle that every countable poset has an unbounded filter is
equivalent to ACA0 over RCA0.

The next theorem is proved by applying the uniform product technique of Theo-
rem 3.2 to the sequence of posets Qe in the proof of Theorem 2.5.

Theorem 3.4 There is a computable poset with no 50
1 unbounded filter.

In RCA0, we define an enumerated filter on a countable poset 〈P, �〉 to be a function
F from N to P whose range is a filter on P . That is, if p is in the range of F and
p � q then q is in the range of F , and for all p, q in the range of F there is an r in
the range of F such that r � p and r � q. Note that a filter on P is definable by a
60

1 formula if and only if RCA0 is able to form the corresponding enumerated filter.
We view an enumerated filter as a code for the set of poset elements it determines,
writing p ∈ F for an enumerated filter F if p is in the range of F . We say that
an enumerated filter is unbounded if there is no q ∈ P such that q ≺ p whenever
p ∈ F . By formalizing the proof of Theorem 3.1, we may prove in RCA0 that every
countable poset has an unbounded enumerated filter.

Theorem 3.5 RCA0 proves that every enumerated filter on a countable poset is
contained in an unbounded enumerated filter on the poset.

Proof Let F be an enumerated filter on a countable poset P . If F is unbounded
then we are done. If F is bounded, let p be a lower bound for F and construct an
unbounded enumerated filter containing p as in the proof of Theorem 3.1. �

The proof of Theorem 3.5 is nonuniform in the sense that the noncomputable choice
of whether a given filter is unbounded must be made. The next theorem suggests that
no uniform proof of Theorem 3.5 is possible.

Theorem 3.6 The following are equivalent over RCA0.
1. ACA0.
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2. If 〈Pi | i ∈ N〉 is a sequence of countable posets and 〈Fi | i ∈ N〉 is such that
each Fi is an enumerated filter on Pi then there is a sequence 〈Gi | i ∈ N〉

such that Gi is an enumerated unbounded filter on Pi extending Fi for each
i ∈ N.

Proof It is not difficult to prove (2) in ACA0. To prove that (2) implies ACA0, we
work in RCA0. Let f : N → N be given; we will show that the range of f exists,
which implies ACA0. For each e ∈ N, form a poset 〈Pe, �e〉 as follows. Pe has an
infinite descending sequence 〈ae

i | i ∈ N〉 and one additional element be. We let
be

�e ae
i if there is no j ≤ i such that f ( j) = e. For all i we have ae

i 6�e be. It is
clear that �e is a partial order on Pe, and the sequence of posets 〈〈Pe, �e〉 | e ∈ N〉

may be formed in RCA0.
For each e ∈ N let Fe = {ae

i | i ∈ N}; the sequence 〈Fe | e ∈ N〉 may be formed
in RCA0 as well. Apply (2) to form a sequence 〈Ge | e ∈ N〉 such that each Ge is an
enumerated filter on Pe and Fe ⊆ Ge. Note that be

∈ Ge if and only if there is no
i ∈ N such that f (i) = e. There is thus a 50

1 formula which tells whether e is in the
range of f . Because the range of f has a trivial 60

1 definition, we have shown the
range of f is definable by a 10

1 formula, which means that we may form this set in
RCA0. �

4 Upward Closures

The upward closure of a set F ⊆ P is the set {q ∈ P | ∃p ∈ F(p � q)}.

Theorem 4.1 There is a computable poset P with a computable linearly ordered
subset F such that 0′ is one-one reducible to the upward closure of F.

Proof Let We be a 60
1 complete set. We let P have an infinite descending sequence

〈ai | i ∈ N〉 and infinitely many pairwise incompatible elements {b j | j ∈ N}. We
put ai � b j , if j ∈ We,i , and ai 6� b j otherwise. We always have b j 6� ai .

The poset just described is computable. Let A denote the computable subset
{ai | i ∈ N}. Clearly, j ∈ We if and only if b j is in the upward closure of A. �

Corollary 4.2 The following are equivalent over RCA0.
1. ACA0.
2. Every subset of a countable poset has an upward closure.
3. Every linearly ordered subset of a countable poset has an upward closure.

Proof Because the upward closure of any set A ⊆ P is 60
1 definable from A, ACA0

proves (2). Clearly, (2) implies (3). The proof of Theorem 4.1 may be formalized in
RCA0 to show that (3) implies ACA0. �
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