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A Question about Suslin Trees and
the Weak Square Hierarchy

Ernest Schimmerling

Abstract We present a question about Suslin trees and the weak square hierar-

chy which was contributed to the list of open problems of the BIRS workshop.

The topic of Magidor’s lectures at the BIRS workshop was the following hierarchy

of weak square principles which was introduced in Schimmerling [5]. Let κ and λ

be cardinals. We say that a sequence 〈Fν | κ < ν < κ+〉 is a �
<λ
κ sequence if and

only if, whenever ν is a limit ordinal and κ < ν < κ+,

1. 1 ≤ |Fν | < λ and

2. if C ∈ Fν , then

(a) C is a closed unbounded subset of ν,

(b) C has order type ≤ κ , and

(c) if µ is a limit point of C , then C ∩ µ ∈ Fµ.

One says that �<λ
κ holds if and only if there exists a �

<λ
κ sequence. By ‘�λ

κ’ we mean

�
<λ+

κ . The relations to Jensen’s principles are �κ≡ �
1
κ and �

∗
κ≡ �

κ
κ . As was clear

from Magidor’s talks, it has been a fruitful project to search for the least λ such that

�
<λ
κ does not suffice in the traditional applications of �κ . The following problem

is motivated by Jensen’s theorem which says that if κ is a singular cardinal, then

GCH + �κ implies the existence of a κ+-Suslin tree. (See Devlin’s textbook [3].) A

simple modification of Jensen’s proof uses only �
<ω
κ .

Problem 1 Let κ be a singular cardinal and assume GCH. Find the least λ such

that �
<λ
κ does not imply the existence of a κ+-Suslin tree. In particular, is the theory

ZFC + GCH + SHℵω+1+ �
∗
ℵω

consistent relative to large cardinals? Is

ZFC + GCH + SHℵω+1+ �
ω
ℵω
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consistent relative to large cardinals?

Here are some models that might be relevant to this problem. Magidor and Shelah [4]

showed that if there is a 2-huge cardinal, then there is a forcing extension in which

there is no ℵω+1-Aronszajn tree. Cummings, Foreman, and Magidor [1] show that

if κ is the limit of ω supercompact cardinals, then, in a forcing extension, κ = ℵω,

�
ω
κ holds and every stationary subset of κ+ reflects. A different model of Cummings,

Foreman, and Magidor [1] shows that �
∗
ℵω

is consistent with the strongest possible

simultaneous reflection principle for stationary subsets of ℵω+1. The result of Cum-

mings and Schimmerling [2]—that Prikry forcing at a measurable cardinal κ adds

�
ω
κ —might also be relevant.
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