Notre Dame Journal of Formal Logic
Volume VIII, Number 4, October 1967

NUMBER SYSTEM FOR THE IMMEDIATE INFERENCES AND THE SYLLOGISM IN ARISTOTELIAN LOGIC ${ }^{1}$

EDWARD A. HACKER

A. Determining the relation between categorical propositions: The numbers 1 and 2 are substituted for the positive terms of the propositions and -1 and -2 for the negative terms. The algebraic value of each proposition is determined as follows: ($\mathrm{S}=$ subject term, $\mathrm{P}=$ predicate).

A propositions: +S -P
E propositions: $+\mathrm{S}+\mathrm{P}$
I propositions: -S -P
O propositions: $-\mathrm{S}+\mathrm{P}$
If the term is distributed, it is preceded by a plus; if the term is undistributed, it is preceded by a minus. For example, if 1,2 are substituted for X, Y respectively, the algebraic value of "All X and Y ' is $1-2=-1$; the algebraic value of "Some Y are not non- X "' is $-2+(-1)=-3$.

The following rules determine the relationship between any two categorical propositions involving two terms or their negatives:

Categorical propositions that agree in quantity are:

1. Equivalent iff they agree in quantity and algebraic value (i.e. numerical value and sign).
2. Independent iff they have the same numerical value with opposite signs.
3. Contrary iff universal with different numerical value. Subcontrary iff particular with different numerical value.

Categorical propositions that differ in quantity are:

1. The idea for this paper was given to me by the following article: Gerald B. Standley, "Two Arithmetical Techniques with Numbered Classes", The Journal of Symbolic Logic, vol. 27 (1962), 437-438. I would also like to express my indebtedness to Dr. William T. Parry for his invaluable assistance in the preparation of this paper.
2. Independent iff they agree in algebraic value.
3. Contradictories iff they have the same numerical value with opposite signs.
4. Sub-implicants iff they have different numerical values. It should be noted that a universal proposition has four sub-implicants equivalent to its subaltern, and four equivalent to its inverse (quantity reduced, both terms negated). The value of a sub-implicant is obtained by reversing the sign for just one of the terms of the super-implicant and adding to the number for the other term.

Rules of deducibility:
7. A categorical proposition is deducible from a categorical proposition of like quantity iff they are equivalent.
8. A categorical proposition is deducible from a categorical proposition of unlike quantity iff the former proposition is sub-implicant to the latter.
B. Testing syllogisms involving three terms or their negatives: The numbers 1,2 and 4 are substituted for the positive terms in the propositions, and $-1,-2$, and -4 for the negative terms. The numbers 4 and -4 are used for the middle term (the term or the complementary terms which occur solely in the premisses). The algebraic value of each proposition is determined as in Section A. A categorical syllogism is valid iff it satisfies the following rules:

1. At most one premiss is particular.
2. If a premiss is particular, so is the conclusion.
3. A categorical syllogism having three universal propositions or one particular premiss and a particular conclusion is valid iff the algebraic sum of the premisses equals the value of the conclusion.

Examples:
All non- X are non- Y

$$
\begin{aligned}
-1-(-4) & =+3 \\
2+(-4) & =-2 \\
2-1 \quad & =+1 \\
4+1 & =+5 \\
4+(-4) & =\frac{-6}{-1} \quad \text { Valid syllogism } \\
-2+(-1)+(-2) & =-1 \quad \text { Valid syllogism. }
\end{aligned}
$$

4. A categorical syllogism having two universal premisses and a particular conclusion is valid iff the algebraic sum of the value of either premiss and the value of any sub-implicant of the other premiss equals the value of the conclusion. (Rule A, 6. gives the procedure for obtaining the values of the sub-implicants of universal categorical propositions.)

Example:
$\left.\begin{array}{lll}\text { All } X \text { are } Y & \begin{array}{l}4-1=+3 \\ \text { All } X \text { are } Z\end{array} & \left.\begin{array}{l}4-5,-5) \\ \text { Some } Z \text { are } Y \\ -2-1\end{array}\right)\end{array} \begin{array}{l}(+5,-6)\end{array}\right\}$ Values of the sub-implicants.

This syllogism is valid because there is a case (in this particular example two cases) where the value of a premiss plus the value of a sub-implicant of the other equals -3 , the value of the conclusion. Only one case is necessary to establish validity when the other rules have been obeyed.

Northeastern University
Boston, Massachusetts

