RECURSIVE LINEAR ORDERINGS AND HYPERARITHMETICAL FUNCTIONS

SHIH-CHAO LIU

The main purpose of this note is to give an alternative proof to a theorem by Spector [1] which answers a question raised by Kleene [3, p. 25]. There are two by-products. The first (Theorem 1) specifies a sufficient condition for a set linearly ordered by a recursive ordering to have a wellordered segment of a certain order type.¹ The second (Theorem 2) is a géneralization, in some sense, of a theorem of Kleene [4, XXVL]. This enables us to apply Kleene's [3, Theorem 2] directly in our proof of Spector's theorem (Theorem 3 in this note). So it seems that the proof becomes much shorter.²

We first introduce some notations. $f \in \mathbf{L} = \{f \text{ is a Gödel number of some recursive linear ordering } \downarrow which orders some set <math>M_f\}$ [2]. $f \in \mathbf{W} = \{f \in \mathbf{L} \& M_f \text{ is well-ordered by } f \}$ [2]. $\mathbf{S}(f, n)$ is a primitive recursive function such that $f \in \mathbf{L}$ implies (i) $\mathbf{S}(f, n) \in \mathbf{L}$ for all n, (ii) if $n \notin M_f$, $M_{\mathbf{S}(f, n)}$ is empty, (iii) if $n \in M_f$, $M_{\mathbf{S}(f, n)}$ is a segment $\hat{x}(x \neq n)$ of M_f and $x = \begin{cases} f, n \\ f \neq \mathbf{L} \end{cases}$ $y \equiv x \neq y$ for all $x, y \in M_{\mathbf{S}(f, n)}$ [2, p. 156]. ||f|| is the order type of \neq if $f \in \mathbf{L}$, |b| is the order type named by b, if $b \in 0$ [2]. y^* stands for 2^y , $H_y(u)$ is defined as in [2].

Theorem 1. If $f \in L$, $f \notin W$, $y \in 0$ and for every function $\alpha(i)$ recursive in $H_{y^{**}}$, (i) $(\alpha(i+1) \neq (i))$, then for every $b \in 0$ with |b| < |y|, there is some $n \in M_f$ such that $|b| = ||\mathbf{S}(f, n)||$.

Proof (by induction on the ordinal |b|). The proof for the case |b| = 0 is simple.

Suppose 0 < |b| < |y|. Let enm (i) be a primitive recursive function which enumerates all the numbers $<_0 b$ [6]. By the induction hypothesis, for every *i*, there is some $n_i \in M_f$ such that $|enm(i)| = ||\mathbf{S}(f, n_i)||$. Let n_i be determined as a total function of *i* by $n_i = \mu z (z \in M_f \& |enm(i)| = ||\mathbf{S}(f, z)||)$. Note that $|enm(i)^{**}| \leq |b^*| \leq |y|$ we see that n_i is recursive in H_y by [2, Theorem 3 and Theorem 5].

Since $S(f, n_i) \in W$ for every *i* and by the supposition of the theorem,

Received September 29, 1961

 $f \notin W$, there must be some (indeed, infinitely many) $x \in M_f$ such that (i) $(n_i \neq x)$. Let a total function $\delta(i)$ be defined by

$$\begin{split} \delta(0) &= \mu z(i) \ (n_i \not\prec z); \\ \delta(i+1) &= \delta(i), \text{ if } (Ez) \ ((i) \ (n_i \not\prec z) \& z \not\prec \delta(i)); \\ \delta(i+1) &= \mu z((i) \ (n_i \not\prec z) \& z \not\prec \delta(i)), \text{ otherwise.} \end{split}$$

It can be seen that $\delta(i)$ is recursive in (Ez) ((i) $(n_i \not\downarrow z) \& z \not\not\downarrow x)$. Since as has been shown, n_i is recursive in H_y , (Ez) (i) $(n_i \not\downarrow z) \& z \not\not\prec x)$ is recursive in $H_{y^{**}}$ (by [5, Lemma 1] and the definition $H_{b^*}(u) \equiv (Ec) T_1 \xrightarrow{H_b} (c, c, u)$). So $\delta(i)$ is recursive in $H_{y^{**}}$.

There must be some number, say, i_0 such that $\delta(i_0 + 1) = \delta(i_0)$. For otherwise, by the definition of $\delta(i)$, $(i) (\delta(i + 1) \stackrel{f}{\prec} \delta(i))$. This contradicts the hypothesis of the theorem. Then $\delta(i_0)$ is the least t (in the sense of $\stackrel{f}{\lor}$) in M_f such that (i) $(n_i \stackrel{f}{\prec} t)$ and therefore $\|\mathbf{S}(f, \delta(i_0))\|$ is the least ordinal ζ such that (i) ($\|\mathbf{S}(f, n_i)\| < \zeta$). Since $|\operatorname{enm}(i)| = \|\mathbf{S}(f, n_i)\|$ and |b| is the least ordinal ζ such that (i) ($||\operatorname{enm}(i)| < \zeta$), then $|b| = \|\mathbf{S}(f, \delta(i_0))\|$. This completes the proof.

Let $\alpha \in HA$ mean that α is hyperarithmetical, i.e. there is some $y \in 0$ such that α is recursive in H_{γ} [4, p. 201].

Corollary. If $f \in L$, $f \notin W$ and for all $\alpha \in HA$, $(\overline{i}) (\alpha(i+1) \not\prec \alpha(i))$, then for every $b \in 0$, there is some $n \in M_f$ such that $|b| = ||\mathbf{S}(f, n)||$.

Theorem 2. For any recursive $R(\alpha, a, x)$, there is a recursive R'(s, a)such that (α) (Ex) $R(\alpha, a, x) \equiv (\alpha)$ (Ex) $R'(\alpha(x), a)$ and for no $\alpha \in HA$, (x) $\overline{R'}(\alpha(x), a)$.

Proof. By the technique of [3, Lemma 1], we can find a recursive A such that (α) (Ex) $A(\alpha, c, x) \equiv (E\alpha)_{\alpha \in HA}(x) \overline{T}_{1}^{\alpha}(c, c, x)$.

Let
$$(\alpha) (Ex) R(\alpha, a, x) \vee (\alpha) (Ex) A(\alpha, c, x)$$
 ... (a)

$$\equiv (\alpha) (Ex) B(\alpha, a, c, x) \text{ (with } B \text{ recursive)}$$

$$\equiv (\alpha) (Ex) T_1^{\alpha} (\sigma(a), c, x) \text{ (with recursive } \sigma, \text{ by [5, Lemma 12]).}$$

By (a), (α) (Ex) $A(\alpha, \sigma(a), x) \rightarrow (\alpha)$ (Ex) $T_1^{\alpha}(\sigma(a), \sigma(a), x)$. On the other hand () (Ex) $A(\alpha, \sigma(a), x) \rightarrow (E\alpha)$ (x) $\overline{T}_1^{\alpha}(\sigma(a), \sigma(a), x)$. Thus we have i) ($\overline{\alpha}$) (Ex) $A(\alpha, \sigma(a), x)$. By (a) and i), we have ii) (α) (Ex) $R(\alpha, a, x) \equiv$ (α) (Ex) $T_1^{\alpha}(\sigma(a), \sigma(a), x)$. By the meaning of A, i) implies iii) for no $\alpha \in HA$, (x) $\overline{T}_1^{\alpha}(\sigma(a), \sigma(a), x)$. From ii) and iii) we see that $T_1^{1}(s, \sigma(a), \sigma(a), 1b(s))$ is a recursive R'(s, a) as required. This completes the proof of Theorem 2.

For the predicate $R^{\prime}(s, a)$, we find a recursive function $\xi(a)$ such that $\xi(a) \in \mathbf{L}$, $n \in M_{\xi(a)} \equiv \{n \text{ is a sequence number } \overline{\alpha}(x) \& (t)_{t < x} \overline{R^{\prime}}(\overline{\alpha}(t), a)\}$ and

 $\xi(a) \in \mathbf{W} \equiv (\alpha) (Ex) R'(\overline{\alpha}(x), a)$ [2, Theorem 1]. In case $(\overline{\alpha}) (Ex) R'(\overline{\alpha}(x), a)$, since for no $\alpha \in HA$, $(x) \overline{R'}(\overline{\alpha}(x), a)$, we have that for no $\alpha \in HA$, $(i) (\alpha(i + 1) \xi(a) = \alpha(i))$ by arguments similar to [6, (J)]. Then by the corollary of Theorem 1, we have

Lemma 1. For any recursive $R(\alpha, a, x)$, there is a recursive function $\xi(a)$ such that i) if (α) (Ex) $R(\alpha, a, x)$ then $\xi(a) \in W$, and ii) if $(\overline{\alpha})$ (Ex) $R(\alpha, a, x)$ then for every $b \in 0$, there is some n such that $|b| = ||\mathbf{S}(\xi(a), n)||$.

Theorem 3 (by Spector). For any recursive $R(\alpha, a, x)$ there is a recursive $S(\alpha, a, x)$ such that $(E\alpha)_{\alpha \in HA}(x) S(\alpha, a, x) \equiv (\alpha) (Ex) R(\alpha, a, x)$.

Proof. By [7, Theorem 1], we can find a recursive function k such that $f \in \mathbf{W} \to k(f) \in 0 \& ||f|| \leq |k(f)|$ and $||f|| < ||g|| \to |k(f)| < |k(g)|$. Let $\xi(a)$ be the recursive function of Lemma 1, and $k(\mathbf{S}(\xi(a), n))$ be abbreviated to y(a, n). Let f_0, f_1 be the recursive functions of [3, Theorem 2] so that for any $y \in 0$, $(E\alpha)(x) \overline{T_1}^{\alpha}(f_0(y), t, x)$ or $(E\alpha)(x) \overline{T_1}^{\alpha}(f_1(y), t, x)$ according as $H_{y}(t)$ or not. Now let us consider the following predicate of γ and β .

(A) (n) (t) $[(\gamma(2^n \cdot 3^t) = 0 \& (x) \overline{T}_1^{\lambda_s \beta} (2^n \cdot 3^t \cdot 5^s) (f_0(y(a, n)), t, x)) \lor (\gamma(2^n \cdot 3^t) = 1 \& (x) \overline{T}_1^{\lambda_s \beta} (2^n \cdot 3^t \cdot 5^s) (f_1(y(a, n)), t, x))].$

Case 1. $(\overline{\alpha})$ (Ex) $R(\alpha, a, x)$. Suppose (A) is true, we can show $\gamma \notin HA$. By the meanings of f_0 , f_1 , (A) implies that for any fixed $y(a, n) \in 0$, (1) λt^{γ} $(2^n \cdot 3^t)$ is the representing function of $\lambda t H_{y(a, n)}$ (t) and therefore (2) $\lambda t H_{y(a, n)}$ (t) is recursive in γ . By Lemma 1, we have (3) that for suitable n, $y(a, n) \in 0$ and |y(a, n)| > |z|, any pre-assigned constructive ordinal. Since given any $\gamma' \in HA$ (γ' recursive in, say, H_z), all H_y with |y| > |z| are not recursive in γ' , then from (2) and (3) it follows that $\gamma \notin HA$.

Case 2. (a) (Ex) R (a, a, x). We can find γ , $\beta \in HA$ such that γ and β satisfy (A). By Lemma 1, $\xi(a) \in W$. Then $k(\xi(a)) \in 0$, $y(a, n) \in 0$ and $|y(a, n)| < |k(\xi(a))|$ for every n. By [2, Theorem 5], $\lambda n t H_{y(a, n)}$ (t) is recursive in $H_k(\xi(a))$. A function $\gamma \in HA$ is defined by $\gamma(x) = 0$ if $x \neq 2^n \cdot 3^t$, and $\gamma(2^n \cdot 3^t) = 0$ or 1 according as $H_{y(a, n)}(t)$ or not. A β is defined by $\beta(x) = 0$ if $x \neq 2^n \cdot 3^t \cdot 5^s$, and $\beta(2^n \cdot 3^t \cdot 5^s) = \{d_j(y(a, n), t)\} (H_{w_j}(y(a, n), t))$, s) where j is 0 or 1 according as $H_{y(a, n)}(t)$ or not, and d_j , w_j are as defined in [3, Theorem 2]. Then it can be seen that γ and β satisfy (A). $\beta \in HA$ because β is defined in terms of some H_b with $|b| < |k(\xi(a))|$ and then is recursive in $H_k(\xi(a))$.

then is recursive in $H_k(\xi(a))$. From (A) we get (x) $\mathbf{S}'(\gamma, \beta, a, x)$ by contracting the quantifiers. $\mathbf{S}'(\lambda t(\alpha(t))_0, \lambda t(\alpha(t))_1, a, x)$ is a $\mathbf{S}(\alpha, a, x)$ for Theorem 3.

NOTES

1. We see that the concept $e \notin W$ is as complicated as $e \notin W$. We can classify all the numbers $e \notin L$ into as many hierarchies as the constructive ordinals. For any e, $e' \notin L$, we say that e belongs to a hierarchy higher

than that of e' if M_e contains a well-ordered segment larger than that contained by M_e . Elsewhere the author classified all $e \in \mathbf{L}$ into countable hierarchies based upon a notion $\mathbf{L}_n(e, z)$ of [7]. We say e belongs to the *n*-th hierarchy if there is an infinite decreasing sequence $\ldots \overset{e}{\prec} \alpha$ $(i + 1) \overset{e}{\prec} \alpha(i) \overset{e}{\prec} \ldots \overset{e}{\prec} \alpha$ (0) such that (i) $(\mathbf{L}_n(e, \alpha(i)))$. This second type of classification can help us to solve the problem raised in [7, p. 25] partly.

2. After reading the first version of this manuscript Dr. Spector showed me a manuscript of Gandy's which contained also a proof of Theorem 3. Theorem 1 of this note is essentially the same as Gandy's except the former contains some contents more specific. Other parts of both proofs were carried out through different routs.

REFERENCES

- [1] C. Spector, Hyperarithmetical quantifiers, Fund. Math. vol. XLVIII (1960), pp. 313-320.
- [2] C. Spector, Recursive well-orderings, Journ. Symb. Log., vol. 20 (1955), pp. 151-163.
- [3]: S. C. Kleene, Quantification of number-theoretic predicates, Compositio Math., vol. 14 (1959), pp. 23-40.
- [4] S. C. Kleene, Hierarchies of number-theoretic predicates, Bull. Amer. Soc., vol. 61 (1955), pp. 193-213.
- [5] S. C. Kleene, Arithmetical predicates and function quantifiers, *Tran. Amer, Math. Soc.*, 79 (1955), pp. 312-340.
- [6] S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals, Amer. J. Math., vol. 77 (1955), pp. 405-428.
- [7] G. Kreisel, J. Shoenfield, Hao Wang, Number theoretic concepts and recursive well-orderings, Archive für Math. Log. and Grund., vol. 5 (1960), pp. 42-64.

Institute of Mathematics, Academia Sinica, Taipei, Taiwan, China