
Notre Dame Journal of Formal Logic
Volume 47, Number 3, 2006

Andersonian Deontic Logic, Propositional
Quantification, and Mally

Gert-Jan C. Lokhorst

Abstract We present a new axiomatization of the deontic fragment of Ander-
son’s relevant deontic logic, give an Andersonian reduction of a relevant version
of Mally’s deontic logic previously discussed in this journal, study the effect of
adding propositional quantification to Anderson’s system, and discuss the mean-
ing of Anderson’s propositional constant in a wide range of Andersonian deontic
systems.

1 Introduction

An Andersonian system of deontic logic is a system in which the deontic operator
O (“it is obligatory that”) is defined by O A = e ⇒ A, where e is a primitive
propositional constant (“the good thing”) and ⇒ is an implicational connective. The
following systems are examples of Andersonian deontic systems.

1. The systems discussed in [1] and [2], in which ⇒ is strict implication, that
is, O A = �(e → A), where � is the modal operator of necessity and → is
material implication.

2. Anderson’s relevant deontic logic ([3], [4]), in which ⇒ is relevant implica-
tion.

3. The systems discussed in [8] and [14], in which ⇒ is strict relevant impli-
cation, that is, O A = �(e → A), where � is necessity and → is relevant
implication.

In this paper, we will present some new results on Andersonian deontic systems. We
start with Anderson’s relevant deontic logic. We give a new axiomatization of the
deontic fragment of this system, show that the relevant version of Mally’s deontic
logic [13] presented in [11] is an extension of this fragment, and prove that e can
be defined in terms of O as soon as propositional quantification is available. After
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this, we discuss some of the other Andersonian systems mentioned above. We will
show that the addition of propositional quantification sheds light on the meaning of
the constant e in these systems, too.

2 Anderson’s Relevant Deontic Logic

Definition 2.1 (System R) Relevant system R has the following axioms and rules
([5], Ch. V).

(R1) A → A (Self-implication)
(R2) (A → B) → ((C → A) → (C → B)) (Prefixing)
(R3) (A → (B → C)) → (B → (A → C)) (Permutation)
(R4) (A → (A → B)) → (A → B) (Contraction)
(R5) (A & B) → A, (A & B) → B (&Elimination)
(R6) ((A → B) & (A → C)) → (A → (B & C)) (&Introduction)
(R7) A → (A ∨ B), B → (A ∨ B) (∨Introduction)
(R8) ((A → C) & (B → C)) → ((A ∨ B) → C) (∨Elimination)
(R9) (A & (B ∨ C)) → ((A & B) ∨ C) (Distribution)

(R10) ¬¬A → A (Double Negation)
(R11) (A → ¬B) → (B → ¬A) (Contraposition)
(→E) If A and A → B are theorems, B is a theorem (Detachment)

(&I) If A and B are theorems, A & B is a theorem (Adjunction)
Definition: A ↔ B = (A → B) & (B → A).

Definition 2.2 (System Re) Anderson’s relevant deontic logic Re is R with a prim-
itive propositional constant e and a unary operator O defined by O A = e → A.
Furthermore, the operator P is defined by P A = ¬O¬A. e is read as “the good
thing,” O as “it is obligatory that,” and P as “it is permitted that.”1

3 The Deontic Fragment of Anderson’s Relevant Deontic Logic

To which “purely deontic” logic, stated in terms of O rather than e, does Anderson’s
proposal exactly give rise? This question has been answered by Goble [8].

Definition 3.1 (System OR.1abc) Language: R supplemented with a primitive
propositional operator O . Axioms and rules: R plus:
(OC) (O A & O B) → O(A & B)
(OK) O(A → B) → (O A → O B)

(ROa) If A → B is a theorem, then so is O A → O B
(a) O(O A → A)
(b) (A → B) → (O A → O B)
(c) A → O P A

Definition 3.2 (Deontic Fragment) The translation function h from the language
of OR.1abc into the language of Re is defined as follows.

1. h(A) = A if A is atomic
2. h(¬A) = ¬h(A)
3. h(A & B) = h(A) & h(B)
4. h(A ∨ B) = h(A) ∨ h(B)
5. h(A → B) = h(A) → h(B)
6. h(O A) = e → h(A)
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The deontic fragment of Re (under h) is the set {A : `Re h(A)}.

Theorem 3.3 OR.1abc is an axiomatization of the deontic fragment of Re.

Proof By the Routley-Meyer semantics of Re and OR.1abc. See [8] for details.2

�

This result can be simplified, as we will now show.

Definition 3.4 (System RO ) Language: R supplemented with a primitive proposi-
tional operator O . Axioms and rules: R plus:
(a) O(O A → A)
(b) (A → B) → (O A → O B)

Theorem 3.5 RO has the same theorems as OR.1abc.

Proof It is sufficient to prove that (ROa) is a derivable rule of RO and that (c),
(OK), and (OC) are theorems of RO .

The proofs are as follows. We mention a few intermediate theorems for later
reference. To avoid circularity, there are no forward references in this section.

(ROa) From (b) and detachment.

(Th1) O(A → B) → (A → O B).
1. (A → B) → (A → B) self-impl
2. A → ((A → B) → B) 1, permut
3. A → (O(A → B) → O B) 2, (b)
4. O(A → B) → (A → O B) 3, permut

(c) A → O P A.
1. O(O¬A → ¬A) (a)
2. (O¬A → ¬A) → (A → P A) contrapos, def P
3. O(A → P A) 1, 2, (b)
4. A → O P A 3, (Th1)

(Th2) (A → O B) → O(A → B).
1. (O B → B) → ((A → O B) → (A → B)) prefixing
2. O(O B → B) → O((A → O B) → (A → B)) 1, (b)
3. O((A → O B) → (A → B)) 2, (a)
4. (A → O B) → O(A → B) 3, (Th1)

(ROO) If O O A is a theorem, then O A is a theorem. Definition (for readability):
D = (O A → A).
1. O O A premise
2. D → (O O A → O A) def D, (b)
3. D → O A 1, 2, permut
4. D → ((D → O A) → (D → A)) def D, pref
5. D → (D → A) 3, 4, permut
6. D → A 5, contract
7. O D → O A 6, (b)
8. O D def D, (a)
9. O A 7, 8
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(Th3) O O A → O A.3

1. O O A → O O A self-impl
2. O(O O A → O A) 1, (Th2)
3. O O(O O A → A) 2, (Th2), (b)
4. O(O O A → A) 3, (ROO)
5. O O A → O A 4, (Th1)

(OK) O(A → B) → (O A → O B).
1. O(A → B) → (A → O B) (Th1)
2. (A → O B) → (O A → O O B) (b)
3. (O A → O O B) → (O A → O B) (Th3), pref
4. O(A → B) → (O A → O B) 1–3

(Th4) (A → B) → (P A → P B). From axiom (b) and (R10) – (R11).

(Th5) P O A → A. From theorem (c), axiom (b), and (R10) – (R11).

(OC) (O A & O B) → O(A & B).4

1. P(O A & O B) → P O A &Elim, (Th4)
2. P(O A & O B) → A 1, (Th5)
3. P(O A & O B) → P O B &Elim, (Th4)
4. P(O A & O B) → B 3, (Th5)
5. P(O A & O B) → (A & B) 2, 4, &Introd
6. O P(O A & O B) → O(A & B) 5, (b)
7. (O A & O B) → O(A & B) 6, (c)

This completes the proof. �

Corollary 3.6 RO is an axiomatization of the deontic fragment of Re.

Interestingly enough, (OC) is not a theorem of positive RO , that is, positive R with
axioms (a) and (b) (proof: by MaGIC [18]).5 In other words, RO is not a conserva-
tive extension of positive RO . But we can state the following (by inspection of the
proof in [8]).

Theorem 3.7 Positive RO plus (OC) is an axiomatization of the deontic fragment
of positive Re.

In contrast with Goble’s system OR.1abc, systems RO and positive RO are well
axiomatized in the sense that the axioms are independent from each other (proof: by
MaGIC [18]).

4 Mally’s Deontic Logic

In an earlier paper [11], we presented the following relevant version of Ernst Mally’s
deontic logic, the first formal system of deontic logic ever put forward [13].

Definition 4.1 (System RD (Relevant Deontik)) Language: relevant system R sup-
plemented with a primitive unary operator O and a primitive propositional constant
u (“the unconditionally obligatory”). Axioms and rules: R plus:

(I) ((A → O B) & (B → C)) → (A → OC)
(II) ((A → O B) & (A → OC)) → (A → O(B & C))

(III) (A → O B) ↔ O(A → B)
(IV) Ou
(V) ¬(u → O¬u)
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This system is the same as Mally’s own system, except that Mally based his system
on classical logic and accordingly accepted the “archetypical fallacy of relevance”
A → (B → A). Mally’s system has the theorem A ↔ O A (see [17]), but neither
A → O A nor O A → A are theorems of RD (proof: by MaGIC [18]).

It can be shown that RD can be axiomatized more elegantly as follows (see [12]
in combination with the derivation of theorem (OC) above).

(I′) (A → B) → (O A → O B)
(III′) O(O A → A)
(IV′) Ou
(V′) ¬(u → O¬u)

From the results we have presented above, it follows that RD is the deontic frag-
ment of Re with an additional propositional constant u plus the axioms e → u and
¬(u → (e → ¬u)).

This result is useful because it makes it considerably easier to recognize
some theorems of RD as such. For example, in [11] we failed to see that
O O A → O A is a theorem, whereas we can now easily identify it as a theo-
rem because h(O O A → O A), that is, (e → (e → A)) → (e → A), is just an
instance of Contraction.

5 Propositional Quantification (1)

What does the propositional constant e exactly mean? The following interpretations
have been offered: “the good thing” or “good state of affairs” ([1], [2], [3], [4]),
“what morality requires” [10], “optimality or admissibility” [7], “the content of an
(unspecified) moral code” [19], “the law,”6 “it is not the case that all hell breaks
loose” [20], “all normative demands are met” [16]. Most of these interpretations
sound like poetry rather than logic. We shall show that once propositional quantifiers
are added to Re, we can be more precise about the meaning of e.

Definition 5.1 (System R∀p) Propositionally quantified relevant system R∀p has
the following axioms and axiom clause in addition to those of R ([6], Ch. VI).

(Q1) ∀p(A → B) → (∀p A → ∀pB)
(Q2) (∀p A & ∀pB) → ∀p(A & B)
(Q3) ∀p A(p) → A(B)
(Q4) ∀p(A → B) → (A → ∀pB) (p not free in A)
(Q5) ∀p(A ∨ B) → (A ∨ ∀pB) (p not free in A)
(Q∗) If A is an axiom, then ∀p A is an axiom.

Axioms Q1 and Q2 in conjunction with axiom clause Q∗ yield Generalization:

(Gen) If A is a theorem, then ∀p A is a theorem.

Definition 5.2 (System R∀p
e ) R∀p

e is R∀p with primitive propositional constant e
and propositional operators O and P defined as in Re.

Theorem 5.3 R∀p
e has the following theorem: e ↔ ∀p(Op → p).
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Proof

1. (e → A) → (e → A) self-impl
2. e → ((e → A) → A) 1, permut
3. e → ∀p((e → p) → p) 2, (Gen), (Q4)
4. e → ∀p(Op → p) 3, def O
5. ∀p(Op → p) → ∀p((e → p) → p) def O
6. ∀p((e → p) → p) → ((e → e) → e) (Q3)
7. (e → e) self-impl
8. ((e → e) → e) → e 7, self-impl, permut
9. ∀p(Op → p) → e 5, 6, 8

10. e ↔ ∀p(Op → p) 4, 9, adj �

Thus e says that all obligations are fulfilled (all normative demands are met). This
happens to agree with McNamara’s unmotivated informal reading of e [16].

6 Inverse Andersonian Reduction (1)

Theorem 5.3 suggests the following question: is it possible to define e in terms of O
and carry out the inverse of the Andersonian reduction? We shall show that this is
indeed possible.

Definition 6.1 (System R∀p
O ) System R∀p

O is R∀p supplemented with a primive
operator O , a propositional constant e defined by e = ∀p(Op → p), and axioms (a)
and (b) of RO .

Theorem 6.2 R∀p
O and R∀p

e have the same theorems.

Proof First, all theorems of R∀p
O are theorems of R∀p

e . All cases are easy except
perhaps e ↔ ∀p(Op → p) (which is a theorem of R∀p

O because of the definition of
e in R∀p

O ), but this case has already been discussed (Theorem 5.3).
Second, all theorems of R∀p

e are theorems of R∀p
O . It is sufficient to prove that

O A ↔ (e → A) is a theorem of R∀p
O . (This formula is a theorem of R∀p

e because of
the definition of O in R∀p

e .)
Let us first derive the deontic Barcan formula:

(OBF) ∀pO A(p) → O∀p A(p).

The following derivation is similar to the proof of (OC) above. It is also similar to a
well-known proof of the Barcan formula in individually quantified S5 ([9], p. 247).

1. P∀pO A(p) → P O A(B) Q3, (Th4)
2. P∀pO A(p) → A(B) 1, (Th5)
3. ∀q(P∀pO A(p) → A(q)) 2, (Gen)
4. P∀pO A(p) → ∀p A(p) 3, (Q4)
5. O P∀pO A(p) → O∀p A(p) 4, (b)
6. ∀pO A(p) → O∀p A(p) 5, (c)

We can now derive O A ↔ (e → A).
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1. e → (O A → A) def e, (Q3)
2. O A → (e → A) 1, permut
3. O(e → A) → (Oe → O A) (OK)
4. Oe → ((e → A) → O A) 3, permut
5. ∀pO(Op → p) (a), (Q∗)
6. O∀p(Op → p) 5, (OBF)
7. Oe 6, def e
8. (e → A) → O A 4, 7
9. O A ↔ (e → A) 2, 8, adj �

We might call this “a reduction of alethic logic to deontic logic.”

7 Weaker Andersonian Systems

Some authors ([8], [15], [14]) have objected to axiom (b) and theorems (c), (Th1),
and (Th2) of RO . An alternative approach in the Andersonian tradition is as follows
([8], [14]): start from R, add the modal operator of necessity � and some axioms
and rules for �, add the constant e, and define O by O A = �(e → A). In the
resulting deontic systems, (b), (c), (Th1), and (Th2) are, in general, not derivable.
In the following, we shall study to which extent the results obtained for Anderson’s
relevant deontic logic are valid for these weaker systems.

8 Propositional Quantification (2)

Andersonian systems RTVmo [14] and RT.a [8] have the following axiom and rule
(among others) in addition to those of R, along with the just-mentioned definition of
O:
(�T) �A → A
(Nec) If A is a theorem, �A is a theorem.

Principles (�T) and (Nec) suffice to derive e ↔ ∀p(Op → p) in the propositionally
quantified versions of these Andersonian systems. The proof is as follows.

1. �(e → A) → (e → A) (�T)
2. e → (�(e → A) → A) 1, permut
3. e → ∀p(�(e → p) → p) 2, (Gen), (Q4)
4. e → ∀p(Op → p) 3, def O
5. ∀p(Op → p) → ∀p(�(e → p) → p) def O
6. ∀p(�(e → p) → p) → (�(e → e) → e) (Q3)
7. �(e → e) self-impl, (Nec)
8. (�(e → e) → e) → e 7, self-impl, permut
9. ∀p(Op → p) → e 5, 6, 8

10. e ↔ ∀p(Op → p) 4, 9, adj

Most mixed alethic-deontic systems (both relevant and classical) discussed in the
literature ([7], [8]) have (�T) and are closed under (Nec), with the result that
e ↔ ∀p(Op → p) is a theorem of the propositionally quantified versions of these
systems. It is appropriate to read e as “all obligations are fulfilled” in this whole
range of systems. In weaker systems, however, one may have a greater freedom of
interpretation.



392 Gert-Jan C. Lokhorst

9 Inverse Andersonian Reduction (2)

As before, we may ask whether we can carry out the inverse of the Andersonian
reduction in the deontic fragments of these weaker Andersonian systems and define
e in terms of O and the other connectives. The answer is affirmative, provided that
one is considering sufficiently strong mixed alethic-deontic propositionally quanti-
fied systems.

Definition 9.1 (System RS4) Relevant alethic modal system RS4 has the following
axioms and rules in addition to those of R.
(�K) �(A → B) → (�A → �B)
(�C) (�A & �B) → �(A & B)
(�T) �A → A
(�4) �A → ��A

(Nec) If A is a theorem, then �A is a theorem.

Definition 9.2 (System RS4e) System RS4e has the same axioms and rules as RS4
but it also contains a primitive propositional constant e and a propositional operator
O defined by O A = �(e → A).

Definition 9.3 (System RS4O ) Mixed alethic-deontic system RS4O is RS4 sup-
plemented with a primive operator O and the following axioms in addition to the
axioms and rules of RS4.
(OK) �(A → B) → (O A → O B)
(OC) (O A & O B) → O(A & B)
(OT) O(O A → A)
(O4) O A → �O A

The notion “deontic fragment” is defined as above (Definition 3.2), except that the
clause for O is changed to h(O A) = �(e → h(A)) and the clause h(�A) = �(h(A))
is added.

Theorem 9.4 RS4O is an axiomatization of the deontic fragment of RS4e.

Proof By the Routley-Meyer semantics of RS4O and RS4e. See [8] for details. �

Definition 9.5 (System RS4∀p
e ) Propositionally quantified relevant alethic modal

system RS4∀p
e has the following axiom in addition to the axioms and rules of R∀p

and RS4e.
(�BF) ∀p�A → �∀p A
The operator O is defined as in RS4e.

Definition 9.6 (System RS4∀p
O ) Propositionally quantified relevant mixed alethic-

deontic system RS4∀p
O has the following axiom in addition to the axioms and rules

of R∀p and RS4O .
(OBF) ∀pO A → O∀p A

RS4∀p
O also contains a constant expression e defined by e = ∀p(Op → p).

Theorem 9.7 RS4∀p
O and RS4∀p

e have the same theorems.

Proof First, all theorems of RS4∀p
O are theorems of RS4∀p

e . All cases are easy
except perhaps e ↔ ∀p(Op → p), which has already been discussed (Section 8).



Andersonian Deontic Logic 393

Second, all theorems of RS4∀p
e are theorems of RS4∀p

O . It is sufficient to prove
that O A ↔ �(e → A) is a theorem of RS4∀p

O .

1. e → (O A → A) def e, (Q3)
2. O A → (e → A) 1, permut
3. �(O A → (e → A)) 2, (Nec)
4. �O A → �(e → A) 3, (�K)
5. O A → �(e → A) 4, (O4)
6. Oe → (�(e → A) → O A) (OK), permut
7. ∀pO(Op → p) (OT), (Q∗)
8. Oe 7, (OBF), def e
9. �(e → A) → O A 6, 8

10. O A ↔ �(e → A) 5, 9, adj �

Axiom (OC) of RS4∀p
O is not used in this derivation of O A ↔ �(e → A). On the

other hand, (OC) is a theorem in the presence of O A ↔ �(e → A):
1. (O A & O B) → (�(e → A) & �(e → B)) O A ↔ �(e → A)
2. (�(e → A) & �(e → B)) → �(e → (A & B)) �C, &Intr, �K
3. �(e → (A & B)) → O(A & B) O A ↔ �(e → A)
4. (O A & O B) → O(A & B) 1–3

This means that axiom (OC) of RS4∀p
O is redundant, even though it is not redundant

in RS4O (proof: by MaGIC [18]).
Theorem 9.7 also holds for stronger mixed alethic-deontic systems, such as sys-

tems based on classical S4.

10 Conclusion

We have demonstrated the following four facts. First, the deontic fragment of An-
derson’s relevant deontic logic has a very short and simple axiomatization. Second,
Mally’s deontic system [13] as reformulated in [11] is the deontic fragment of an
extension of Anderson’s relevant deontic logic. Third, the propositionally quantified
versions of Anderson’s own relevant deontic system and most other Andersonian
deontic systems proposed in the literature have the theorem e ↔ ∀p(Op → p).
In all these systems it is therefore appropriate to read e as “all obligations are ful-
filled.” Fourth, in some sufficiently strong deontic systems it is possible to define
e by e = ∀p(Op → p) and then prove an Andersonian reduction principle of the
form O A ↔ (e → A) or O A ↔ �(e → A), where → is relevant or material
implication. This provides a second justification for reading e as “all obligations are
fulfilled.”

Notes

1. Anderson also considered an “axiom of avoidance” ¬(e → ¬e) or O A → P A (see [8],
[15], and [14]), which we will ignore.

2. The author would like to thank Lou Goble for making [8] available to him and discussing
it with him.
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3. An alternative derivation of (Th3) is to be found in [12].

4. The proof of (OC) presented here is due to John Slaney. We thank him for his generous
permission to reproduce it here, and Bob Meyer for asking him to produce it. The proof
is similar to the proof of the deontic Barcan formula (OBF) in Section 6, which is in turn
similar to the “classical” proof of the Barcan formula in individually quantified S5 ([9],
p. 247).

5. This result was first obtained by Meyer, shared in private communication.

6. From private communication with Bob Meyer.
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