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RECURSIVE LINEAR ORDERINGS AND

HYPERARITHMETICAL FUNCTIONS

SHIH-CHAO LIU

The main purpose of this note i s to give an alternative proof to a the-

orem by Spector [ l ] which answers a question raised by Kleene [3, p. 25].

There are two by-products. The first (Theorem 1) specifies a sufficient

condition for a set linearly ordered by a recursive ordering to have a well-

ordered segment of a certain order type. The second (Theorem 2) i s a gen-

eralization, in some sense, of a theorem of Kleene [4, XXVL]. This enables

us to apply Kleene's [3, Theorem 2] directly in our proof of Spector's the-

orem (Theorem 3 in this note). So it seems that the proof becomes much

shorter.

We first introduce some notations. / e L = {/ i s a Godel number of some

recursive linear ordering ^ which orders some set M λ [2]. f e Yl = {f e L 8ι

M r i s well-ordered by ' { [2]. S(/, n) i s a primitive recursive function such

that / e L implies (i) S(/, n) € L for all n, (ii) if n ί M,, M5// n\ i s empty,

Λ / S(/, Λ) /
(iii) if n e M,, Λl^,, . i s a segment x(x -< n) of Mr and x . -< y = x •< y

for all x, y € M$(/ n\ 12, p. 156]. | | / | | i s the order type of-^ if fe L, \b\ i s
(he order type named by b, if b e 0 [2]. y* stands for 2 y , H (u) i s defined as
in [2].

Theorem 1. If / e L, / /W, y £ 0 and for every functionlα(z') recursive in

# **, (i) ( <x(i + ί) -< (0), then for every b e 0 with | 6 | < \y\, there i s some
ne Mf such that 16 | = | |S(/, n)\\.

Proof (by induction on the ordinal \b\). The proof for the case \b\ = 0 is

simple.

Suppose 0 < \b\ < \y\. Let enm (z) be a primitive recursive function

which enumerates all the numbers < 0 b [6]. By the induction hypothesis, for

every z, there i s sortie n^ e M, such that |enm(z')| = | |S(/, «z ) | | . Let «z- be de-

termined as a total function of i by 72?. = μ z ( z e M r & |enm(z)| = | |S(/, z) || ).

Note that |enm(f)* *| S. | 6 * | < | y | we see that «z i s recursive in H by [2,

Theorem 3 and Theorem 5].

Since S(/, n^ € W for every i and by the supposition of the theorem,
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/ / W, there must be some (indeed, infinitely many) x e Mr such that (z) (n^ ̂
x). Let a total function δ(z) be defined by

δ(0) = μ*(ί)(n. ί z);

δ(z + 1) = δ(z), if (£7) ((ί) (*. « *) & z « δ(z));

δ(z + 2) = μz((i)(ni ^ z) & z ^ δ(z)), otherwise.

It can be seen that δ(z) is recursive in (Ez) ((z) (wz -< z) & z -< x). Since as

has been shown, 72̂. is recursive in H , (E sr) (z) (w2. -< z) & z -< x) is re-
rjr

cursive in // ** (by [5, Lemma l] and the definition H^(u) = (Ec) Tχ (c,
c, z/)). So δ(z) is recursive in // **.

There must be some number, say, z'o such that δ(z0 + I) = δ(z'o). For

otherwise, by the definition of δ(z), (z) (δ(z + 1) -< δ(z)). This contradicts
the hypothesis of the theorem. Then δ(z'o) is the least t (in the sense of

-<) in Mr such that (z) (ni -< t) and therefore ||S(/, δ(z'0))|| is the least ordinal
ζ such that (z) (||S(/, n.)\\ < ζ). Since |enm(z)| = ||S(/, nf)|| and \b\ is the
least ordinal ζ such that (z) (|enm(z)| < ζ), then \b\/= |S(/, δ(zo))||. This
completes the proof.

Let a e HA mean that a is hyperarithmetical, i.e. there is some y e 0
such that a is recursive in H [4, p. 201].

Corollary. If / e L, / / W and for all a e HA, (7) (α(z + 2) << α(z)), then
for every b e 0, there is some n e Mr such that \b\ = |S(/, w)||.

Theorem 2, For any recursive R(α, a, x), there is a recursive Rι(s, a)
such that (a) (Ex) R (α, α, x) Ξ (α) (Ex) R1 (α(x), β) and for no a e HA,
(x) £ ι (α(x), β).

Proof. By the technique of [3, Lemma l ] , we can find a recursive A such
that (α) (Ex) Λ(α, c, x) = ( E α ) f l £ f / A (*) f f (c, c, x).

Let (a) (Ex) R(a, a, x) v (a) (Ex) A(a, c, x) . . . . (a)

== (a) (Ex) B(ay a, c, x) (with B recursive)

= (a) (Ex)Tι

a(σ(a), c, x) (with recursive σ, by [5, Lemma 12]).

By (a), (a) (Ex) Λ( α , σ(a), x) -> (a) (Ex) Tia(σ(a), σ(a), x). On the other
hand ( ) (Ex) A(a, σ(a), x) ^ (Ea) (x) fί

a(σ(a), σ(a), x). Thus we have
i) (a) (Ex) A(a, σ(a), x). By (a) and i), we have ii) (a) (Ex) R(a, a, x) =
(a)(Ex)Tf* (σ(a),σ(a), x). By the meaning of A, i) implies iii) for no a € HA,
(x) Tf* (σ(a), σ(a), x). From ii) and iii) we see that T^s, σ(a), σ(a), lh(s))
is a recursive R* (s, a) as required. This completes the proof of Theorem 2.

For the predicate Rι (s, a), we find a recursive function ζ(a) such that
ξ(a) € L, n e Mt,s ΞΞ \n is a sequence number α(x) & (t)t<x Rι (#(0> a ) \ ai^d
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ξ(a) e W = (a) (Ex) R* (a(x),_a) [2, Theorem l ] . In case (a) (Ex) Rι (a(x), a),
since for no a € HA, (x) Rι (θt(x), a), we have that for no a e HA, (i) (a(i + 1)
ξ(a)
^ a. (i)) by arguments similar to [6, (J)]. Then by the corollary of The-
orem 1, we have

Lemma 1, For any recursive R((X, a, x), there is a recursive function
ξ(a) such that i) if (a) (Ex) R(a, a, x) then ξ(a) e W, and ii) if (a) (Ex)
R(a, a, x) then for every b e 0, there i s some n such that \h\ = ||S(£(<z), «)||.

Theorem 3 (by Spector). For any recursive R(a, a, x) there i s a re-
cursive S(α, a, x) such that (Ea)a€fjA (*) S(α, a, x) = (a) (Ex) R(a, a, x).

Proof. By [7, Theorem l ] , we can find a recursive function k such that
/ e W ->&(/) e θ & |j/|| < \k(f)\ and ||/|| < | g | | - |*(/) | <\k(g)\. hetξ(a)be
the recursive function of Lemma 1, and k(S(ζ(a), n)) be abbreviated to
y(a, n). Let /0, /x be the recursive functions of [3, Theorem 2] so that for
any y e 0, (Ea) (x) fx

a (/0 (y), t, x) or (Ea) (x) T<* (ft (y), t, x) according as
H (t) or not. Now let us consider the following predicate of γ and β.

(A) (n) (t) [(γ(2n . 3ι) = 0 & (*) fχ

λsβ &" 3*' ^ (f0 (y(a, ή)\ t, x)) v

(y(2n . 3*)= 1& (x) f^β VU 3 ' * *S) (fχ (y(a, n)\ t, x))].

Case 1. (a) (Ex) R(a, a, x). Suppose (A) i s true, we can show γ / HA.
By the meanings of /0, /χ, (A) implies that for any fixed y(a, n) e 0, (1) λtY
(2n . 3ι) i s the representing function of λtH , ^ (t) and therefore
(2) λtH / n^ (t) i s recursive in y. By Lemma 1, we have (3) that for suit-
able n, y(a, ή) e 0 and \y(a, n)\ > \z\, any pre-assigned constructive ordinal.
Since given any γ9 e HA (γ9 recursive in, say, Hz), all H with \y\ > | z | are
not recursive in γ9, then from (2) and (3) it follows that γ t HA.

Case 2. (a) (Ex) R(a, a, x). We can find γ, βe HA such that γ and β
satisfy (A). By Lemma 1, ξ(a) € W. Then k(ξ(a)) e 0, y(a, n) e 0 and \y(a,
ή)\ < \k(ξ(a))\ for every n. By [2, Theorem 5], λntH

y(a, n) (0 i s recur-
sive in Hk(£(a)v A function γ e HA is defined by γ(x) - 0 if x4 2n . 3ι,
and γ(2n . 3ι) = 0 or 1 according as H , ^ (t) or not. A β is defined by
β(x) = 0 if x 4 2n . 3l.5s, anάβ(2n . 3ι . 5 ^ = \dj(y(a, n), t)\ ( ^ . ( y ( f l > n ) > t),

s) where / is 0 or 1 according as H , ^ (t) or not, and d 9 w. are as de-
fined in [3, Theorem 2]. Then it can be seen that γ and β satisfy (A).
β e HA because β is defined in terms of some Hy with \b\ < \k(ξ(a))\ and
then is recursive in H^ tέra\γ

From (A) we get (x) S'(y, β, a, x) by contracting the quantifiers.
S'(λ t(a(t)\, λ t(a(t)\9 a, x) is a S(α, a, x) for Theorem 3

NOTES

1. We see that the concept e /W is as complicated as e e W. We can clas-
sify all the numbers e e L into as many hierarchies as the constructive
ordinals. For any e, e ' ( L , we say that e belongs to a hierarchy higher
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than that of e* if Mg contains a well-ordered segment larger than that
contained by Λί̂ ,. Elsewhere the author classified all e e L into counta-
ble hierarchies based upon a notion L (e, z) of [7]. We say e belongs to
the rc-th hierarchy if there is an infinite decreasing sequence . . . . ^
a (i + 1) ^ a (i) \ . . ,6^ a (0) such that (i) (L n (e, a (£))). This second
type of classification can help us to solve the problem raised in [7, p.
25] partly.

2. After reading the first version of this manuscript Dr. Spector showed me
a manuscript of Gandy's which contained also a proof of Theorem 3
Theorem 1 of this note is essentially the same as Gandy's except the
former contains some contents more specific. Other parts of both proofs
were carried out through different routs.
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