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Hybrid Formulas and Elementarily
Generated Modal Logics

Ian Hodkinson

Abstract We characterize the modal logics of elementary classes of Kripke
frames as precisely those modal logics that are axiomatized by modal axioms
synthesized in a certain effective way from “quasi-positive” sentences of hybrid
logic. These are pure positive hybrid sentences with arbitrary existential and
relativized universal quantification over nominals. The proof has three steps. The
first step is to use the known result that the modal logic of any elementary class of
Kripke frames is also the modal logic of the closure of this class under disjoint
unions, generated subframes, bounded morphic images, and ultraroots. This
latter class can be defined by the first-order sentences of a special syntactic form
(called pseudo-equations by Goldblatt) that are valid in the former class. The
second step is to translate these pseudo-equations into equivalent quasi-positive
hybrid sentences. In the third and main step, we show that any quasi-positive
sentence S generates an infinite set of modal formulas called “approximants,”
which together axiomatize a canonical modal logic that is sound and complete
for the class of frames validating S. The proof is analogous to standard proofs of
Sahlqvist’s theorem. It generalizes to sets of quasi-positive sentences. The main
result now follows.

1 Introduction

We combine a Sahlqvist-like theorem with some translations into hybrid logic in
order to axiomatize all and only the modal logics of elementary classes of frames.
(In this paper, a class is elementary if it is the class of models of a possibly infinite
set of first-order sentences.) In the introduction, we outline the work and its context.

1.1 Elementarily generated modal logics A modal logic is said to be canonical if
it is valid in the frame of its own canonical model. The canonical model construction
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involves forming the Kripke frame whose worlds are the maximal consistent sets and
with a “canonical” accessibility relation and assignment (or valuation). It came to
prominence through the work of Lemmon and Scott [30] and also (independently)
Cresswell [6] and Makinson [31], although Jónsson and Tarski [26] had introduced
a similar construction earlier. Any canonical logic is the logic of its own canonical
frame. (The logic of a Kripke frame F , or a class K of Kripke frames, is the set
of modal formulas that are valid in F or, respectively, in every frame in K .) So
showing a logic to be canonical yields up a “free” completeness theorem for it and
has proved to be a useful and widely applicable method of proving completeness
theorems for modal logics.

It turned out that all the canonical modal logics seen in practice were the logics of
elementary classes of frames. We call such logics elementarily generated. A seminal
result of Fine [7] showed that this was no accident: any elementarily generated modal
logic is canonical.1 The converse is not true in general ([17], [16]), and this raises
the problem of characterizing both the canonical and the elementarily generated log-
ics in some independent way in order to understand them and their similarities and
differences better. It seems that all known “natural” examples of canonical logics are
elementarily generated, so certainly the elementarily generated logics are worthy of
attention.

One kind of characterization that would be attractive is a syntactic one. An ele-
mentarily generated logic may be presented to us syntactically by giving its axioms,
in which case it may not be evident that the logic is elementarily generated, or seman-
tically by giving an elementary class of frames that determines the logic, in which
case we may not have modal axioms for it. We would like

(A) to be able to tell when a given set of modal axioms determines an elementarily
generated logic,

(B) to generate explicit axioms in some effective way for any semantically-given,
elementarily generated logic.

1.2 Sahlqvist’s theorem One obvious paradigm for such results is Sahlqvist’s the-
orem [32]. There, a syntactic blueprint is given for generating modal formulas called
Sahlqvist formulas. Positive formulas had been examined in this context much ear-
lier [26], and Sahlqvist formulas can perhaps be thought of as generalized positive
formulas. See Example 3.6 for a definition. Common examples include �p → p,
�p→ ��p, and ♦�p→ �♦p.

Sahlqvist’s theorem addresses problem (A) above. Every Sahlqvist formula σ ax-
iomatizes an elementarily generated logic. It is the logic of an elementary class of
Kripke frames that is definable by a single first-order sentence, the so-called first-
order correspondent of σ . The correspondent is obtainable from σ by a simple al-
gorithm. For example, the correspondent of �p → p is ∀x R(x, x), where R is the
accessibility relation of the frame.

Sahlqvist-axiomatizable logics are well behaved in other ways. A single modal
logic can be determined by several different classes of frames. A frame for a logic is
a (Kripke) frame that validates every formula of the logic. Now it is possible for the
class of all frames for an elementarily generated logic to be nonelementary; we will
see examples below. But this cannot happen for Sahlqvist-axiomatizable logics: we
get the “Sahlqvist bonus” that the correspondent of σ is valid in precisely the frames
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validating σ—and, as can be seen either by Fine’s theorem or directly, these include
the canonical frame of the logic.

There is even a converse result. In [28], §5.6, Kracht identified a fragment of
first-order logic (in the signature of frames) that contains the correspondent of every
Sahlqvist formula. Given any sentence χ in the fragment, he showed how to syn-
thesize a Sahlqvist formula whose correspondent is equivalent to χ ; this addresses
problem (B).

1.3 Limitations of Sahlqvist’s theorem Sahlqvist’s theorem has been immensely
useful in practice since it is easy to use and covers a wide range of examples. It has
been generalized by several authors—for example, [34], [18], [19], [27], and [35].
However, it does not fully answer our problems (A) and (B), because it does not
cover all elementarily generated logics.

We will give three kinds of examples of this. The first involves McKinsey’s for-
mula M = �♦q → ♦�q . The logic axiomatized by M alone is not elementarily
generated, but the logic K 4.1 axiomatized by M together with the transitivity ax-
iom �q → ��q is elementarily generated: these axioms are valid precisely in the
transitive frames satisfying

∀x∃y(R(x, y) ∧ ∀zt (R(y, z) ∧ R(y, t)→ z = t)), (1)

and so K 4.1 is the logic of this elementary class of frames. It is well known that
K 4.1 is not Sahlqvist axiomatizable. (For details, see, e.g., [3], p. 168.2) It is an
example of a cofinal subframe logic. Very powerful techniques to handle these log-
ics are available, and consequently their properties are quite well understood. For
example, all canonical cofinal subframe logics are elementarily generated. Modal
axioms can be synthesized for any cofinal subframe logic [4]; this is along the lines
of (B) above, but it does not cover all elementarily generated logics and covers some
nonelementarily generated ones, so its scope is rather different from our concerns
here.

There is a wider class of elementarily generated logics not covered by Sahlqvist’s
theorem. Already in [30], Lemmon generalized McKinsey’s formula M to a whole
sequence of formulas

Mn = ♦
(
(♦q1 → �q1) ∧ · · · ∧ (♦qn → �qn)

)
(n ≥ 1). (2)

M1 is equivalent (in the basic modal logic K ) to M , and in the presence of the tran-
sitivity axiom, all the Mn follow from M1. The logic KM∞ axiomatized by (2) is the
logic of the class of (possibly intransitive) frames defined by (1). It is therefore ele-
mentarily generated, and canonical. Indeed, (1) is true in its canonical frame, though
it is not true in all frames for KM∞: we lose half of the “Sahlqvist bonus” referred to
above. But KM∞ cannot be axiomatized by any set of (even generalized) Sahlqvist
formulas, because the class of frames for KM∞ is nonelementary ([15], [2]), and any
axiomatization of it must involve infinitely many noncanonical formulas [15]. (A
formula is canonical if it axiomatizes a canonical logic. All Sahlqvist formulas are
canonical.)

The same is true for the logic KMT studied by Hughes [24], characterized by the
class of frames satisfying

∀x∃y(R(x, y) ∧ R(y, y)), (3)
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and axiomatized by

MTn = ♦
(
(�q1 → q1) ∧ · · · ∧ (�qn → qn)

)
(n ≥ 1). (4)

A related example can be found in [23]. If we are willing to move to an algebraic
setting, the variety RRA of representable relation algebras is another example [23].
All these logics are canonical and indeed elementarily generated. However, not only
are they not finitely axiomatizable and not Sahlqvist axiomatizable, but any axiom-
atization requires infinitely many noncanonical formulas. Canonicity emerges only
when all the axioms are taken together. It seemed that this rather striking phenome-
non of “canonicity in the limit” was a new source of canonicity beyond the scope of
Sahlqvist’s theorem, and it needed an explanation.

A partial explanation was provided by Balbiani et al. in [2], where it was shown
that for any Sahlqvist formula3 ϕ(p1, . . . , pn) with local first-order correspondent
σ(x), the logic axiomatized by{

♦
(
ϕ(p1

1, . . . , p1
n) ∧ · · · ∧ ϕ(p

m
1 , . . . , pm

n )
)
: m ≥ 1

}
,

where the pi
j are distinct atoms, is canonical and is the logic of the class of frames

defined by ∀x∃y(R(x, y)∧σ(y)). This Sahlqvist-like result covers KM∞ and KMT,
as is evident from (2) and (4). The full scope of the method is unclear. It remains
to be seen whether it can be generalized to cover all elementarily generated logics.
[2] lists some interesting open problems to do with it.

One more example of an elementarily generated modal logic not covered by
Sahlqvist’s theorem involves additivity axioms. In [7], Fine showed that

♦�p→ ♦�(p ∧ q) ∨ ♦�(p ∧ ¬q) (5)

is canonical and axiomatizes the logic of the class of frames satisfying

∀xy(R(x, y)→ ∃z(R(x, z) ∧ ∀uv(R(z, u) ∧ R(z, v)→ u = v ∧ R(y, v)))).

However, the class of all frames for (5) is nonelementary, so (5) cannot be replaced
by Sahlqvist axioms. The study was extended by Jónsson and Venema ([25], [39])
to general additivity axioms

π(p ∨ q)→ π(p) ∨ π(q) (6)

for positive π(x). (An axiom equivalent to (5) is obtained by taking π(x) = ♦�x
in (6).) Venema proved that (6) axiomatizes the logic of an elementary class Kπ

of frames and showed how to construct a single first-order sentence σπ defining
Kπ : cf. problem (A) above. He called σπ and (6) canonical pseudo-correspondents,
since (6) is valid in any frame satisfying σπ , and the canonical frame of the logic
axiomatized by (6) satisfies σπ . For some π (e.g., �♦x ; see Example 4.7 below),
(6) axiomatizes a Sahlqvist logic; for other π , it does not. Venema states in [39] that
his original motivation was to “axiomatize [the modal logic of] an elementary frame
class”: cf. problem (B) above.

1.4 Our results In this paper, we will prove a Sahlqvist-like theorem that allows
us to axiomatize all elementarily generated modal logics. We show that a modal logic
is elementarily generated precisely when it is axiomatizable by modal axioms of a
particular syntactic form. Starting with an elementary class K of frames axiomatized
by a first-order theory T , the method applies three steps:
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1. Form the theory U consisting of the first-order sentences which are conse-
quences of T and have (roughly) the form ∀xψ(x), where ψ(x) is built from
atomic formulas using ∧,∨, and relativized quantifiers

∀y1, . . . , yk(R(x, y1, . . . , yk)→ψ) and ∃y1, . . . , yk(R(x, y1, . . . , yk) ∧ ψ).

Sentences of this form have been studied by, for example, Goldblatt and van
Benthem, and it is known that U axiomatizes the class K of frames obtained
by closing K under bounded morphic images, generated subframes, disjoint
unions, and ultraroots, and that the modal logics of K and K are the same.

2. Translate each first-order sentence σ in U into a “pure quasi-positive sen-
tence” of hybrid logic that is valid in precisely the models of σ . This can be
done by a simple algorithm. Let 8 be the resulting set of hybrid sentences.
K is the class of frames in which all sentences in 8 are valid.

3. Translate each sentence in 8 into an infinite set of modal formulas. (Again,
this can be done by a simple algorithm.) The modal logic 38 axiomatized
by them is the logic of K (and of K).

Since pure hybrid sentences define elementary classes, all and only the elementarily
generated modal logics have the form 38 for a set 8 of pure quasi-positive hybrid
sentences. In this way, we are able to enumerate modal axioms for every elementarily
generated modal logic, as per problem (B) above. 8 can be regarded as a canonical
pseudo-correspondent of 38 in the sense of [39] and as discussed above.

Let us discuss the three steps in more detail. Step 1 is straightforward, using first-
order proof theory. In step 2, we translate the first-order sentences from step 1 into
pure quasi-positive hybrid sentences. Hybrid formulas involve nominals: special
propositional atoms that are always assigned to singleton subsets of a Kripke frame
and serve as names for worlds. The quasi-positive hybrid formulas allow arbitrary
existential and relativized universal quantification over nominals, this last being the
only place that negation can be used. A pure formula involves no propositional
atoms; in a sentence, all nominals are bound by quantifiers. The translation into
quasi-positive hybrid sentences is fairly straightforward, and the reader may wonder
why we bother with it. The answer is that quasi-positive sentences are modal-like
formulas to which step 3 can be applied.

The modal axioms obtained in step 3 are generated as “approximants” to the for-
mulas in 8. In any Kripke model, we may approximate a hybrid formula ϕ by
taking a finite partition of the frame induced by the truth values of a finite set S of
modal formulas (as in filtration), assigning nominals to partition classes and simu-
lating existential and universal quantification of nominals by (finite) disjunction and
conjunction over partition classes, respectively. This can be written out as a modal
formula, called an approximant of ϕ. It is explicitly constructible from ϕ and S, if ϕ
is a sentence.

It turns out that if a quasi-positive sentence ϕ is valid in a frame, then so are
all its approximants. Conversely, as the set S increases, the approximants simulate
ϕ more and more closely. In the canonical model of the logic 3ϕ axiomatized by
all ϕ’s approximants, the worlds are maximal consistent sets of formulas, and each
set consists of the formulas that are true at it. For a given S, the partition classes
consist of the worlds sharing the same formulas from S. Any two distinct worlds lie
in distinct partition classes for all large enough S. So in the limit, as S grows, the
approximation becomes exact. Since all the approximants are valid in the canonical
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model, this means that its frame validates ϕ. Proving this is the chief technical
contribution of the paper. The proof uses the special form of quasi-positive sentences
and is similar to standard proofs of Sahlqvist’s theorem.

Clearly, the same goes for the logic 38 axiomatized by the approximants to all
the sentences in8. Thus,38 is sound and complete for the class of frames in which
8 is valid. This class is elementary, so 38 is elementarily generated. It contains
the canonical frame for 38, so 38 is canonical. Since every elementarily generated
logic is of the form 38, this provides another proof of Fine’s theorem [7].

1.5 How natural are the axioms? Methods of synthesizing axioms from a tem-
plate are often accused of producing artificial, unenlightening axiomatizations. What
about our method? Well, the set U of axioms obtained in step 1 can be extremely
opaque, and it is infinite even if the original T is finite. The sentences in U are sim-
ilar in structure to pure quasi-positive sentences and the translation between them in
step 2 is fairly straightforward, though it can increase the opacity a little. But some-
times we can start off with a class of frames defined by pure quasi-positive hybrid
sentences. Steps 1 and 2 are omitted, and the modal axioms are synthesized directly
from the hybrid ones. We actually get to see the axioms, and they can be rather
natural and easily understood. Consider, for example, the logics KM∞ and KMT
discussed above. The quasi-positive sentence ♦∃i�i expresses (1), and ♦∃i(i ∧ ♦i)
expresses (3), and the approximants obtained from them are equivalent to the known
axioms (2), (4), respectively. For instance, the axiom obtained by approximating
♦∃i�i with respect to S = {p1, . . . , pn} is

♦︷︸︸︷
♦

∃i︷︸︸︷∨
X⊆S

�︷︸︸︷
�

i︷ ︸︸ ︷( ∧
p∈X

p ∧
∧

p∈S\X

¬p
)
,

and this is equivalent to the Mn of (2). See Examples 4.6 and 4.7 for more details. If
we can obtain, modulo simple equivalences, axiomatizations that are already known
from the literature, then it seems fair to say that sometimes our method produces
fairly natural and intuitive axiomatizations.

This allows us to make a small contribution to problem (A) above. Given some
known axioms for a modal logic, if we can devise an elementary class whose modal
axioms (obtained by our method) are equivalent to the given ones, we have at hand
a proof that the logic is elementarily generated, and by a specific elementary class
of frames. This is not quite an idle dream: the method presented here originated in
study of the examples KM∞ and KMT.

1.6 Comparison with Sahlqvist’s completeness theorem Sahlqvist’s complete-
ness theorem ([32], [33], [3]) says that the logic axiomatized by a Sahlqvist formula
σ is the logic of the class of frames in which σ is valid. Step 3 above says that
the logic 3ϕ axiomatized by the approximants of a pure quasi-positive sentence ϕ
is the logic of the class of frames that validate ϕ. Both results generalize to sets of
formulas.

We view step 3 as extending Sahlqvist’s completeness theorem. First, every
Sahlqvist formula can be expressed by (is valid in the same frames as) a quasi-
positive one. Second, the proof that step 3 works (Proposition 5.9 below) parallels
known proofs of Sahlqvist’s theorem rather closely. We do not need to use negated
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boxed atoms and the “minimal assignments” associated with them, so the most direct
analogy is perhaps with [26], which proves that positive equations are preserved by
algebraic canonical extensions. But with some extra work we could allow ϕ to be a
“hybrid Sahlqvist formula.” Step 3 would then simply extend Sahlqvist’s complete-
ness theorem to this larger class of formulas. In the special case where ϕ is a modal
Sahlqvist formula, the approximants would be simply the substitution instances of
ϕ. We will discuss this in Example 3.6, Remark 3.16, and Section 6.2. It is not nec-
essary to put in this extra work because it does not increase the range of logics we
can axiomatize, though it would simplify some of the axiomatizations.

There are, however, some differences between our result and Sahlqvist’s. For
one, it generates modal axioms and a modal logic 3ϕ from a hybrid formula ϕ.
This provides a perhaps new and surprising connection between modal and hybrid
logic. Because ϕ generates purely modal axioms, our result is not to be regarded as
a Sahlqvist theorem for hybrid logic; readers seeking such a theorem should consult,
for example, [18] and [34].

It is also perhaps notable that the set of axioms for 3ϕ is infinite. In a way, this
is not so alarming. First, the logics KM∞, KMT, and so on, are not finitely axiom-
atizable, so infinite axiomatizations are inevitable if we are going to cover them.
One benefit of allowing infinite axiomatizations is that we can after all “explain” the
canonicity of these logics by Sahlqvist-like reasons, even though they have no ax-
iomatization by canonical formulas. Second, the infiniteness is to an extent already
present in the standard Sahlqvist theorem. For example, the logic K 4 generated by
the Sahlqvist axiom �p → ��p is in a way axiomatized by the infinite set of sub-
stitution instances {�α → ��α : α a modal formula}. K 4 is finitely axiomatizable
only because of the presence of the substitution rule. Alternatively, �p → ��p
can be regarded as a schema, from which axioms �α → ��α are generated. But
a quasi-positive sentence is also a schema in the sense that it generates an infinite
number of modal axioms in a purely syntactic and effective way. The difference
from conventional schemata is only that the generating process is a little more com-
plicated than substitution.

Nonetheless, some logics 3ϕ are finitely axiomatizable, whereas we only obtain
an infinite set of axioms for them. How to determine whether3ϕ is finitely axiomati-
zable and how to obtain a finite set of axioms when it is remain interesting questions
for the future.

1.7 Comparison with Sahlqvist’s correspondence theorem This part of Sahlqvist’s
theorem says that for any Sahlqvist formula σ there is a first-order sentence, the
“correspondent” of σ , that is true in precisely the frames in which σ is valid. The
correspondent is obtained from σ by a simple algorithm. To compare this with our
results, we need to distinguish between the class Fr8 of frames validating 8 (the
class K of step 2), and the class Fr38 of frames validating 38. Their analogues
for a Sahlqvist formula σ are the class of models of the correspondent of σ and the
class of frames for σ , respectively, and Sahlqvist’s theorem gave us the bonus that
these two classes are the same. In our situation, we only have Fr8 ⊆ Fr38, and the
inclusion can be strict. For example, there are frames validating KM∞ and KMT that
do not satisfy the conditions (1) and (3), respectively. (For which 8 is the inclusion
strict is another question for the future.)
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For the class Fr8, correspondence is trivial, because quasi-positive sentences
have straightforward first-order translations: they are essentially their own first-order
correspondents. For Fr38, no first-order correspondence is possible in general,
because Fr38 can be nonelementary. This is so for KM∞ ([15], [2]) and, in an
algebraic setting, for RRA [22]. The class of nonfinitely colorable graphs is nonele-
mentary [22], and this can be used to show that Fr KMT is nonelementary as well.

So we cannot think of 8 as a set of correspondents of 38: half our “Sahlqvist
bonus” can be forfeited. But the other half we get to keep: 8 is valid in the canonical
frame for 38. Since 38 is valid in any frame validating 8, the two are canonical
pseudo-correspondents in the sense of [39].

1.8 Summary We give a necessary and sufficient syntactic condition for a modal
logic to be elementarily generated and one that matches existing axiomatizations of
some known examples quite closely. However, it yields infinite axiomatizations of
even finitely axiomatizable modal logics. Nonetheless, we hope it will be useful in
showing more modal logics to be canonical and proving completeness theorems for
them.

1.9 Layout of paper The three steps in Subsection 1.4 are treated in the order 2,
3, 1. Step 1 can be found in Theorem 5.16, step 2 in Theorem 3.13, and step 3 in
Theorem 5.15. In Section 2, we set out the definitions of modal and hybrid formulas.
In Section 3, we introduce the quasi-positive formulas that will be our main concern.
We give some examples and prove that every positive relativized first-order sentence
can be expressed by such a formula. Section 4 defines the approximants of a hy-
brid formula, gives some examples, and proves some basic facts about them. The
main Sahlqvist-like proof of soundness and completeness of the logic axiomatized
by the approximants of quasi-positive formulas is in Section 5; Subsection 5.5 shows
that every elementarily generated logic can be handled in this way. Section 6 has a
discussion of the results and some open questions.

2 Modal and Hybrid Formulas

Our paper is fairly self-contained, but we do envisage that the reader has some prior
acquaintance with modal and hybrid logic. Background information can be found in,
for example, [3].

We consider any modal language L over the fixed infinite set V of propositional
atoms (or propositional variables). For simplicity, we assume that L has a single
k-ary box � and a corresponding diamond ♦, where k ≥ 1. All our proofs extend to
languages L with multiple modalities, and occasionally we will add extra modalities
to L.

L+ denotes the extension of L with nominals and the nominal quantifiers. For-
mally, we fix a set I of nominals disjoint from V. (More properly, they should be
called state variables.)

Definition 2.1 The L+-formulas (over V ∪ I) are defined as follows. The atomic
L+-formulas are q, for any q ∈ V; i , for any i ∈ I; and >,⊥. If ϕ,ψ, ϕ1, . . . , ϕk
are L+-formulas, then so are ¬ϕ, ϕ ∧ ψ , ϕ ∨ ψ , �(ϕ1, . . . , ϕk), ♦(ϕ1, . . . , ϕk),
and also ∀iϕ and ∃iϕ, for any nominal i . L is the fragment of L+ without nominals
or quantifiers.
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An occurrence of a nominal i in a formula ϕ is said to be bound if it is in the
scope of a quantifier ∀i or ∃i in ϕ, and free, otherwise. For an L+-formula ϕ, we
write free(ϕ) for the set of all atoms a ∈ V that occur in ϕ and all nominals i ∈ I that
have free occurrences in ϕ. An L+-formula is a sentence if it has no free occurrences
of nominals and pure if it has no occurrences of atoms.

As usual, ϕ→ ψ abbreviates¬ϕ∨ψ , and ϕ ↔ ψ abbreviates (ϕ→ ψ)∧(ψ → ϕ).
L and L+ have the usual semantics. Formally, the definition for L+ is as follows.

Definition 2.2

1. A frame is a structure of the form F = (W, R), where R ⊆ W k+1. We will
write R(t, u1, . . . , uk) to indicate that (t, u1, . . . , uk) ∈ R.

2. For a frame F = (W, R) as above, a hybrid assignment into F is a map
h : V ∪ I→ ℘(W ) such that |h(i)| = 1 for each i ∈ I.

3. Given a hybrid assignment h into F as above and a world w ∈ W , we define
F , h, w |H ϕ by induction on L+-formulas ϕ as follows.
(a) for ϕ ∈ V ∪ I, we put F , h, w |H ϕ iff w ∈ h(ϕ).
(b) >,⊥, and Booleans—as usual.
(c) F , h, w |H �(ϕ1, . . . , ϕk) iff for all v1, . . . , vk ∈ W with

R(w, v1, . . . , vk), we have F , h, vl |H ϕl for some l with 1 ≤ l ≤ k.
(d) F , h, w |H ♦(ϕ1, . . . , ϕk) iff there are v1, . . . , vk ∈ W with

R(w, v1, . . . , vk) and F , h, vl |H ϕl for every l with 1 ≤ l ≤ k.
(e) F , h, w |H ∀iϕ iff F , g, w |H ϕ for every hybrid assignment g into F

with g(x) = h(x) for all x ∈ V ∪ I \ {i}.
(f) F , h, w |H ∃iϕ iff F , g, w |H ϕ for some hybrid assignment g into F

with g(x) = h(x) for all x ∈ V ∪ I \ {i}.

The definition of the semantics of the modal sublanguage L is an obvious variation
on this; there, we only need a map m : V → ℘(W ), and we call such a map simply
an assignment, or sometimes a modal assignment.

A formula ϕ is said to be valid in a frame F if and only if F , h, w |H ϕ for all
hybrid (or modal, as applicable) assignments h into F and all worlds w of F .

Remark 2.3 In our view, ∀i and ∃i are quantifiers, not modalities. So L+ has the
same modal operators as L. We have not included in L+ the familiar hybrid binder
↓ or the actuality operator @i . Recall their definitions:

1. F , h, w |H ↓iϕ iff F , g, w |H ϕ, where g is the same as h except that
g(i) = {w},

2. F , h, w |H @iϕ iff F , h, v |H ϕ, where h(i) = {v}.
The first is no problem, since ↓iϕ can be expressed in L+ by ∃i(i ∧ ϕ). The @
operator is more problematic. In the absence of quantifiers, it can be thought of as
a box or diamond with accessibility relation W × {v}. When the quantifiers ∀i, ∃i
are present, this relation can change, so then @i is not a conventional modality.
However, in the case where L has universal modalities A, E (i.e., a box and diamond
with accessibility relation W × W ), one can use either A(i → ϕ) or E(i ∧ ϕ) to
simulate @iϕ. Conversely, Eϕ is definable from @ and ∃, via ∃i @iϕ, where i does
not occur free in ϕ, and Aϕ is of course definable by ¬E¬ϕ.

So one approach to @ is to use universal modalities to handle it. But it turns out
that in many cases we can define @ in L+ even without universal modalities. We
will discuss this in Remark 3.16 below.
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3 Quasi-positive Formulas

These are roughly the positive hybrid formulas in which all universal quantification
is relativized. The rest of the paper is largely devoted to studying them. In this
section, we define them, give some examples, and study their expressive power.

3.1 Definitions

Notation 3.1 For 1 ≤ d ≤ k, we let �dϕ abbreviate �(⊥, . . . ,⊥, ϕ,⊥, . . . ,⊥),
and ♦dϕ abbreviate ♦(>, . . . ,>, ϕ,>, . . . ,>), in each case with the ϕ in the dth
place.

Definition 3.2 The path formulas are defined as follows. Each path formula π
involves an atom, say q , and perhaps also nominals. We write it as π(q) (of course,
it may involve nominals as well as q). For a formula ϕ, we write π(ϕ) for the result
of replacing q by ϕ in π(q).

1. Any atom q is an existential path formula π(q).
2. If π(q) is an existential path formula, 1 ≤ d ≤ k, and j ∈ I, then π ′(q) =
π(♦d( j ∧ q)) is an existential path formula.

3. If π♦(q) is an existential path formula, then the result π�(q) of pushing
negations down next to atomic formulas in ¬π(¬q) is a universal path
formula, called the dual of π♦(q). For example, if k = 1 and π♦(q) is
♦( j ∧ ♦( j ′ ∧ q)), then π�(q) is �( j → �( j ′→ q)).

A typical existential path formula is π♦(q) = ♦d1( j1∧♦d2( j2∧· · ·∧♦dn ( jn∧q)) · · · ).
It is rather like an @-operator. It is not hard to see that if F , h, w |H π♦(i), where i
is a nominal with h(i) = {t}, say, then F , h, t |H ϕ if and only if F , h, w |H π♦(ϕ),
for any hybrid formula ϕ. So π♦(ϕ) is like @iϕ. We will use this in Theorem 3.13.

Definition 3.3 The quasi-positive (L+-) formulas are defined as follows:

1. Any atomic L+-formula is quasi-positive.
2. If ϕ,ψ are quasi-positive formulas, then so are ϕ ∧ ψ and ϕ ∨ ψ .
3. If ϕ1, . . . , ϕk are quasi-positive, then so are �(ϕ1, . . . , ϕk) and ♦(ϕ1, . . . , ϕk).
4. If ϕ is quasi-positive and i ∈ I, then ∃iϕ is quasi-positive.
5. If ϕ is a quasi-positive formula, π♦(q) is an existential path formula and
π�(q) the dual universal path formula, and i1, . . . , ik ∈ I \ free(π♦(q)),
then

π♦(>) ∧ ∀i1 . . . ik(π
�(♦(i1, . . . , ik))→ ϕ)

is also a quasi-positive formula.

It will become clear in Proposition 5.9 why we use π� in this way in the last clause,
even though semantically it would be equivalent to use π♦. Unfortunately, we have
not been able to find a simpler formulation of universal quantifiers that allows Propo-
sition 5.9 to be proved. Remark 5.11 has some discussion of this.

We could also allow formulas like ∀i(i → ϕ), but this is equivalent to ∃i(i ∧ ϕ),
so there is no need to.

3.2 Examples We will see that quasi-positive formulas are rather expressive. We
give some examples; for simplicity, we assume here that the arity k of � and ♦ is 1.
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Example 3.4 ♦∃i�i says that there is a successor that sees at most one world. It
is a quasi-positive sentence. Similarly, ♦∃i∃ j�(i ∨ j) says that there is a successor
with at most two successors.

Example 3.5 ♦∃i(i∧♦i) says that there is a reflexive successor. Similarly, if L has
universal modalities A, E , the quasi-positive sentences E∃i(i ∧♦i) and A∃i(i ∧♦i)
say that some (respectively, all) worlds are reflexive.

Example 3.6 Modal Sahlqvist formulas such as �p → p and ♦�p → �♦p are
valid in the same frames as

∃i(i ∧ ♦i) and ∀i(♦i → ∀i ′[♦i ′→ ∃ j (♦(i ∧ ♦ j) ∧ ♦(i ′ ∧ ♦ j))]).

There seems to be no absolutely standard definition of a modal Sahlqvist formula, but
probably a reasonably well-accepted definition is the one in the recent textbook [3].
In slightly restricted and simplified form, it says that

1. any positive modal formula is a Sahlqvist formula,
2. any negated boxed atom ¬�n p (where �0 p = p and �n+1 p = �(�n p)) is

a Sahlqvist formula,
3. if ϕ,ψ are Sahlqvist formulas then so are ϕ ∧ ψ , ϕ ∨ ψ , and �ϕ.

For every Sahlqvist formula, there is a pure quasi-positive sentence that is valid in
the same frames: see Remark 3.16 below. As mentioned in Section 1, we can even
generalize the definition of Sahlqvist formula in a natural way to hybrid logic by
allowing quasi-positive hybrid sentences instead of positive modal formulas in (1).
Even then, every such formula can be rewritten as a pure quasi-positive sentence that
is valid in the same frames. We will not prove this here, but see Section 6.2 for a
little more discussion of this point.

Example 3.7 In fact, quasi-positive formulas go beyond Sahlqvist ones in ex-
pressiveness. As we said in the Introduction, [3], p. 168, shows that the axiom
‘M4’ = (�♦p → ♦�p) ∧ (�p → ��p) is not equivalent to any Sahlqvist for-
mula. However, the authors show that it is valid in precisely the transitive frames
satisfying

(∗) ∀x∃y(R(x, y) ∧ ∀zt (R(y, z) ∧ R(y, t)→ z = t)).

And so is the pure quasi-positive sentence

∀ j (♦ j → (♦ j ∧ ∀i(�( j → ♦i)→ ♦i)))︸ ︷︷ ︸
transitivity

∧♦∃i�i︸ ︷︷ ︸
(∗)

.

The hybrid rendition of (∗) is borrowed from Example 3.4 above.

Example 3.8 The Sahlqvist formula ♦�p→ ♦p has first-order correspondent

∀yz(R(y, z)→ ∃t (R(z, t) ∧ R(y, t))).

The similar statement

∀x∃y(R(x, y) ∧ ∀z(R(y, z)→ ∃t (R(z, t) ∧ R(y, t))))

does not appear to be Sahlqvist-expressible (♦(♦�p → ♦p) is not Sahlqvist); but
we can express it in hybrid logic by

♦∃i(i ∧�♦∃ j ( j ∧@i♦ j)),
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and also by the quasi-positive formula

♦∀ j (♦ j → ∃k(♦( j ∧ ♦k) ∧ ♦k)).

Notice how the � in the first formula is simulated by ∀ j in the second.

Example 3.9 Irreflexivity: neither ∃i(i ∧ �¬i) nor the equivalent ∀i(i → �¬i)
are equivalent to pure quasi-positive sentences. See Section 6.4 for a proof.

Example 3.10 ∀i i is not quasi-positive, because the ∀i is not relativized. We will
see in Remark 5.11 that it lacks some useful properties of quasi-positive formulas
and is not equivalent to a quasi-positive formula.

3.3 Expressiveness of quasi-positive formulas We now analyze the expressiveness
of quasi-positive formulas in more detail. We begin with a definition from [12].

Definition 3.11 Let L be the first-order signature consisting of a (k+1)-ary relation
symbol R. An essentially atomic L-formula ψ is one built from atomic L-formulas
(which are of the form R(x, y1, . . . , yk), x = y, >, and⊥) using ∧,∨, and bounded
quantification

∀y1, . . . , yk(R(x, y1, . . . , yk)→ψ),
∃y1, . . . , yk(R(x, y1, . . . , yk) ∧ ψ),

where x /∈ {y1, . . . , yk}. An L-sentence is pseudo-equational if it is of the form
∀xψ , where ψ is essentially atomic.

We will regard a frame (W, R) (Definition 2.2) as an L-structure in the natural way.
So we can evaluate essentially atomic formulas and pseudo-equations in frames.4

Remark 3.12 Given any pure quasi-positive hybrid sentence ϕ, it is not hard to
construct a pseudo-equational L-sentence that is true in precisely the frames in which
ϕ is valid. A quasi-positive formula may have unrelativized existential quantification
of the form ∃iϕ, but because ϕ is essentially a positive formula, this is only of use
if the value taken up by i is “reachable” from the evaluation point of ϕ by a number
of “steps” at most the modal depth of ϕ. So we may simulate ∃i by a disjunction of
relativized existential quantifiers sufficient to reach all points at most this far away.
For example, ∃i�♦i is valid in the same frames as the pseudo-equational sentence

∀x
(
∀y(R(x, y)→ R(y, x))

∨ ∃i[R(x, i) ∧ ∀y(R(x, y)→ R(y, i))]

∨ ∃ j (R(x, j) ∧ ∃i[R( j, i) ∧ ∀y(R(x, y)→ R(y, i))])
)
.

We leave the general argument as an exercise, since we will not use it.

More importantly here, the converse also holds, as we now show. The very simple
idea seen in Examples 3.7 and 3.8 is at the root of this theorem.

Theorem 3.13 For any pseudo-equational L-sentence σ , there is an effectively
constructible pure quasi-positive hybrid L+-sentence ϕ such that for any frame F ,
we have F |H σ if and only if ϕ is valid in F .

Proof In the proof, we make no notational distinction between first-order variables
and nominals. If F = (W, R) is a frame, h is a map from the first-order vari-
ables (identified with nominals) into W , and ϕ is a pure hybrid formula, we write
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F , h, w |HH ϕ if F , ĥ, w |H ϕ, where ĥ is the hybrid assignment into F given by
ĥ(i) = {h(i)} for i ∈ I (and ĥ(p) = ∅ for p ∈ V).

Fix a distinguished variable (nominal) x . Let ψ be a first-order L-formula. We
write freeψ for the set of free variables of ψ . If α = 〈π♦

v (q) : v ∈ V 〉 is a sequence
of existential path formulas indexed by a set V of variables, we say that ψ is α-safe
if

1. V ⊇ freeψ ,
2. for each subformulaψ ′ ofψ , no variable has both free and bound occurrences

in ψ ′,
3. no variable in V ∪ {x}, nor any nominal in any π♦

v (>) for any v ∈ freeψ ,
occurs bound in ψ .

Claim 3.14 Let ψ be an essentially atomic L-formula. Let V be a set of variables
and let α = 〈π♦

v (q) : v ∈ V 〉 be a sequence of existential path formulas. If ψ is
α-safe, then we can effectively construct a quasi-positive hybrid formula ψα such
that for any frame F and any h with F , h, h(x) |HH π♦

v (v) for each v ∈ freeψ , we
have

F , h |H ψ ⇐⇒ F , h, h(x) |HH ψα. (7)

Proof of claim We define ψα by induction on ψ . In Example 3.15 below, we will
give an example of the construction. For atomic ψ , there are three cases:

1. R(y, z1, . . . , zk)
α
= π♦

y (♦(z1, . . . , zk)),
2. (y = z)α = π♦

y (z),
3. >α = > and ⊥α = ⊥.

Let F , h be arbitrary. It is easily seen that for any variable y and any hybrid formula
ϕ, if F , h, h(x) |HH π♦

y (y) then

F , h, h(y) |HH ϕ ⇐⇒ F , h, h(x) |HH π♦
y (ϕ). (8)

So assuming that F , h, h(x) |HH π♦
y (y), and writing z̄ for (z1, . . . , zk), we evidently

have
1. F , h |H R(y, z̄) iff F , h, h(y) |HH ♦z̄, iff F , h, h(x) |HH π♦

y (♦z̄),
2. F , h |H y = z iff F , h, h(y) |HH z, iff F , h, h(x) |HH π♦

y (z).
Therefore, (7) holds for atomic ψ .

The translation−α commutes with∧ and∨. Ifψ1∧ψ2 is α-safe, so areψ1 andψ2.
Inductively, ψα1 and ψα2 are well defined and satisfy (7). If F , h, h(x) |HH π♦

v (v)
for each v ∈ free(ψ1 ∧ ψ2), then the same holds for ψ1 and ψ2 individually; so
F , h |H ψ1 ∧ψ2 if and only if F , h, h(x) |HH ψα1 ∧ψ

α
2 , as required. The case of ∨

is similar.
Finally, let ψ be essentially atomic, and suppose that the quasi-positive formula

ψα has been defined for all α for which ψ is safe. Suppose that α = 〈π♦
v : v ∈ V 〉

is given. We extend the definition to quantifiers as follows:
1. Let θ = ∃z1, . . . , zk(R(y, z1, . . . , zk) ∧ ψ), and suppose that θ is α-safe.

Then
θα = ∃z1 . . . zk(π

♦
y (♦(z1, . . . , zk)) ∧ ψ

β).

2. Let θ = ∀z1, . . . , zk(R(y, z1, . . . , zk)→ ψ), with θ α-safe. Then

θα = π♦
y (>) ∧ ∀z1 . . . zk

(
π�

y (♦(z1, . . . , zk))→ ψβ
)
.
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In each case, y /∈ {z1, . . . , zl}, and the sequence β is the extension of α with the path
formulas π♦

z1
(q), . . . , π♦

zk
(q), with

π♦
zl
(q) = π♦

y
(
♦l(zl ∧ q)

)
for l = 1, . . . , k.

As θ is α-safe and zl occurs bound in θ , there is no path formula indexed by zl
already in α. So β is indeed indexed by a set of variables. It can be checked that ψ
is β-safe. Inductively, ψβ is a well-defined quasi-positive formula, and so in each
case, θα is also well defined and quasi-positive.

We will check that (7) is preserved by these two definitions. We need some
preliminaries. The set free(θ) is the same in each case. Let F , h be given, with
F , h, h(x) |HH π♦

v (v) for each v ∈ free(θ). Write z̄ = (z1, . . . , zk), and write
g =z̄ h if g is a map from variables into W that agrees with h except perhaps on z̄.
For any such g, we have the following.

(a) g(x)=h(x)—θ is α-safe, so x does not occur bound in θ , so x /∈ {z1, . . . , zk}.
(b) F , g, g(x) |HH π♦

v (v) for each v ∈ free θ . To see this, let v ∈ free θ . As θ
is assumed α-safe, neither v nor the nominals in π♦

v (>) are in {z1, . . . , zk},
and so g and h agree on them. We assumed that F , h, h(x) |HH π♦

v (v), so
by (a), we must also have F , g, g(x) |HH π♦

v (v).
(c) F , g |H R(y, z̄) iff F , g, g(x) |HH π♦

y (♦z̄). Certainly, F , g |H R(y, z̄) iff
F , g, g(y) |HH ♦z̄. Since y ∈ free θ , by (b) we have F , g, g(x) |HH π♦

y (y).
So it is clear by (8) that the above holds iff F , g, g(x) |HH π♦

y (♦z̄).
(d) If F , g |H R(y, z̄), then F , g |H ψ iff F , g, g(x) |HH ψβ . It is clear that

the latter condition in (c) implies F , g, g(x) |HH π♦
zl
(zl) for l = 1, . . . , k.

By (b) and freeψ ⊆ {z1, . . . , zk} ∪ free θ , we see that F , g, g(x) |HH π♦
v (v)

for all v ∈ freeψ . The conclusion now follows inductively from (7).

We can now check (7) for the new formulas. First, let θ = ∃z̄(R(y, z̄) ∧ ψ). Then
F , h |H θ if and only if there is g =z̄ h such that F , g |H R(y, z̄) ∧ ψ . By (c)
and (d), this holds if and only if there is g =z̄ h with F , g, g(x) |HH π♦

y (♦z̄) ∧ψβ .
Clearly, this is if and only if F , h, h(x) |HH θα .

Second, let θ = ∀z̄(R(y, z̄) → ψ). Let g =z̄ h. By (c), F , g |H R(y, z̄) if and
only if F , g, g(x) |HH π♦

y (♦z̄). By (b), F , g, g(x) |HH π♦
y (y), so this holds if and

only if F , g, g(x) |HH π�
y (♦z̄). By this and (d), we see that F , g |H R(y, z̄)→ ψ

is equivalent to F , g, g(x) |HH π�
y (♦z̄)→ ψβ .

It is now plain that F , h |H θ if and only if F , h, h(x) |HH ∀z̄(π�
y (♦z̄)→ ψβ).

It follows from our assumptions that F , h, h(x) |HH π♦
y (>), so we obtain F , h |H θ

if and only if F , h, h(x) |HH θα , as required. This proves the claim. �

Now suppose that we are given some essentially atomic formula ψ(x). Define
π♦

x (q) = q. By renaming bound variables, we may equivalently rewrite ψ so that it

is 〈π♦
x 〉-safe. Let ϕ be ∃x(x ∧ ψ 〈π

♦
x 〉). It can be checked that for each ψ as in the

claim, each free nominal of ψα is a free variable of ψ or occurs in π♦
y (>) for some

y ∈ freeψ . Hence, ϕ is a pure quasi-positive sentence. By definition, ϕ is valid in a
frame F = (W, R) if and only if F , h, w |HH ϕ for every h and w ∈ W , if and only
if for every h, w we have F , g, g(x) |HH ψ 〈π

♦
x 〉, where g is the same as h except

that g(x) = w. This boils down to saying that F , g, g(x) |HH ψ 〈π
♦
x 〉 for every g.



Hybrid Formulas and Modal Logics 457

Now π♦
x (x) = x , and hence F , g, g(x) |HH π♦

x (x). So by the claim, for any g we

have F , g, g(x) |HH ψ 〈π
♦
x 〉 if and only if F , g |H ψ . We conclude that ϕ is valid in

F if and only if F , g |H ψ for every g—and this is if and only if F |H ∀xψ(x). As
F was arbitrary, the theorem is proved.

Example 3.15 The construction in the theorem may seem elaborate, but it is actu-
ally quite simple. We give an example to illustrate it. We assume here that k = 1.
The symbol ≡ will denote logical equivalence. Consider the pseudo-equational sen-
tence ∀xψ(x), where

ψ(x) = ∃y
(
R(x, y) ∧ ∀z(R(y, z)→ R(x, z) ∨ R(z, x) ∨ x = z)

)
.

We put π♦
x (q) = q , and apply the algorithm of the claim in Theorem 3.13 to calculate

ψ 〈π
♦
x 〉. Let ψ1 = ∀z(R(y, z)→ R(x, z) ∨ R(z, x) ∨ x = z). As in the ∃-case in the

claim, we put
π♦

y (q) = π♦
x (♦(y ∧ q)) = ♦(y ∧ q),

ψ 〈π
♦
x 〉 = ∃y

(
π♦

x (♦y) ∧ ψ
〈π♦

x ,π
♦
y 〉

1
)

= ∃y
(
♦y ∧ ψ

〈π♦
x ,π

♦
y 〉

1
)
.

Then, with ψ2 = R(x, z) ∨ R(z, x) ∨ x = z, the claim dictates that we put

π�
y (q) = �(y → q),

π♦
z (q) = π♦

y (♦(z ∧ q)) = ♦(y ∧ ♦(z ∧ q)),

ψ
〈π♦

x ,π
♦
y 〉

1 = π♦
y (>) ∧ ∀z

(
π�

y (♦z)→ ψ
〈π♦

x ,π
♦
y ,π

♦
z 〉

2
)

≡ ♦y ∧ ∀z
(
[�(y → ♦z)] → ψ

〈π♦
x ,π

♦
y ,π

♦
z 〉

2
)
.

Finally, we obtain

ψ
〈π♦

x ,π
♦
y ,π

♦
z 〉

2 = (R(x, z) ∨ R(z, x) ∨ x = z)〈π
♦
x ,π

♦
y ,π

♦
z 〉

= π♦
x (♦z) ∨ π♦

z (♦x) ∨ π♦
x (z)

= ♦z ∨ ♦(y ∧ ♦(z ∧ ♦x)) ∨ z.

Wrapping up and simplifying, we obtain

ψ 〈π
♦
x 〉 ≡ ∃y

(
♦y ∧ ∀z

(
[�(y → ♦z)] → ♦z ∨ ♦(y ∧ ♦(z ∧ ♦x)) ∨ z

))
.

Recalling that

ψ(x) = ∃y
(
R(x, y) ∧ ∀z(R(y, z)→ R(x, z) ∨ R(z, x) ∨ x = z)

)
,

it is not so hard to see that for any F , h, we have F , h |H ψ if and only if
F , h, h(x) |HH ψ 〈π

♦
x 〉, as in the claim, and that ∃x

(
x ∧ ψ 〈π

♦
x 〉

)
is valid in F if and

only if F |H ∀xψ(x).

Remark 3.16 If we extend the formation rules in Definition 3.11 by allowing nega-
tion, we obtain what is sometimes called the bounded fragment of first-order logic. In
[1], it is shown that this fragment is precisely as expressive as the fragment H(@,↓)
of hybrid logic without quantifiers but with the operators ↓ and @ mentioned in Re-
mark 2.3. Simple syntactic translations between the two formalisms are given. The
translations in [1] are for a signature consisting of a single binary relation symbol
R (the accessibility relation of unary �,♦) plus unary relation symbols (which are
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treated as propositional atoms in H(@,↓)). The translation from H(@,↓) to the
bounded fragment generalizes easily to (k + 1)-ary R (for k-ary modalities). The
converse translation does not appear to generalize.

The translations still work in the absence of negation and the unary relation sym-
bols. They show that any positive pure H(@,↓)-formula is equivalent to an essen-
tially atomic formula. For binary R, the converse holds. To give the idea of this
converse translation, the formula

ψ(x) = ∀y
(
R(x, y)→ ∃z(R(x, z) ∧ (R(y, z) ∨ y = z))

)
is easily seen to be equivalent to ψh(x) = �↓y@x♦↓z(@y♦z ∨@yz). The pseudo-
equation ∀xψ(x) is true in a frame F if and only if the positive pure H(@,↓)-
sentence ↓xψ

h(x) is valid in F . It follows from this, Remark 3.12, and Theo-
rem 3.13 that in the case of binary R (i.e., unary modalities—k = 1), pure quasi-
positive sentences are exactly as expressive as positive pure H(@,↓)-sentences.

There are some other relevant translations. We can extend the first-order transla-
tion in Remark 3.12 to quasi-positive sentences involving the @ operator. The result
is still pseudo-equational, so by Theorem 3.13, it can be effectively and equivalently
rewritten back to a quasi-positive sentence without @. Thus, allowing @ in quasi-
positive sentences does not change their expressive power. Similarly, the first-order
correspondent of any Sahlqvist formula σ is pseudo-equational, so we can construct
a pure quasi-positive sentence that is valid in the same frames as σ .

The translations between fragments are summarized in Figure 1.

pure 3.13
←− positive bounded ←− positive

quasi-positive sentences [1] H(@,↓)
sentences 3.12

−→ (pseudo-equations) −→
(unary ♦)

sentences

∩ ↑3.16

pure quasi-positive −→3.16 correspondents of
sentences with @ Sahlqvist formulas

Figure 1 Translations between fragments

4 Modal Approximations to Hybrid Formulas

In this section, we will define the “modal approximants” of any hybrid formula ϕ.
Later, we will show that the validity of a quasi-positive sentence is accurately re-
flected by validity of its approximants.

An approximant simulates ϕ by substituting modal formulas for the atoms in ϕ
and representing nominals by sets in a partition defined by modal formulas. More
specifically, an approximant will be with respect to some set Sx of L-formulas, for
each x ∈ V ∪ I. It allocates a conjunction of formulas in Sq to each atom q . To
each nominal i , it allocates the conjunction of the formulas in some subset X of Si
and the negations of the formulas in Si \ X . Intuitively, this specifies an equivalence
class of the equivalence relation on the worlds of a Kripke model defined by w ∼ w′

if and only if w,w′ agree on all formulas in Si (it may instead specify the empty



Hybrid Formulas and Modal Logics 459

set of worlds). Quantifiers ∀i, ∃i will be approximated by finite conjunction and
disjunction over subsets X ⊆ Si .

Formally, the allocation will be done by specifying, for each x , a map ξx from a
finite set (Sx ) of L-formulas into {0, 1}. An atom q will be allocated the conjunction
of the formulas in ξ−1

q [1]. A nominal i will be allocated the conjunction of formulas
in ξ−1

i [1] and the negations of formulas in ξ−1
i [0].

For simplicity of notation, we will let L also denote the set of all (modal) L-
formulas over the set V of atoms. We will write ϕ,ψ, . . . for (hybrid) L+-formulas,
and α, β, . . . for (modal) L-formulas.

Definition 4.1

1. A display is a sequence η = 〈ηx : x ∈ V ∪ I〉 of maps ηx : Sx → {0, 1}
where Sx = dom ηx ⊆ L.

2. A display η is said to be finitary if dom ηx is finite for each x ∈ V ∪ I and
full if dom ηx = L for each x ∈ V ∪ I.

3. For displays ξ, η, we write ξ ≤ η if ξx is a restriction of ηx (i.e., ξx ⊆ ηx ) for
every x ∈ V ∪ I. (Those familiar with forcing could reasonably prefer it if
we wrote ξ ≥ η.)

4. We write ξ ≤ω η if ξ ≤ η and ξ is finitary.
5. For displays ξ, ζ , and X ⊆ V ∪ I, we write ξ =X ζ if

(i) dom ξx = dom ζx for all x ∈ X , and
(ii) ξy = ζy for all y ∈ (V ∪ I) \ X .
For i ∈ I, we write ξ =i ζ instead of ξ ={i} ζ .

From now on, we will try to write η, θ for full displays, and ξ, ζ, δ, ε for finitary dis-
plays. We will often use the fact that if ξ, ζ ≤ω η then there is δ with ξ, ζ ≤ δ ≤ω η.

Definition 4.2 (Approximants) For each L+-formula ϕ and each finitary display ξ ,
we define a modal L-formula ϕξ , the ξ -approximant of ϕ, by induction as follows.
Below,

∧
∅ stands for >.

1. For an atom q, we let qξ =
∧
{α ∈ dom ξq : ξq(α) = 1}.

2. For a nominal i , we let iξ =
∧
{αξi (α) : α ∈ dom ξi }. Here, for an L-formula

α, we write α1 for α and α0 for ¬α.
3. >ξ = > and ⊥ξ = ⊥.
4. (¬ϕ)ξ = ¬(ϕξ ), (ϕ ∧ ψ)ξ = ϕξ ∧ ψξ , and (ϕ ∨ ψ)ξ = ϕξ ∨ ψξ .
5. �(ϕ1, . . . , ϕk)ξ = �(ϕ1

ξ , . . . , ϕ
k
ξ ), and ♦(ϕ1, . . . , ϕk)ξ = ♦(ϕ1

ξ , . . . , ϕ
k
ξ ).

6. (∃iϕ)ξ =
∨
ζ=i ξ

ϕζ , and (∀iϕ)ξ =
∧
ζ=i ξ

ϕζ .

Finally, for any full display η, we define ϕη = {ϕξ : ξ ≤ω η}.

Note that −ξ commutes with all operations except quantifiers. We end this section
with some basic information on approximants and some examples.

Example 4.3 If ϕ is a modal formula, then a trivial induction will show that for any
finitary display ξ , the approximant ϕξ is just a substitution instance of ϕ. Each atom
q in ϕ is replaced by the conjunction qξ =

∧
{α ∈ dom ξq : ξq(α) = 1}.

Example 4.4 In general, −ξ does not preserve semantic equivalence. For example,
the hybrid formulas ♦(i ∧ p) and ♦i ∧�(i → p) are equivalent. But if ξ is a finitary
display with dom ξi = {α} and dom ξp = {β}, say, and ξi (α) = ξp(β) = 1, then
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♦(i ∧ p)ξ is ♦(α ∧ β), while (♦i ∧ �(i → p))ξ is ♦α ∧ �(α → β), which is
stronger. We will return to this issue in Lemma 5.7.

The next lemma is proved by a simple induction on ϕ.

Lemma 4.5 For any L+-formula ϕ and finitary displays ξ, ζ such that ξx = ζx for
each x ∈ free(ϕ), we have ϕξ = ϕζ .

Example 4.6 Let us compute some approximants of the pure quasi-positive sen-
tence ♦∃i�i from Examples 3.4 – 3.10. Start by letting S = {q} ⊆ L, where q is a
fixed atom. Let ξ0, ξ1 be finitary displays whose i-components ξ0

i , ξ
1
i : S → {0, 1}

are given by ξ0
i (q) = 0 and ξ1

i (q) = 1. So by definition,

iξ0 =
∧
{αξ

0
i (α) : α ∈ S} = qξ

0
i (q) = q0

= ¬q,
iξ1 =

∧
{αξ

1
i (α) : α ∈ S} = qξ

1
i (q) = q1

= q.

Then for any finitary display ξ with dom ξi = S (by Lemma 4.5, the choice of ξ
doesn’t matter because we are applying it to a pure sentence), we obtain

(♦∃i�i)ξ = ♦(∃i�i)ξ
= ♦

∨
ζ=i ξ

(�i)ζ
= ♦

∨
l<2(�i)ξ l

= ♦(�(iξ0) ∨�(iξ1))

= ♦(�¬q ∨�q).

This is equivalent to McKinsey’s formula M = �♦q → ♦�q which we saw in the
introduction. If we took S = {q1, . . . , qn} for n ≥ 1, and for each X ⊆ S put

τX =
∧
q∈X

q ∧
∧

q∈S\X

¬q,

then for a display ξ with dom ξi = S we’d essentially get

(♦∃i�i)ξ = ♦
∨
X⊆S

�τX .

This says that there is a successor all of whose successors agree on the atoms
q1, . . . , qn . It is K -equivalent to the formula

Mn = ♦
n∧

t=1

(♦qt → �qt )

given by Lemmon in [30], p. 74, and seen in (2) in the introduction. So each Mn has
the form (♦∃i�i)ξ for some finitary display ξ . Conversely, for any finitary display
ξ , the approximant (♦∃i�i)ξ is K -equivalent to a substitution instance of Mn , where
n = |dom ξi |. So the logic KM∞ axiomatized by {Mn : n ≥ 1} is also axiomatized
by (♦∃i�i)η for any full display η.

Let K be the class of frames in which “any world sees a world with at most one
successor.” Lemmon showed that the canonical frame of KM∞ lies in K , and that
any frame in K validates KM∞. So KM∞ is the logic of K; it is canonical and
elementarily generated. Clearly, K is the class of frames that validate ♦∃i�i .
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Example 4.7 We briefly do the same for Hughes’s logic KMT, defined in [24] and
mentioned in the introduction. KMT is axiomatized by {MTn : n ≥ 1}, where

MTn = ♦
(
(�q1 → q1) ∧ · · · ∧ (�qn → qn)

)
.

A similar logic investigated in [23], §4, can be axiomatized by replacing the ♦ by a
universal diamond; it can also be handled by the methods below.

Consider the pure quasi-positive sentence

ϕ = ♦∃i(i ∧ ♦i).

Claim 4.8 KMT is axiomatized by the set ϕη for any full display η—again, as ϕ is a
pure sentence, there is no dependence here on the choice of η. We note that identical
axioms were obtained in [39], §3, without using hybrid logic.

Proof of claim For any finitary display ξ , it can be checked that

ϕξ = ♦
∨

S⊆dom ξi

(τS ∧ ♦τS),

where τS =
∧
α∈S α ∧

∧
β∈(dom ξi )\S ¬β (as usual, we put

∧
∅ = >). Since the τS

(for S ⊆ dom ξi ) are pairwise inconsistent and their disjunction is a tautology, ϕξ is
K -equivalent to ♦

∧
S⊆dom ξi

(τS → ♦τS) and so to

α = ♦
∧

S⊆dom ξi

(�¬τS → ¬τS). (9)

This is a substitution instance of MT2n , where n = |dom ξi |. Conversely, it is not
hard to see that K ` α→ MTn in the case where dom ξi = {q1, . . . , qn}. The claim
is proved. �

Let C be the class consisting of all frames satisfying the first-order condition
∀x∃y(R(x, y) ∧ R(y, y)). In [24], Theorem 1, it is shown that the canonical frame
for KMT is in C. Hughes also shows that every frame in C validates KMT. So KMT
is the logic of C and is canonical and elementarily generated. Clearly, C is the class
of frames in which ϕ is valid.

5 Modal Logics from Quasi-Positive Formulas

In both the examples just seen, a pure quasi-positive sentence ϕ turned out to charac-
terize (by validity) a class K of frames containing the canonical frame for the logic
axiomatized by ϕη. The logic was sound and complete for K . We will prove in this
section (Theorem 5.15) that this is always true.

For the whole of this section, we fix a frame F = (W, R). Given a modal assign-
ment m : V → ℘(W ), a formula α ∈ L, and a set 0 ⊆ L, we write

m(α) = {w ∈ W : F ,m, w |H α},

m(0) =
⋂
α∈0 m(α) if 0 6= ∅,

m(∅) = W.

We define h(ϕ) and h(0) similarly, where h is a hybrid assignment into F , ϕ is an
L+-formula, and 0 a set of such formulas.
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5.1 Descriptive assignments

Definition 5.1 A modal assignment m : V → ℘(W ) is said to be descriptive if
the following three conditions hold:

separation: If t 6= u in W , then there is a modal formula α such that
F ,m, t |H α and F ,m, u |H ¬α.

tightness: If t, v1, . . . , vk ∈ W , then R(t, v1, . . . , vk) if and only if
(F ,m, t |H ♦(α1, . . . , αk) whenever α1, . . . , αk ∈ L and
F ,m, vl |H αl for each l = 1, . . . , k).

saturation: If 0 ⊆ L and m(1) 6= ∅ for each finite subset 1 ⊆ 0, then
m(0) 6= ∅.

Of course, there are well-known topological formulations of these conditions;
see [33]. This definition is the standard one; note that it concerns only modal
formulas.

The next handy lemma will allow us to represent a hybrid assignment’s values
on nominals by a modal assignment and a full display. If the modal assignment is
descriptive, the representation is faithful.

Lemma 5.2 Let m : V → ℘(W ) be a modal assignment, and let w ∈ W . Let i
be a nominal, and suppose that η is a full display satisfying ηi (α) = 1 if and only if
w ∈ m(α) for each α ∈ L. Then,

1. w ∈ m(iη),
2. if m is descriptive, then m(iη) = {w}.

Proof Take ξ ≤ω η. Then iξ =
∧
{αξi (α) : α ∈ dom ξi }. For each α ∈ dom ξi , if

w ∈ m(α) then ξi (α) = 1, so α is a conjunct of iξ . If instead, w ∈ m(¬α), then
ξi (α) = 0, so α0

= ¬α is a conjunct of iξ . Hence, w ∈ m(iξ ).
Now assume that m is descriptive. By separation, |m(iη)| ≤ 1. By this and the

first part, we conclude that m(iη) = {w}. �

The obvious analogue of part 1 for finitary displays also holds.

5.2 Monotonicity We would like to show that for any finitary displays ξ ≤ ζ and
any quasi-positive L+-formula ϕ, we have ` ϕζ → ϕξ . The relativized universal
quantifiers in ϕ interfere with this aim and cause irritating syntactic issues. But we
are able to show it cofinally, which is enough for our later results. We will show that
` ϕζ → ϕξ when ζ is “ϕ-closed.” The notion of “closed” will take advantage of the
variability of the domains of the maps in a finitary display. Cofinality can be proved
for what we call “clean” formulas.

Definition 5.3 Let ϕ be a quasi-positive L+-formula.

1. A finitary display ζ is said to be ϕ-closed if for every subformula of
ϕ of the form π♦(>) ∧ ∀i1, . . . , ik(π

�(♦(i1, . . . , ik)) → ψ), where
π♦(q) = ♦d1( j1 ∧ ♦d2( j2 ∧ · · · ∧ ♦dn ( jn ∧ q)) · · · ) for some n ≥ 1,
and for every ζ ′ ={i1,...,ik } ζ , we have ♦(i1, . . . , ik)ζ ′ ∈ dom(ζ jn ).

2. ϕ is said to be clean if for each subformula ∀i1 . . . ikψ of ϕ, all (atomic)
occurrences of i1, . . . , ik in ϕ are in ψ .
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Remark 5.4

1. Being ϕ-closed is only a restriction if ϕ involves universal quantifiers with
nonzero n in π .

2. ζ being ϕ-closed is a property not of the actual maps ζi (i ∈ I), but of their
domains. If ζ =i ζ

′ for some nominal i , and ζ is ϕ-closed, then so is ζ ′.
3. Any ϕ-closed display is also ψ-closed, for any quasi-positive subformula ψ

of ϕ.
4. By renaming bound nominals, we can easily convert any quasi-positive for-

mula ϕ to a clean quasi-positive formula that is logically equivalent to ϕ.

Lemma 5.5 (Cofinality) Let ϕ be a clean quasi-positive formula, let η be a full
display, and let ξ ≤ω η. Then there is a ϕ-closed display ζ with ξ ≤ ζ ≤ω η.

Proof Let V be the set of nominals occurring in ϕ. Define a graph G on V with
edges labeled by subformulas of ϕ as follows. For each subformula

χ = π♦(>) ∧ ∀i1, . . . , ik(π
�(♦(i1, . . . , ik))→ ψ)

of ϕ, where π♦(q) = ♦d1( j1 ∧♦d2( j2 ∧ · · · ∧♦dn ( jn ∧ q)) · · · ) with n ≥ 1, include
the labeled edges i1

χ
→ jn , . . . , ik

χ
→ jn in G. By Definition 3.3, if i

χ
→ j then

i 6= j , and clearly, if i
χ
→ j and i ′

χ
→ j ′ then j = j ′.

Suppose that i
χ
→ j

χ ′

→ l in G. By the above, χ 6= χ ′. As ϕ is clean, all
occurrences of j in ϕ are in χ ′. Since j occurs in the π♦(>)-part of χ , it follows
that χ is a proper subformula of χ ′. Hence, G is acyclic. So we can enumerate V as
{v0, . . . , vm−1} in such a way that if vt

χ
→ vu (for any χ ) then t < u.

Now we define extensions ξ = ζ 0
≤ ζ 1

≤ · · · ≤ ζm
= ζ ≤ω η by induction. In

the t th step (0 ≤ t < m), write j for vt . We define ζ t+1
i = ζ t

i for all i ∈ I \ { j}. As
ζ t+1
≤ω η, it remains only to define dom(ζ t+1

j ) which is done as follows:

1. Include dom(ζ t
j ) in dom(ζ t+1

j ).

2. For each subformula χ = π♦(>) ∧ ∀i1, . . . , ik(π
�(♦(i1, . . . , ik))→ ψ) of

ϕ such that π♦(q) = ♦d1( j1 ∧ · · · ∧ ♦dn ( j ∧ q)) · · · ), where n ≥ 1, and
for each ζ ′ ={i1,...,ik } ζ

t , include the formula ♦(i1, . . . , ik)ζ ′ in dom(ζ t+1
j ).

(There may be none, one, or many such χ involving j in this way. For each
one, we have i1

χ
→ j , . . . , ik

χ
→ j .)

Let us check quickly that ζ = ζm is ϕ-closed.
Take a subformula χ = π♦(>) ∧ ∀i1, . . . , ik(π

�(♦(i1, . . . , ik)) → ψ) of ϕ
such that π♦(q) = ♦d1( j1 ∧ · · · ∧ ♦dn ( jn ∧ q)) · · · ), with n ≥ 1. Let t < m
be the index with jn = vt . By construction, i1, . . . , ik ∈ {vu : u < t}, and so
dom(ζil ) = dom(ζ t

il ) for each l = 1, . . . , k. Take ζ ′ ={i1,...,ik } ζ , and let ζ †
≤ ζ ′ sat-

isfy ζ †
={i1,...,ik } ζ

t . Then also, dom(ζ ′il ) = dom(ζ †
il ), and so (il)ζ ′ = (il)ζ † for each

l. It follows from this and the construction that ♦(i1, . . . , ik)ζ ′ = ♦(i1, . . . , ik)ζ †

∈ dom(ζ t+1
jn ) ⊆ dom(ζ jn ), as required. �

Definition 5.6 For 1 ≤ d ≤ k, we define the binary relation Rd on W by

Rd(x, y) ⇐⇒ ∃z1 . . . zk(R(x, z1, . . . , zk) ∧ zd = y).

This can be viewed as the “accessibility relation” of ♦d in ♦dϕ.
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The next lemma shows how closed displays work. For a nominal i , ♦(i ∧ p) and
♦i ∧ �(i → p) are equivalent. We saw in Example 4.4 that when we take approx-
imants, the equivalence can be lost. This problem can be avoided by using closed
displays. So to some extent, approximations of nominals with a closed display still
behave like real nominals. The lemma is used in Lemma 5.8 and Proposition 5.9.

Lemma 5.7 Let χ = π♦(>) ∧ ∀i1, . . . , ik(π
�(♦(i1, . . . , ik)) → ϕ) be a quasi-

positive formula, where π♦(q) = ♦d1( j1 ∧ ♦d2( j2 ∧ · · · ∧ ♦dn ( jn ∧ q)) · · · ) and
n ≥ 0. (If n = 0, we just have π♦(q) = π�(q) = q.) Then for any χ -closed finitary
display ζ , the following modal formula is valid:(

π♦(♦(i1, . . . , ik))↔ π�(♦(i1, . . . , ik)) ∧ π
♦(>)

)
ζ
.

Proof The result is trivial if n = 0. Assume that n > 0. We leave the easy
“←” direction as an exercise, since we will not need it. For “→,” as F is ar-
bitrary, we can work semantically. Take any modal assignment m into F and
any w ∈ m(π♦(♦(i1, . . . , ik))ζ ). For convenience, we also write w0, u0 for w.
Choose wt ∈ m(( jt )ζ ) satisfying Rdt (wt−1, wt ) (for each t with 1 ≤ t ≤ n), and
wn ∈ m(♦(i1, . . . , ik)ζ ). From the existence of these wt follows w ∈ m(π♦(>)ζ ).

It remains to show that w ∈ m(π�(♦(i1, . . . , ik))ζ ). As ζ is χ -closed,
♦(i1, . . . , ik)ζ ∈ dom(ζ jn ). So either ♦(i1, . . . , ik)ζ or ¬♦(i1, . . . , ik)ζ is a
conjunct of ( jn)ζ . As wn ∈ m(( jn)ζ ) ∩ m(♦(i1, . . . , ik)ζ ), it can only be that
( jn)ζ ` ♦(i1, . . . , ik)ζ . So for any ut ∈ m(( jt )ζ ) satisfying Rdt(ut−1, ut ) for
1 ≤ t ≤ n, we have un ∈ m(♦(i1, . . . , ik)ζ ) simply because un ∈ m(( jn)ζ ). So
w ∈ m(π�(♦(i1, . . . , ik))ζ ) as required. �

Now we can prove the monotonicity lemma.

Lemma 5.8 (Monotonicity) Let ϕ be a quasi-positive formula, and let ξ ≤ ζ be
finitary displays such that ζ is ϕ-closed. Then for any modal assignment m into F ,
we have m(ϕζ ) ⊆ m(ϕξ ).

Proof By induction on ϕ. If ϕ is atomic, the result is plain because every con-
junct of ϕξ is also a conjunct of ϕζ . The cases ∧,∨,�,♦ are straightforward as
−ξ commutes with these operators. If the result holds for ϕ, ζ is ∃iϕ-closed, and
w ∈ m((∃iϕ)ζ ), then there is ζ ′ =i ζ with w ∈ m(ϕζ ′). By Remark 5.4(2) and (3),
ζ ′ is ϕ-closed. Let ξ ′ =i ξ be the unique display with ξ ′ ≤ ζ ′. Inductively,
m(ϕζ ′) ⊆ m(ϕξ ′). So w ∈ m(ϕξ ′) ⊆ m((∃iϕ)ξ ), as required.

The only complicated case is that of

χ = π♦(>) ∧ ∀ ı̄(π�(♦ ı̄)→ ϕ),

where π♦(q) = ♦d1( j1 ∧ ♦d2( j2 ∧ · · · ∧ ♦dn ( jn ∧ q)) · · · ) for some n ≥ 0,
and ı̄ = (i1, . . . , ik).

We assume the result for ϕ and prove it for χ . Assume that ζ is χ -closed. Let
w0 ∈ m(χζ ) be given. Then w0 ∈ m(π♦(>)ζ ), and it follows by earlier cases that
w0 ∈ m(π♦(>)ξ ).

To show that w0 ∈ m(∀ ı̄(π�(♦ ı̄) → ϕ)ξ ) as well, assume that ξ ′ ={i1,...,ik } ξ

and w0 ∈ m(π�(♦ ı̄)ξ ′). We require

w0 ∈ m(ϕξ ′) (to be shown). (10)
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We already have w0 ∈ m(π♦(>)ζ ), so we may take w1, . . . , wn ∈ W with
Rdt (wt−1, wt ) and wt ∈ m(( jt )ζ ) for each 1 ≤ t ≤ n. As ξ ≤ ζ , we have
wt ∈ m(( jt )ξ ) = m(( jt )ξ ′) for each 1 ≤ t ≤ n. Because w0 ∈ m(π�(♦ ı̄)ξ ′), we get
wn ∈ m((♦ ı̄)ξ ′).

Take witnesses ul ∈ m((il)ξ ′) for 1 ≤ l ≤ k, with R(wn, u1, . . . , uk). Define
ζ ′ ={i1,...,ik } ζ by ζ ′il (α) = 1 if and only if ul ∈ m(α), for each α ∈ dom(ζil ) and
each l. By Lemma 5.2(1), we have ul ∈ m((il)ζ ′). Hence, wn ∈ m((♦ ı̄)ζ ′), and
so w0 ∈ m(π♦(♦ ı̄)ζ ′). But by Remark 5.4(2), ζ ′ is also χ -closed. By Lemma 5.7,
w0 ∈ m(π�(♦ ı̄)ζ ′). As w0 ∈ m(χζ ), it follows that w0 ∈ m

(
(π�(♦ ı̄) → ϕ)ζ ′

)
,

and so w0 ∈ m(ϕζ ′).
Because ul ∈ m((il)ζ ′) ∩ m((il)ξ ′) for each l, we have ζ ′ ≥ ξ ′. Also, ζ ′ is ϕ-

closed by Remark 5.4(2) and (3). So inductively, m(ϕζ ′) ⊆ m(ϕξ ′), yielding (10) as
required. �

So we can always refine a finitary display to a closed one, for which a monotonicity
principle holds.

5.3 Persistence of quasi-positive formulas The following is the chief technical
result that we need.

Proposition 5.9 Let ϕ be a clean quasi-positive formula. Then for any hybrid
assignment h : V ∪I→ ℘(W ) and modal assignment m : V → ℘(W ) into F , and
any finitary display δ and full display η, the following hold:

1. If h(x) ⊆ m(xδ) for each x ∈ free(ϕ), then also h(ϕ) ⊆ m(ϕδ).
2. Hence, if h(x) ⊆ m(xη) for each x ∈ free(ϕ), then also h(ϕ) ⊆ m(ϕη).
3. If m is descriptive and m(xη) ⊆ h(x) for each x ∈ free(ϕ), then m(ϕη) ⊆ h(ϕ).

Proof Part 2 is immediate from part 1. To see this, we note that for each x ∈ freeϕ,
if h(x) ⊆ m(xη) then h(x) ⊆ m(xδ) for each δ ≤ω η. By part 1, h(ϕ) ⊆ m(ϕδ) for
each such δ, so that h(ϕ) ⊆

⋂
{m(ϕδ) : δ ≤ω η} = m(ϕη).

We prove parts 1 and 3 together by induction on ϕ. If ϕ ∈ V ∪ I, we are given
the results, and the cases > and ⊥ are trivial. Inductively assume the lemma for
the quasi-positive formulas ϕ,ψ, ϕ1, . . . , ϕk . We consider the formulas made from
them by cases. All but the quantifier cases are pretty much the same as in the proof
of the classical Sahlqvist theorem; see, for example, [4], and [3].

Case ϕ ∨ ψ Assume that h(x) ⊆ m(xδ) for each x ∈ free(ϕ ∨ ψ). Then
h(x) ⊆ m(xδ) for each x ∈ free(ϕ), so inductively, h(ϕ) ⊆ m(ϕδ). Similarly,
h(ψ) ⊆ m(ψδ). Hence, h(ϕ ∨ ψ) = h(ϕ) ∪ h(ψ) ⊆ m(ϕδ) ∪m(ψδ) = m(ϕδ ∨ ψδ)
= m((ϕ ∨ ψ)δ).

Conversely, if m(xη) ⊆ h(x) for each x ∈ free(ϕ ∨ ψ), then

m((ϕ ∨ ψ)η) = m({(ϕ ∨ ψ)ξ : ξ ≤ω η}) (definition of −η)
= m({ϕξ ∨ ψξ : ξ ≤ω η}) (definition of −ξ )
= m({ϕξ : ξ ≤ω η}) ∪ m({ψζ : ζ ≤ω η}) (see (∗) below)
= m(ϕη) ∪ m(ψη) (definition of −η)
⊆ h(ϕ) ∪ h(ψ) (inductively)
= h(ϕ ∨ ψ).

Let us check that the equality (∗) is true. The inclusion “⊇” is clear (and we don’t
need it). For the converse, let w ∈ W and suppose that w /∈ m({ϕξ : ξ ≤ω η}) ∪
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m({ψζ : ζ ≤ω η}). Then there are ξ, ζ ≤ω η with w /∈ m(ϕξ ) and w /∈ m(ψζ ).
Pick ε ≤ω η with ξ, ζ ≤ ε. As ϕ ∨ ψ is assumed clean, by Lemma 5.5 we can
assume that ε is (ϕ ∨ψ)-closed. Hence it is ϕ-closed and ψ-closed. By Lemma 5.8,
w /∈ m(ϕε) and w /∈ m(ψε). So w /∈ m(ϕε)∪m(ψε) = m(ϕε ∨ψε). This shows that
w /∈ m({ϕξ ∨ ψξ : ξ ≤ω η}), as required.

Case ϕ ∧ ψ This is similar and, in fact, easier. We leave it to the reader.

Case �(ϕ1, . . . , ϕk) To reduce clutter, it will be implicit that l ranges over
1, . . . , k. Assume first that h(x) ⊆ m(xδ) for each x ∈ free(�(ϕ1, . . . , ϕk)). So
the same is true for each ϕl . Inductively, h(ϕl) ⊆ m(ϕl

δ) for each l. So for any
w ∈ h(�(ϕ1, . . . , ϕk)) and v1, . . . , vk ∈ W , if R(w, v1, . . . , vk) then for some l we
have vl ∈ h(ϕl) ⊆ m(ϕl

δ). This implies that w ∈ m(�(ϕ1
δ , . . . , ϕ

k
δ )) = m(�(ϕ1,

. . . , ϕk)δ), as required.
Conversely, suppose that m(xη) ⊆ h(x) for x ∈ free(�(ϕ1, . . . , ϕk)). Pick arbi-

trary w ∈ m(�(ϕ1, . . . , ϕk)η). Then w ∈ m(�(ϕ1
ξ , . . . , ϕ

k
ξ )) for all ξ ≤ω η.

We claim that, for all v1, . . . , vk ∈ W with R(w, v1, . . . , vk), there is l with
vl ∈ m(ϕl

ξ ) for all ξ ≤ω η. For if not, then there are v1, . . . , vk ∈ W with
R(w, v1, . . . , vk) and such that for each l there is ξ l

≤ω η with vl /∈ m(ϕl
ξ l ). Pick

ζ ≤ω η with ξ1, . . . , ξ k
≤ ζ . By Lemma 5.5, we may assume that ζ is �(ϕ1, . . . ,

ϕk)-closed, and hence ϕl -closed for each l. By Lemma 5.8, vl /∈ m(ϕl
ζ ) for each l.

This contradicts w ∈ m(�(ϕ1
ζ , . . . , ϕ

k
ζ )). The claim is proved. �

By the claim, for all v1, . . . , vk ∈ W with R(w, v1, . . . , vk), there is l with
vl ∈ m((ϕl)η). Inductively, vl ∈ h(ϕl). So w ∈ h(�(ϕ1, . . . , ϕk)).

Case ♦(ϕ1, . . . , ϕk) Again it will be implicit that l ranges over 1, . . . , k. First
assume that h(x) ⊆ m(xδ) for each x ∈ free(♦(ϕ1, . . . , ϕk)). So the same holds for
each ϕl , and inductively, h(ϕl) ⊆ m(ϕl

δ). Let w ∈ h(♦(ϕ1, . . . , ϕk)) be arbitrary.
So there are v1, . . . , vk ∈ W with R(w, v1, . . . , vk) and vl ∈ h(ϕl) for each l.
Hence, vl ∈ m(ϕl

δ) for each l, and by semantics of ♦ we obtain w ∈ m(♦(ϕ1
δ , . . . ,

ϕk
δ )) = m(♦(ϕ1, . . . , ϕk)δ).

The converse follows easily from Esakia’s well-known lemma on distribution of
♦ over directed intersections; see, for example, [4], Lemma 10.27, for the unary case
(k = 1) and [19], Lemma 53, for the polyadic case. We give a proof so that our paper
is more self-contained and to introduce some machinery that will be needed in the
next case. Consider the set

4 = {ζ : ζ ≤ω η, ζ is ♦(ϕ1, . . . , ϕk)-closed}.

We will build a set ultrafilter on this set—that is, an ultrafilter of the Boolean algebra
(℘ (4),∪, \). For any ξ ≤ω η, let ξ↑ = {ζ ∈ 4 : ξ ≤ ζ }. Then, by Lemma 5.5, the
intersection of any finite number of sets of the form ξ↑ (for ξ ≤ω η) is nonempty. By
the Boolean prime ideal theorem ([5], 4.1.3), there is an ultrafilter D on4 containing
ξ↑ for each ξ ≤ω η.

Moving toward the proof of the converse now, assume that m is descriptive, and
let w ∈ m(♦(ϕ1, . . . , ϕk)η) be arbitrary. Then w ∈ m(♦(ϕ1, . . . , ϕk)ξ ) = m(♦(ϕ1

ξ ,

. . . , ϕk
ξ )) for each ξ ≤ω η. So for each ξ , there are points vξl ∈ m(ϕl

ξ ) for each l,

with R(w, vξ1 , . . . , v
ξ
k ).
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We are going to use saturation to eliminate the dependence of the vξl on ξ . The
ultrafilter D will make some choices for us, and it plays the role that Tychonoff’s
theorem plays in topological proofs of Esakia’s lemma. For each l, let

[α]l = {ζ ∈ 4 : v
ζ
l ∈ m(α)}, for each α ∈ L,

0l = {α ∈ L : [α]l ∈ D}.
(11)

0l is simply the set of L-formulas that hold at a “majority” (as determined by
D) of the vζl . Let α1, . . . , αn ∈ 0l , for any finite n. As D is an ultrafilter,
[α1]l ∩ · · · ∩ [αn]l ∈ D , so certainly there is ζ ∈ [α1]l ∩ · · · ∩ [αn]l . Then
v
ζ
l ∈ m(α1)∩ · · · ∩m(αn). It follows that m(1) 6= ∅ for every finite1 ⊆ 0l . So by

saturation, we may pick vl ∈ m(0l), for each l.
Note that

0l = {α ∈ L : F ,m, vl |H α}. (12)
This follows from the fact that for any α, the sets [α]l and [¬α]l are disjoint and
[α]l ∪ [¬α]l = 4 ∈ D . So exactly one of [α]l , [¬α]l is in D , and exactly one of
α, ¬α is in 0l . Since vl satisfies all the formulas in 0l , it satisfies precisely these
formulas.

We next show that vl ∈ m((ϕl)η) for each l. Pick any ξ ≤ω η. By Lemma 5.8,
if ζ ∈ ξ↑ then vζl ∈ m(ϕl

ζ ) ⊆ m(ϕl
ξ ). So ξ↑ ⊆ [ϕl

ξ ]l . By choice of D , this implies
that [ϕl

ξ ]l ∈ D , so that ϕl
ξ ∈ 0l , and vl ∈ m(ϕl

ξ ). This holds for all ξ ≤ω η, so
vl ∈ m((ϕl)η) as required.

We check finally that R(w, v1, . . . , vk). For this we use the tightness property of
m. Let α1, . . . , αk ∈ L. Suppose that F ,m, vl |H αl for each l. Then by (12),
αl ∈ 0l , so [αl ]l ∈ D for each l. Hence there is ζ ∈ [α1]1 ∩ · · · ∩ [αk]k .
Then F ,m, vζl |H αl for each l. Since R(w, vζ1 , . . . , v

ζ
k ), tightness of m yields

F ,m, w |H ♦(α1, . . . , αk). This holds for all α1, . . . , αk , so the other direction of
tightness now gives R(w, v1, . . . , vk), as required.

To sum up, if m is descriptive and w ∈ m(♦(ϕ1, . . . , ϕk)η), then there are
vl ∈ m((ϕl)η) for each l, with R(w, v1, . . . , vk). Suppose m(xη) ⊆ h(x) for each
x ∈ free(♦(ϕ1, . . . , ϕk)). Then the same holds for each x ∈ free(ϕl), so inductively,
m((ϕl)η) ⊆ h(ϕl). Hence, vl ∈ h(ϕl) for each l, and it follows that w ∈ h(♦(ϕ1,
. . . , ϕk)), as required.

Case ∃iϕ Fix h, and let G be the set of all hybrid assignments g into F satisfying
g(x) = h(x) for all x ∈ V ∪ I \ {i}. Then by definition of the semantics,

h(∃iϕ) =
⋃
g∈G

g(ϕ). (13)

First, suppose that h(x) ⊆ m(xδ) for each x ∈ free(∃iϕ). Pick any g ∈ G; by (13),
it is enough if we show that g(ϕ) ⊆ m((∃iϕ)δ).

Define ε =i δ by ε(α) = 1 if and only if g(i) ⊆ m(α), for each α ∈ dom δi .
By Lemma 5.2(1), we have g(i) ⊆ m(iε). Now g ∈ G and ε =i δ. So
for every x ∈ free(∃iϕ), we have g(x) = h(x) ⊆ m(xδ) = m(xε). As
free(ϕ) = free(∃iϕ) ∪ {i}, we obtain g(x) ⊆ m(xε) for each x ∈ free(ϕ). Us-
ing the inductive hypothesis, we obtain the required inclusion

g(ϕ) ⊆ m(ϕε) ⊆ m
( ∨
ζ=i δ

ϕζ

)
= m((∃iϕ)δ).
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The converse is proved rather as in the case of ♦. Let 4 = {ζ : ζ ≤ω η, ζ is
∃iϕ-closed}, and let D be an ultrafilter on 4 containing ξ↑ = {ζ ∈ 4 : ξ ≤ ζ }, for
ξ ≤ω η. Assume that m is descriptive and that m(xη) ⊆ h(x) for each x ∈ free(∃iϕ).
Take any w ∈ m((∃iϕ)η). We will show that w ∈ h(∃iϕ).

By definition of (∃iϕ)η,

m((∃iϕ)η) = m
({ ∨

ζ=i ξ

ϕζ : ξ ≤ω η
})
.

So for all ξ ≤ω η there is some ξ∗ =i ξ with w ∈ m(ϕξ∗). For each α ∈ L, put

α+ = {ζ ∈ 4 : α ∈ dom ζi , ζ
∗

i (α) = 1},
α− = {ζ ∈ 4 : α ∈ dom ζi , ζ

∗

i (α) = 0}. (14)

Define θ =i η by,

for each α ∈ L, θi (α) = 1 ⇐⇒ α+ ∈ D . (15)

As in the ‘♦’ case, this is saying that θ agrees with the majority of ζ ∗.

Claim 5.10 w ∈ m(ϕθ ).

Proof of claim Let ε ≤ω θ ; we show that w ∈ m(ϕε). Let ε′ =i ε satisfy ε′ ≤ω η.
Then ε′↑ ∈ D . If α ∈ dom εi then, clearly, α+ ∪ α− ⊇ ε′↑, so α+ ∪ α− ∈ D . The
sets α+, α− are disjoint, so exactly one of them is in D . Since dom εi is finite, we
may find S ∈ D such that S ⊆ ε′↑ and with the property that

S ⊆ α+ or S ⊆ α−, for each α ∈ dom εi . (16)

Pick any ζ ∈ S. Then dom εi ⊆ dom ζi . By (14), (16), and (15), for every
α ∈ dom εi we have

ζ ∗i (α) = 1 ⇐⇒ ζ ∈ α+ ⇐⇒ S ⊆ α+ ⇐⇒ α+ ∈ D ⇐⇒ θi (α) = 1.

So θi (α) = εi (α) = ζ ∗i (α) for each α ∈ dom εi . Now recall that ζ ∈ S ⊆ ε′↑.
So ζ ≥ ε′. But ζ ∗ =i ζ and θ =i η, so it follows that ζ ∗ ≥ ε. We know
that w ∈ m(ϕζ ∗). By Remark 5.4(2) and (3), ζ ∗ is ϕ-closed. So, by Lemma 5.8,
m(ϕζ ∗) ⊆ m(ϕε), and so w ∈ m(ϕε). As ε ≤ω θ was arbitrary, w ∈ m(ϕθ ), as
claimed. �

By separation, |m(iθ )| ≤ 1. So we may choose g ∈ G with g(i) ⊇ m(iθ ). We
assumed that m(xη) ⊆ h(x) for each x ∈ free(∃iϕ). As θ =i η and g ∈ G, it follows
that m(xθ ) ⊆ g(x) for all x ∈ free(ϕ). By the claim, the inductive hypothesis,
and (13), we now obtain w ∈ m(ϕθ ) ⊆ g(ϕ) ⊆ h(∃iϕ) as required.

Case of relativized ∀i Suppose that n < ω, 1 ≤ d1, . . . , dn ≤ k, j1, . . . , jn ∈ I,
and i1, . . . , ik ∈ I \ { j1, . . . , jn}. Let

π♦(q) = ♦d1( j1 ∧ ♦d2( j2 ∧ · · · ∧ ♦dn ( jn ∧ q)) · · · ),
π = π♦(>),

ρ = π�(♦(i1, . . . , ik)),
χ = π ∧ ∀i1 . . . ik(ρ → ϕ).

If n = 0, we have π = > and ρ = ♦(i1, . . . , ik). Suppose that

h( jt ) = {wt } for 1 ≤ t ≤ n. (17)
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We prove the result for χ . First assume that h(x) ⊆ m(xδ) for all x ∈ free(χ).
We require h(χ) ⊆ m(χδ). We have h(x) ⊆ m(xδ) for all x ∈ freeπ , so by the
preceding cases, h(π) ⊆ m(πδ). Let w = w0 ∈ h(χ). Take ε ={i1,...,ik } δ, and
suppose that w ∈ m(ρε). We need to show that w ∈ m(ϕε).

Because w ∈ h(χ) ⊆ h(π), we have Rdt (wt−1, wt ) for 1 ≤ t ≤ n. By our origi-
nal assumption and the fact that ε ={i1,...,ik } δ, we have h( jt ) ⊆ m(( jt )δ) = m(( jt )ε),
and so wt ∈ m(( jt )ε) for each t . As w ∈ m(ρε), we see that wn ∈ m(♦(i1, . . . , ik)ε)
(note that this is true even if n = 0). So we may find ul ∈ m((il)ε) for l = 1, . . . , k,
with R(wn, u1, . . . , uk).

Define a hybrid assignment g into F , agreeing with h except on i1, . . . , ik , and
with g(il) = {ul} for each l. Then it is plain that w ∈ g(ρ). Since w ∈ h(χ), we see
that w ∈ g(ϕ). Now by assumption and the choice of the ul , we have g(x) ⊆ m(xε)
for each x ∈ free(ϕ). So inductively, g(ϕ) ⊆ m(ϕε), and we obtain w ∈ m(ϕε) as
required. We make some comments on this argument in Remark 5.11 below.

The converse is very similar to the proof of Lemma 5.8. Assume that m is descrip-
tive and that m(xη) ⊆ h(x) for all x ∈ free(χ). Suppose that w ∈ m(χη). By dis-
tributing the infinite intersection here over the conjunction in χ , we get w ∈ m(πη).
We have m( jηt ) ⊆ h( jt ) for t = 1, . . . , n, so by earlier cases,

w ∈ h(π) = h(π♦(>)). (18)

To show that w ∈ h(∀i1 . . . ik(ρ → ϕ)) as well, let g be an arbitrary hybrid assign-
ment into F that agrees with h except perhaps on i1, . . . , ik , and with w ∈ g(ρ). We
require that w ∈ g(ϕ).

Using Lemma 5.2, pick a full display θ ={i1,...,ik } η such that m(iθl ) = g(il) for
each l. Then m(xθ ) ⊆ g(x) for each x ∈ free(ϕ). Inductively, m(ϕθ ) ⊆ g(ϕ). So if
we can show that w ∈ m(ϕθ ), it will follow that w ∈ g(ϕ) as required.

From (18), it is clear that w ∈ g(π♦(>)). We assumed that w ∈ g(ρ)—
that is, w ∈ g(π�(♦(i1, . . . , ik))). So by ordinary hybrid evaluation, w ∈
g(π♦(♦(i1, . . . , ik))). This formula is quasi-positive. We check that g(x) ⊆ m(xθ )
for all free nominals x in it. For nominals il , it holds by choice of θ . For nom-
inals jt , since w ∈ m(πη), it follows that m(( jt )ξ ) 6= ∅ for every ξ ≤ω η. So,
clearly, m(1) 6= ∅ for every finite 1 ⊆ jηt . By saturation, m( jηt ) 6= ∅. Since
we assumed that m( jηt ) ⊆ h( jt ) = {wt }, we obtain m( jηt ) = h( jt ). Hence,
g( jt ) = h( jt ) ⊆ m( jηt ) = m( jθt ). So by earlier cases of part 2 of the proposition,
w ∈ m(π♦(♦(i1, . . . , ik))

θ ).
Let ζ ≤ω θ be χ -closed. Then w ∈ m(π♦(♦(i1, . . . , ik))ζ ). By Lemma 5.7,

w ∈ m(π�(♦(i1, . . . , ik))ζ )—that is, w ∈ m(ρζ ). But also, w ∈ m(ρζ → ϕζ ).
(This is because if we pick ξ ≤ω η with ξ ={i1,...,ik } ζ , we havew ∈ m(χη) ⊆ m(χξ )
⊆ m(∀i1 . . . ik(ρ → ϕ)ξ ) ⊆ m((ρ → ϕ)ζ ).) Combining these gives w ∈ m(ϕζ ). As
this holds for all χ -closed ζ ≤ω θ , we easily deduce from Lemmas 5.5 and 5.8 that
w ∈ m(ϕθ ) as desired. This completes the proof of Proposition 5.9. �

Remark 5.11 The rather elaborate form of relativized universal quantification in
quasi-positive formulas makes life complicated. Here we will look at the definition
in more detail and see that simpler alternatives would not allow Proposition 5.9 to be
proved.

The real role of the conjunct π of χ in the soundness part of the ∀-case in Propo-
sition 5.9 is to ensure that m((il)ε) 6= ∅ for each l. Then we can choose g with
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g(il) ⊆ m((il)ε) and apply the inductive hypothesis to obtain g(ϕ) ⊆ m(ϕε). Though
in the proof we use π to ensure that Rdt (wt−1, wt ) for 1 ≤ t ≤ n, this is not strictly
necessary, since if it fails, w ∈ g(ρ) holds vacuously.

Here is an example to show that the result can fail if π is omitted. Let k = 1 and
take

χ = ∀i(�( j → ♦i)→ i ∨ ♦i ∨ ♦♦i),

evaluated in the frame ({0, 1, 2}, R), with R = {(0, 1), (1, 2)}. Let h be a hybrid
assignment with h( j) = {2}; let p ∈ V be an atom; let m be a modal assign-
ment with m(p) = {2}; and take any δ with dom δi = {p,¬p}, dom δ j = {p},
and δ j (p) = 1. Then the hypothesis h(x) ⊆ m(xδ) holds for all x ∈ freeχ ,
since h( j) = {2} ⊆ m( jδ) = m(p) = {2}. Also, 0 ∈ h(χ), since plainly
0 ∈ g(i ∨ ♦i ∨ ♦♦i) for any hybrid assignment g. But if ε =i δ is such that
εi (p) = εi (¬p) = 1, then 0 ∈ m(�( j → ♦i)ε) vacuously, since m( jε) = {2} and
2 is not R-accessible from 0. But 0 /∈ m((i ∨ ♦i ∨ ♦♦i)ε), since iε = p ∧ ¬p
and so m(iε) = ∅. So 0 /∈ m(χδ). Hence, h(χ) 6⊆ m(χδ) in this case. We
leave it to the reader to check that the result can also fail for formulas of the form
χ = ∀i1, . . . , ik(π

♦(i1, . . . , ik)→ ϕ).
The proof would also break down if we were to allow unrelativized ∀ in quasi-

positive formulas. For example, if |W | = 1, then for any h,m and nontrivial ξ ,
we must have h(∀i i) = W , but m((∀i i)ξ ) = ∅. So the soundness part of the
proposition would fail.

5.4 Soundness and completeness The following are easy corollaries of Proposi-
tion 5.9.

Proposition 5.12 (Soundness) Let ϕ be a clean quasi-positive sentence. If ϕ is
valid in F , then so is any approximant ϕξ .

Proof Let a finitary display ξ be given and let m be any modal assignment. Se-
lect any hybrid assignment h into F satisfying h(a) ⊆ m(aξ ) for all atoms a. By
assumption, h(ϕ) = W . By Proposition 5.9, h(ϕ) ⊆ m(ϕξ ). The result follows. �

For nonsentences, we cannot always choose such an h, and indeed the result can fail.
For example, if |W | = 1, then i is valid in F , but not all its approximants are.

Proposition 5.13 (Hybrid d-persistence) Let ϕ be a clean quasi-positive formula,
and suppose that m : V → ℘(W ) is a descriptive assignment into F . Assume that
for every full display η, each formula in the set ϕη of approximants is valid in F
under the assignment m; that is, m(ϕη) = W . Then ϕ is valid in F .

Proof Let h be an arbitrary hybrid assignment into F . Using Lemma 5.2, or other-
wise, we may choose a full display η with the property that m(xη) ⊆ h(x) for each
x ∈ freeϕ. By assumption, m(ϕη) = W . By Proposition 5.9, m(ϕη) ⊆ h(ϕ). The
result follows. �

“Local” versions of these results are easily proved in the same way. For example,
given F = (W, R), a descriptive assignment m into F , and w ∈ W , if each approx-
imant of a quasi-positive formula ϕ is true at w in F under h, then ϕ is also true at
w in all models with frame F .
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Definition 5.14 If 8 is a set of quasi-positive sentences, we write 38 for the
normal modal logic axiomatized by the set of axioms⋃

{ϕη : ϕ ∈ 8, η a full display} = {ϕδ : ϕ ∈ 8, δ a finitary display}.

For a single quasi-positive sentence ϕ, we write 3ϕ instead of 3{ϕ}.

Theorem 5.15 Let8 be a set of clean quasi-positive sentences. Then38 is canon-
ical, its canonical frame validates 8, and 38 is sound and complete for the class of
frames validating all ϕ ∈ 8.

Proof Each approximant in ϕη, for each ϕ ∈ 8 and each full display η, is valid
in the canonical model for 38. The canonical assignment is well known to be de-
scriptive, so by Proposition 5.13, each ϕ ∈ 8 is valid in the canonical frame G for
38. Hence, by Proposition 5.12, each axiom of 38 is also valid in G, and so every
formula in 38 is valid in G. This establishes canonicity of 38. It also follows that
any nontheorem of 38 can be invalidated on a frame validating 8, namely, G. Con-
versely, by Proposition 5.12, all the axioms of 38 are valid in frames validating all
formulas in 8. Hence, all theorems of 38 are valid in these frames. So, indeed, 38
is the modal logic of the class of frames validating 8. �

We stated Theorem 5.15 for quasi-positive sentences, but there is no loss of strength
if we restrict it to pure quasi-positive sentences. For it is easily seen that any quasi-
positive sentence ϕ(q1, . . . , qn) is valid in the same frames as ϕ(⊥, . . . ,⊥), which
is pure. Similarly, 3ϕ(q1,...,qn) has the same frames as 3ϕ(⊥,...,⊥).

5.5 Elementarily generated modal logics A modal logic is said to be elementarily
generated if it is the modal logic of some elementary class of frames. By Fine’s
theorem [7], all such logics are canonical. The converse fails in general, as was
shown in [17] and [16], but the elementarily generated logics still form an important
class of well-behaved logics, and in practice, the usual way to show that a modal
logic is canonical is by establishing that it is elementarily generated. We can now
characterize the elementarily generated modal logics by the following theorem.

Theorem 5.16 The elementarily generated modal logics are precisely the ones of
the form 38, for some set 8 of pure clean quasi-positive hybrid sentences.

Proof The right-to-left direction is immediate—given 8 as in the theorem, 38 is
the modal logic of the class of frames in which every sentence in 8 is valid, and
this class is elementary. Conversely, let 3 be the modal logic of some elementary
class K of frames. Let 9K be the set of all pseudo-equational L-sentences true in
each frame in K . By [12], Theorem 4.13, 3 is also the modal logic of the class
K = {F : F |H 9K}.5 By Theorem 3.13, there is a set 8 of pure quasi-positive
sentences such that K is the class of frames that validate every ϕ ∈ 8. By Re-
mark 5.4, we can assume that the sentences in 8 are clean—in fact, Theorem 3.13
can be set up to produce clean sentences. By Theorem 5.15, 3 = 38. �

6 Remarks and Problems

In this paper, we have shown how to effectively axiomatize any elementarily gener-
ated modal logic. We end with some discussion about the work presented here.
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6.1 Canonicity We can deduce from Theorem 5.15 the known facts that the
McKinsey-Lemmon logic (discussed in Example 4.6) and Hughes’s logic (Exam-
ple 4.7) are canonical. Further, it is perhaps worth mentioning that our results
provide a new proof of Fine’s theorem.

Corollary 6.1 (Fine, [7]) Any elementarily generated modal logic is canonical.

Proof By Theorems 5.15 and 5.16. �

6.2 The axioms If, in the proof of Theorem 5.16, there is a recursively enumer-
able first-order axiomatization of K , then 9K , 8, and 38 are all recursively enu-
merable.6 If K is already axiomatized by explicit pseudo-equations, then we can
construct 8 and the axioms for 38 effectively and explicitly—we actually get to
see the axioms, and they can be fairly transparent. For example, the axioms we ob-
tain for the logics KM∞ and KMT coincide (modulo standard equivalences) with the
existing axiomatizations of these logics given in [30] and [24], respectively.

It is possible to extend Propositions 5.9, 5.12, 5.13, and Theorem 5.15 from quasi-
positive sentences to “hybrid Sahlqvist formulas” as defined in Example 3.6. How-
ever, it turns out that for any such formula there is an equivalent pure quasi-positive
sentence. So this gives no increase in expressivity and no additional logics that can
be axiomatized by approximants. For this reason, we do not include the general-
ization in this paper; it can be an exercise for the interested reader. However, it is
perhaps noteworthy that the axioms obtained as approximants to a hybrid Sahlqvist
formula can be simpler than the approximants of the corresponding quasi-positive
sentence, and indeed, the approximants of a modal Sahlqvist formula are simply its
substitution instances. Accepting this, we see that the generalized Theorem 5.15
would imply the completeness part of Sahlqvist’s theorem.

At present, the methods presented here do not seem to shed light on when 38
is finitely axiomatizable. The set of axioms we construct for 38 is always infinite,
even when 8 is finite, because a quasi-positive hybrid sentence has infinitely many
approximants. But sometimes the blowup occurs when obtaining 8 itself, as Exam-
ple 6.3 below shows.

Proposition 6.2 Let ϕ be any pure clean quasi-positive sentence. Then a finite
frame is a frame for3ϕ if and only if it validates ϕ. Hence, it is decidable whether a
finite frame validates 3ϕ .

Proof Let F = (W, R) be a finite frame. By Proposition 5.12, if ϕ is valid in F
then so is 3ϕ . Conversely, assume that 3ϕ is valid in F . Let m : V → ℘(W ) be
any surjective map. It is easily checked that m is a descriptive assignment into F .
By assumption, m(ϕη) = W for every full display η. By Proposition 5.13, ϕ is valid
in F .

Hence we may test for 3ϕ being valid in a finite frame F by evaluating ϕ in F ;
this can be done by an algorithm. �

Example 6.3 K 3 is the logic of the class of products of three Kripke frames (see
[8] for information). K 3 is not finitely axiomatizable, but it is the logic of a finitely
axiomatizable elementary class of frames [29]. By Theorem 5.16 and the comments
above, K 3

= 38 for some set 8 of pure quasi-positive sentences, and K 3 is re-
cursively enumerable. However, it follows from Proposition 6.2 that K 3 is not of
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the form 3ϕ for any pure quasi-positive sentence ϕ, since by [20], it is undecidable
whether a finite frame is a frame for this logic.

Taking an algebraic view for a moment, the same argument shows that the variety
RRA of representable relation algebras cannot be axiomatized by the approximants
of any single pure quasi-positive sentence, since it is undecidable whether a finite
relation algebra is representable [21]. As with K 3, there is a finitely axiomatizable
elementary class of atom structures (e.g., the class of atom structures of full relation
set algebras) whose complex algebras generate RRA.

6.3 Correspondence Here we comment on the relation between the class Frϕ of
frames validating a pure quasi-positive sentence ϕ, and Fr3ϕ , the class of frames
that validate the approximants of ϕ. That Frϕ ⊆ Fr3ϕ is clear, by Theorem 5.15.

Though by Proposition 6.2 it is true in finite frames, it is false in general that if ϕ
is a quasi-positive sentence whose approximants are valid in a frame F , then ϕ itself
is valid in F . That is, the inclusion Frϕ ⊆ Fr3ϕ may be strict. This behavior is a
notable difference from the classical Sahlqvist theorem. There, the “approximants”
of a Sahlqvist formula σ are just the substitution instances of σ , and these include σ
itself. If the approximants are valid in a frame F , then so is σ , and so the first-order
correspondent of σ is true in F . So the frames for σ are precisely the frames for its
approximants, and they form an elementary class.

If ϕ is equivalent to the correspondent of a Sahlqvist formula σ , then we do have
Frϕ = Fr3ϕ . This is because σ is valid in all frames in Frϕ, and so σ ∈ 3ϕ by
Theorem 5.15. Hence, σ and its correspondent ϕ are valid in all frames in Fr3ϕ .

In general, however, Frϕ, which is elementary and finitely axiomatizable, may be
properly contained in Fr3ϕ . We will give two examples of this. In the first, Fr3ϕ is
also elementary and finitely axiomatizable and of the form Frψ for a (rather weaker)
quasi-positive sentence ψ . In the second, Fr3ϕ is nonelementary.

Example 6.4 This is based on [39], Example 2.4. Consider the following pure
quasi-positive sentences:

ϕ = ∃ j (♦ j ∧ ∀i(�( j → ♦i)→ �♦i)),

ψ = ∀i(♦i → ∀ j (♦ j → ∃k(♦k ∧ ∀l[�(k → ♦l)→ ♦(i ∧ ♦l) ∧ ♦( j ∧ ♦l)]))).

Given a frame F = (W, R) and w ∈ W , write Rw for {v ∈ W : R(w, v)}. Then
1. F , w |H ϕ iff {Rx

: x ∈ Rw} contains a ⊆-minimum element,
2. F , w |H ψ iff {Rx

: x ∈ Rw} is⊇-directed: any two sets in it contain a third.
Clearly, Frϕ ⊆ Frψ . However, (N, <) ∈ Frψ \ Frϕ, so the inclusion is strict.

[39] shows that the modal logics of Frϕ and Frψ (i.e., 3ϕ and 3ψ , respectively)
are the same and are finitely axiomatized by the Sahlqvist formula

σ = ♦�p ∧ ♦�q → ♦�(p ∧ q),

expressing that the formula �♦p is additive in p. On the one hand, ψ is equiva-
lent to the first-order correspondent of σ , so Frψ is the class of all frames for σ ,
and Frψ = Fr3ψ . On the other hand, ϕ is equivalent to the “canonical pseudo-
correspondent” of σ obtained in [39]: F |H ϕ ⇒ F |H σ for any frame F , and the
canonical frame of the logic axiomatized by σ validates ϕ.7 This shows that

1. there are inequivalent ϕ,ψ such that 3ϕ = 3ψ ,
2. there is ϕ such that Fr3ϕ ⊃ Frϕ, and yet Fr3ϕ is elementary and finitely

axiomatizable.
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Example 6.5 Consider ϕ = ♦∃i(i ∧ ♦i). This is the formula considered in Ex-
ample 4.7 in relation to Hughes’s logic KMT [24]. It is valid in precisely the frames
such that every world sees a reflexive world. It is therefore not valid in the frame
N = (N, 6=) (i.e., the complete graph on N).

Now in [24], Theorem 12, it is shown that the frames for KMT (by Example 4.7,
these are the frames validating 3ϕ) are precisely those frames such that the graph
based on the successors of each world is not finitely colorable in the sense of graph
theory. More formally, for each world x , the set of worlds accessible from x cannot
be partitioned into finitely many sets such that no world in any partition set can see
a world in the same set. In N , the graph on the successors of any point in (N, 6=) is
a complete infinite graph and so cannot be finitely colored. Hence, N is a frame for
KMT, and so all approximants of ϕ are valid in N . (For example, the approximant
α = ♦

(
(q ∧ ♦q) ∨ (¬q ∧ ♦¬q)

)
is certainly valid in N , since either q or ¬q must

be assigned to an infinite subset of N, and any point in such a set will make the
corresponding disjunct in α true.)

We conclude that N ∈ Fr3ϕ \ Frϕ, and hence Fr3ϕ ⊃ Frϕ. Indeed, an ultra-
product argument similar to that in [22], Corollary 7, will show that the class Fr3ϕ
of frames for KMT is not elementary.

6.4 Irreflexivity Following on from Example 3.9, we can now see that the ir-
reflexivity axiom ∃i(i ∧�¬i) is not equivalent to a pure quasi-positive sentence. For
suppose that it were equivalent to such a sentence, say ϕ. Then by Theorem 5.15
(soundness), 3ϕ is valid in the irreflexive frame (Z, <). Define m : V → ℘(Z) by
m(q) = ∅ for all q. Then, clearly, 0 = {α ∈ L : (Z, <),m, w |H α} is independent
of w ∈ Z and is a maximal 3ϕ-consistent set. It is easily seen that 0 is a reflex-
ive point in the canonical frame for 3ϕ which therefore does not validate ϕ. This
contradicts Theorem 5.15. An alternative proof uses suitable bounded morphisms.

6.5 Problems

Problem 6.6 Let 8 be a set of pure quasi-positive sentences. Consider the proper-
ties,

(a) Fr38 = Fr8,
(b) Fr38 is elementary and finitely axiomatizable,
(c) Fr38 is elementary,
(d) 38 is finitely axiomatizable,
(e) 38 has a canonical axiomatization,
(f) 38 is axiomatizable by canonical formulas plus finitely many additional ax-

ioms.

We have (a) ∨ (b)⇒ (c), and (d)⇒ (e)⇒ (f). Also, (c) ∧ (d)⇒ (b), because (c) and
(d) imply that Fr38 and its complement are both closed under ultraproducts. If (c)
holds, then Fr38 = Fr39 = Fr9 for some set 9 of pure quasi-positive sentences
(namely, those valid in Fr38). The converse is trivially true. By the same argument
plus first-order compactness, (b) is equivalent to saying that Fr38 = Fr3ψ = Frψ
for some pure quasi-positive sentence ψ . If 8 is finite, then (a)⇒ (b); the converse
fails by Example 6.4. KM∞ and KMT lack all six properties even though their “8”
is finite.
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What, if any, other implications are there among these properties? Characterize
the 8 for which each of the properties holds. (Restrict attention to finite 8 if it
helps.)

Problem 6.7 What can be said about the first-order theory of the canonical frame
for 38?

Problem 6.8 What more can be said about a logic 3ϕ by studying the form of
ϕ? For example, can decidability and complexity results be obtained? What can
be said when restrictions are imposed on ϕ—for example, that it has no universal
quantifiers?

Problem 6.9 Generalize the results to the algebraic setting: Boolean algebras with
operators, lattices. In this vein, when are logics 38 preserved under completions?
See [9].

Problem 6.10 Are there consequences of our results for hybrid logic itself?

Notes

1. (§1.1) Related results were proved later by van Benthem ([36], [37]) and Goldblatt ([10],
[12]). There is a useful discussion in [14], §6.6.

2. (after (1) in §1.3) [3] uses the condition ∀x∃y(R(x, y) ∧ ∀z(R(y, z) → z = y)); in
transitive frames, this is equivalent to (1).

3. (§1.3) Or more generally, any locally elementary and locally d-persistent formula.

4. (after Definition 3.11) Pseudo-equations are preserved under bounded morphic images,
disjoint unions, and generated subframes, and any set of first-order L-sentences so pre-
served is equivalent to a set of pseudo-equations; see [38] for binary R and [10], §4, for
arbitrary arities.

5. (Theorem 5.16) In [12], Goldblatt actually states the result algebraically: if K is closed
under ultraproducts, the variety of algebras generated by K is the class of subalgebras
of complex algebras over frames in Mod9K . [12] also shows that K is the closure of
K under bounded morphic images, generated subframes, disjoint unions, and ultraroots.
Related results were proved by Goldblatt ([10] §4, [11], and [13]) and van Benthem [38].

6. (§6.2) Van Benthem noted in [37], p. 138, that if a class of frames is definable by means
of a recursive or recursively enumerable first-order theory, then its modal theory is re-
cursively axiomatizable.

7. (Example 6.4) In [39], Venema shows that for any positive modal formula π(p) involv-
ing a single atom, p, the additivity axiom π(p ∨ q) ↔ π(p) ∨ π(q) has a canonical
pseudo-correspondent. Written in H(@,↓), it amounts to ↓i¬π(¬↓ j @iπ( j)). For
π(p) = �♦p, this is ↓i ♦�↓ j @i �♦ j , which is equivalent to ϕ.
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