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THE CONSTRUCTION OF A STEINER TRIPLE SYSTEM

ON SETS OF THE POWER OF THE CONTINUUM

WITHOUT THE AXIOM OF CHOICE

WILLIAM J. FRASCELLA

§1. Introduction* It is most convenient to begin with a

Definition 1. A set M is said to possess a Steiner triple system if there
exists a family F of subsets of M such that a) every member of F is a set
of exactly three elements of M, and b) every two distinct elements of M are
found together in exactly one member of F.1

Prior to 1945, investigations concerning Steiner triple systems dealt
with problems of their existence and structure on finite sets. With regard
to the existence question, a complete solution was achieved by M. Reiss, in
[4], shortly after J. Steiner, in [8], initially posed the problem. Reiss [4]
shows that a finite set M possesses a Steiner triple system if, and only if,
the cardinality of M, denoted M, is congruent to 1 or 3 modulo 6. Since
Reiss' result the existence and structure of Steiner triple systems on finite
sets, and natural generalizations of such systems, have occupied a major
part of research in combinatorial analysis.

A new slant on the Steiner problem was given, in 1945, by W.
Sierpiήski, who considers, in [5], the notion of a Steiner triple system on a
non-finite set. In that note Sierpiήski proves, with the aid of the axiom of
choice, the following

Theorem SP. Every non-finite set possesses a Steiner triple system.

*The present researches represent a natural outgrowth of the author's thesis, Block
Designs On Infinite Sets, written under the direction of Professor B. Sobociήski, and
accepted February 1, 1966, by the University of Notre Dame as partial fulfillment of
the requirements for the degree of Ph.D. in Mathematics. The results given in this
dissertation will appear in future issues of this Journal. In this regard see also [2 ]
and [3]. The author also wishes to take this opportunity to acknowledge his apprecia-
tion to Professor B. Sobociήski and Mr. T. Payne for their fruitful conversations with
him concerning the present researches.

1. cf. Frascella [2], p. 163.
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The role played by the axiom of choice in the proof of this theorem seems
essential. Sierpiήski even remarks in [5] that he was unable, without resort
to the axiom of choice, to construct a Steiner triple system on a set of the
power of the continuum. (The realization of just such a construction is the
main concern of the present note). Sierpiήski's result led B. Sobociήski to
conjecture and prove in [7] the following

Theorem SB. Theorem SP is equivalent to the axiom of choice.

Compatible with Sobociήski's theorem, however, is the fact that there
may be non-finite sets, of certain cardinalities, which can be shown to
possess a Steiner triple system without employing the axiom of choice.
That this, indeed, is the case was observed by Sierpiήski in [6] where he
mentions (without proof) that one may construct a Steiner triple system on
a countably infinite set without resort to the axiom of choice. Such a con-
struction is given in Vuckovic [9]. With this in mind we formulate the fol-
lowing

Definition 2. A non-finite cardinal number n is said to be a Steiner cardi-
nal number if n is the power of a set which can be shown to possess a
Steiner triple system without the axiom of choice.

From what has been said it is clear that tf0 is a Steiner cardinal num-
ber. In fact, one can easily demonstrate, using the proof of Theorem SP in
Sierpiήski [5], that if a non-finite cardinal number m can be shown to be an
aleph2 without the axiom of choice, then m is a Steiner cardinal number.
This remark follows from the fact that Sierpiήski's construction of a
Steiner triple system for a non-finite set M proceeds by elementary
methods (i.e. methods independent of the axiom of choice) once the set M is
well-ordered.

The question, however, remains open as what are the non-finite cardi-
nal numbers which are not alephs, and yet, at the same time, are Steiner
numbers.3 The present note will demonstrate that the cardinal number c,
representing the power of the continuum, is a Steiner cardinal number.
That is, we shall prove, without the aid of the axiom of choice, the following

Theorem 3. Every set of the power of the continuum possesses a Steiner
triple system.

We leave to future publications more general results concerning the extent
of the class of Steiner cardinal number.4

2. By an aleph we mean a non-finite cardinal number which is the power of a well-
ordered set.

3. In view of Theorem SP, such a question is meaningful only in a set theory without the
axiom of choice.

4. A specific result to be included is the fact that all non-finite cardinal numbers of the
form 2W-1 are Steiner numbers.
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§2. A proof of Theorem 3. In order to demonstrate that every set of the
power of the continuum possesses a Steiner triple system, it is sufficient to
show that a particular set C, of cardinality c, possesses such a Steiner
system. This is so, since the elements of any other set C , of power c, are
in one-one correspondence with the elements of C. Thus, the Steiner triple
system of C will induce, in the obvious way, a Steiner triple system for C'.
Consequently, to prove Theorem 3, we are justified in restricting our
attention to a particular subset of the Cartesian plane.

Definition 4. Let R represent the set of all real numbers. Then, let Li -
{<x, i>:xεR} for i = 1, 2 and 3.

Definition 5. Let Z, = L1UL2 UL 3

The set L is nothing other than the collection of all points on three dis-
tinct horizontal lines in the Cartesian plane. It is immediate that L, = c
for i = 1, 2 and 3. Also, it is clear that Li Π Lj = φ whenever i { j . Hence,
L = 3t. But it may be established, without the axiom of choice, that 3t = t,
from which we may conclude

(1) L = t.

In virtue of (1) and the remarks made at the opening of §2., it will be suf-
ficient, for a proof of Theorem 3, to construct, without the aid of the axiom
of choice, a Steiner triple system for the set L. The realization and
demonstration of just such a construction will be divided into four stages.

I. An orientation of the lines Lu L2, and L3. To effect our construction of a
Steiner triple system for the set L, it will be essential to order the lines
Lu U. and L3 in a cyclic arrangement. Thus, we define an orientation in
which we say, Lx immediately precedes L2, which immediately precedes
L3, which, in turn, immediately precedes Lx. Also note, that if Lf immed-
iately precedes Lj, we may say, equivalently, L7 immediately succeeds L, .
To view this orientation it may be convenient to conceive of the lines
Lly L29 and L3 as edges of a triangular prism (see Figure 1).

L3

\
h ii

Figure 1.
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With reference to the above orientation it is important to observe that if
two of three lines, say L, and L; , are given, then it must be that Lf immed-
iately precedes L; or L; immediately precedes L, ,

II. The construction of Type A triples of L. Before beginning the actual
construction of the triples which will constitute a Steiner system for L, it
is well to agree on some terminology. A point p of L has the form, p =
<x9 i>, of an ordered pair where the first component A; is a real number
and the second component i is one of the integers i, 2 or 3. By the abscissa
value of a point of L we shall mean point's first component; likewise, by its
ordinate value, the point's second component.

The triples which will be constructed from the points of L naturally
divide into two kinds, which we label, for convenience, Type A and Type B.
A Type A triple of L will be any unordered set of three distinct points of L,
say pι9p2 and/>3, such that their abscissa values are equal. Thus a Type A
triple will simply be a collection of three points of L, one from each of the
lines Ll9 L2 and L3, such that they lie directly above one another in the
Cartesian plane.

IΠ. The construction of Type B triples of U A Type B triple of L will be
an unordered set of three distinct points of L, szypί9p2 and/>3, subject to
the following three conditions:

(B.I) two of the three points, say p^ and p2, must have the same ordinate
value (i.e. they lie on the same line, say L, , where i is their common
ordinate value);

(B.2) the line L, on which these two points, pi and/>2, lie must immediately
precede (according to the orientation given in I) the line on which the
remaining point/)3 lies;

(B.3) the abscissa value of this third point p3 must equal the arithmetic
mean of the abscissa values of the other two points, pi and/>2.

Geometrically, this says that three distinct points of L,p1} p2, and/>3, con-
stitute a Type B triple if, and only if, the three points determine, in the
plane, the vertices of an isosceles triangle with base on one of the lines
Ll9 L2 or L3 and vertex on the line which immediately succeeds the line on
which the base lies. In Figure 2, three such isosceles triangles are drawn
with bases on lines Lu L2 and L3, respectively. One will observe that the
two triangles, with bases on lines I* and L2, point upward, while the third
triangle with base lying on L3 points downward. See Figure 2 on the follow-
ing page. We now have all the triples needed in order to construct a
Steiner system for the set L. Hence, we make the following

Definition 6. Let S represent the collection of all Type A and Type B
of the set L.

IV. Demonstration that S is a Steiner triple system for L. To show that S
is a Steiner triple system for the set L it is only necessary to prove that
every two distinct points of L lie together in exactly one triple of S. To
this end, let px and/>2 be any two distinct points of L. We divide the
demonstration into three cases.
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L* <\(Vx+ y*), 3> < 2 i , 3> <z2,3>

L2 < \ (xi + ΛΓ2), 2> . / \ ^ \ /

~ / \ Γ < 3 Ί i 2> <W, 2> V 7

<*i, 1> <X2, 1> <|(2i + ^),l>

Figure 2

Case Qf. Suppose />x and />2 have the same abscissa value but different ordi-
nate value (i.e. the points lie on different lines but directly above one an-
other). In this case, it is clear that there exists exactly one Type A triple
which will contain ρx and p2\ moreover, it is also evident that no Type B
triple will contain/?! and/>2 since the abscissa values of all points in a
Type B triple are distinct, one from another.5 But, in this case, the ab-
scissa value of px equals the abscissa value oίp2. Thus, it is clear that in
Case a there exists exactly one member of S which contains both the points
px and p2.

Case β. Suppose pi and p2 have the same ordinate value but different ab-
scissa values (i.e. px and p2 are distinct points on the same line, say Li).
Here it is impossible for any Type A triple to contain pγ and p2, since any
three points constituting a Type A triple must all have the same abscissa
value. To determine the unique Type B triple which contains ρx and ρ2 we
let %i = abscissa value of pi for i = 1 and 2. Suppose L7 is that line which
immediately succeeds Lt , the line which contains the points ρx and/>2. Then,

it is clear that the points pi = <xu *> P2 = <#2> i> and ρ3 = <-{xχ +x2),
Δ

j > constitute a Type B triple which certainly contains the points pi and p2 -
However, it is also clear that any Type B triple which contains the points
pi and p2 (since these points lie on the same line) must, in fact, contain that
point of L which lies on the line immediately succeeding the line on which
pi and p2 lie, and whose abscissa value is the arithmetic mean of the ab-
scissa values of pi and p2. Hence, this point must be the p3 given above.
This proves that, under the assumption of Case β, there is exactly one
Type B triple (and no Type A triple) of S which contains the points ρx and ρ2.

5. To see this it is only necessary to observe that if xlf x2 are real number such that

xι φ x2, then their arithmetic mean χ= -rUi + x2) has the property that x fxx and x f x2-
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Case y. Now suppose the points pi and p2 have different ordinate and
different abscissa values (i.e. the points pi and p2 lie on distinct lines
and, moreover, are not directly above one another). Since their ab-
scissa values are distinct, the points pi and p2 are not contained in any
Type A triple. To see that there is exactly one Type B triple of S which
contains p1 and p2 we set px = <#i , i > and ρ2 = <x2fj>. Under the as-
sumptions of Case γ we may conclude t h a t ^ ^χ2 and ίk j (i.e. ρ1 lies on
line Li and has abscissa value χx and p2 lies on line L ; (Ψ Lz ) and has ab-
scissa value x2(^Xi)). From what has been said concerning the orientation
given in I, it must be that either line L; immediately precedes line Lj or Lj
immediately precedes L, . Without loss of generality we may assume the
latter possibility.

Now consider the three points ρx = <x, ί>, p2 = <x2,j > and ρ3 =
< 2x1 - x2, j >. It is clear that points p2 and ρ3 lie on the same line Lj and
that the remaining point pγ lies on the immediately succeeding line. More-
over, the abscissa value of px is, in fact, the arithmetic mean of the ab-
scissa values of the points p2 and ρ3 since xί = -{χ2 + (2xλ -x2)). It is

clear then, that the points px, p2 and p3 constitute a Type B triple which
contains p x and p2. Moreover, since there is only one way to form an
isosceles triangle with vertex px and base lying on the line Lj, and having
one of its end points p2, we are forced to conclude that there is exactly one
Type B triple which contains the points px and p2. Hence, under the as-
sumption of Case γ, there is exactly one triple of S which contains the
points pi and p2 .

Since the above three cases have exhausted all possibilities, it has been
established that any two distinct points of L are contained in exactly one
triple of S. This shows S to be a Steiner triple system for L and, in so do-
ing proves Theorem 3.

§3. Final remarks. Without the axiom of choice it is not possible for us to
conclude that every Steiner cardinal number is an aleph. If one examines
the proof, given in Sobociήski [7], that Theorem SP implies the axiom of
choice, he will observe the following argument. Let an arbitrary non-finite
cardinal number m be given. Let tt(m) represents Hartogs' aleph for
m (i.e. N(m) is the smallest well-ordered cardinal number having the prop-
erty that tf(m ) i m).6 Since m + tf(m) is also a non-finite cardinal number,
on the strength of Theorem SP, this cardinal number must be the power of
a set which possesses a Steiner triple system. Employing this particular
Steiner system, Sobociήski goes on to show that the non-finite cardinal m
must, in fact, be an aleph.

Consequently, Sobociήski's proof can be used to demonstrate, without
the aid of the axiom of choice, that c is an aleph if one can assume the
cardinal number c + tt(c), not c, is the power of a set which possesses a

6. The existence of N(m) for each non-finite cardinal number m, can be established
without the axiom of choice.
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Steiner triple system. Thus, on the basis of the well-known result of P.

Cohen [1], it is possible to deduce the following

Theorem 4. The theorem, that the non-finite cardinal number t + N(c) is

the power of a set which possesses a Steiner triple system, is independent

of general set theory without the axiom of choice.

BIBLIOGRAPHY

[1] Cohen, P., "The independence of the continuum hypothesis, I and I I , " Proceedings
of the National Academy of Science, Vols. 50-51 (1963-1964), pp. 1143-1148 and
105-110.

[2] Frascella, W. J., "A generalization of Sierpinski's theorem on Steiner triples and
the axiom of choice," Notre Dame Journal of Formal Logic, Vol. 6 (1965), pp. 163-
179.

[3] Frascella, W. J., "Corrigendum and addendum to my paper Ά generalization of
Sierpiήski's theorem on Steiner triples and the axiom of choice'," Notre Dame
Journal of Formal Logic, Vol. 6 (1965), pp. 320-322.

[4] Reiss, M., "ϋber eine Steiner che combinatorische Aufgabe," Journal fur die Reine
und Angewandte Matkematίk, Vol. 56 (1859), pp. 326-344.

[5] Sierpiήski, W., "Sur un probleΊne de. triads," Comptes Rendus des Seances de la
Societe des Sciences et des Lettres de Varsovie, Vols. 33-38 (1940-1945), pp. 13-16.

[6] Sierpiήski, W., Algkbre des ensembles, Warsaw: Paήstwowe Wydawnictwo Naukowe,
Monografie Matematyczne, Vol. 23, 1951.

[7] Sobociήski, B., "A theorem of Sierpiήski on triads and the axiom of choice," Notre
Dame Journal of Formal Logic, Vol. 5 (1965), pp. 51-58.

[8] Steiner, J., "Combinatorische Aufgabe," Journal fur die Reine und Angewandte
Mathematik, Vol. 45 (1853), pp. 181-182. Also appears in Steiner's Gesammelte
Werke, Berlin: Druck und Verlag Von G. Reimer, Vol. 2, 1882.

[9] Vuδkovic, V., "Note on a theorem of W. Sierpiήski," Notre Dame Journal of Formal
Logic, Vol. 6 (1965), pp. 180-182.

University of Notre Dame
Notre Dame, Indiana




