RECURSIVE LINEAR ORDERINGS AND HYPERARITHMETICAL FUNCTIONS

SHIH-CHAO LIU

The main purpose of this note is to give an alternative proof to a theorem by Spector [1] which answers a question raised by Kleene [3, p. 25]. There are two by-products. The first (Theorem 1) specifies a sufficient condition for a set linearly ordered by a recursive ordering to have a wellordered segment of a certain order type. ${ }^{1}$ The second (Theorem 2) is a géneralization, in some sense, of a theorem of Kleene [4, XXVL]. This enables us to apply Kleene's [3, Theorem 2] directly in our proof of Spector's theorem (Theorem 3 in this note). So it seems that the proof becomes much shorter. ${ }^{2}$

We first introduce some notations. $f \epsilon \mathbf{L} \equiv\{f$ is a Gödel number of some recursive linear ordering $\left\{\right.$ which orders some set $\left.M_{f}\right\}[2] . f \in \mathbf{W} \equiv\{f \in \mathbf{L} \&$ M_{f} is well-ordered by $\left.f\right\}[2] . \mathbf{S}(f, n)$ is a primitive recursive function such that $f \in \mathbf{L}$ implies (i) $\mathbf{S}(f, n) \in \mathbf{L}$ for all n, (ii) if $n \notin M_{f}, M_{\mathbf{S}(f, n)}$ is empty,
 for all $x, y \in M_{\mathbf{S}}(f, n)[2$, p. 156]. $\|f\|$ is the order type of $\{$ if $f \in \mathbf{L},|b|$ is the order type named by b, if $b \in 0$ [2]. y^{*} stands for $2^{y}, H_{y}(u)$ is defined as in [2].

Theorem 1. If $f \in \mathbf{L}, f d \mathbf{W}, y \in 0$ and for every function $\alpha(i)$ recursive in $H_{y^{* *}},(\mathrm{i})(\alpha(i+1) \stackrel{f}{\prec}(i))$, then for every $b \in 0$ with $|b|<|y|$, there is some $n \epsilon M_{f}$ such that $|b|=\|\mathbf{S}(f, n)\|$.
Proof (by induction on the ordinal $|b|$). The proof for the case $|b|=0$ is simple.

Suppose $0<|b|<|y|$. Let enm (i) be a primitive recursive function which enumerates all the numbers $<_{0} b$ [6]. By the induction hypothesis, for every i, there is some $n_{i} \in M_{f}$ such that $|\operatorname{enm}(i)|=\left\|\mathbf{S}\left(f, n_{i}\right)\right\|$. Let n_{i} be determined as a total function of i by $n_{i}=\mu z\left(z \in M_{f} \&|\operatorname{enm}(i)|=\|\mathbf{S}(f, z)\|\right)$. Note that $\left|\operatorname{enm}(i)^{* *}\right| \leqq\left|b^{*}\right| \leqq|y|$ we see that n_{i} is recursive in H_{y} by [2, Theorem 3 and Theorem 5].

Since $S\left(f, n_{i}\right) \in \mathbf{W}$ for every i and by the supposition of the theorem,
$f \& W$, there must be some (indeed, infinitely many) $x \in M_{f}$ such that (i) ($n_{i} \stackrel{f}{\alpha}$ x). Let a total function $\delta(i)$ be defined by

$$
\begin{aligned}
& \delta(0)=\mu z(i)\left(n_{i} \stackrel{f}{\prec} z\right) ; \\
& \delta(i+1)=\delta(i), \text { if } \overline{(E z)}\left((i)\left(n_{i} \stackrel{f}{\prec} z\right) \& z \stackrel{f}{\prec} \delta(i)\right) ; \\
& \delta(i+1)=\mu z\left((i)\left(n_{i} \stackrel{f}{\prec} z\right) \& z \stackrel{f}{\prec} \delta(i)\right), \text { otherwise. }
\end{aligned}
$$

It can be seen that $\delta(i)$ is recursive in $(E z)\left((i)\left(n_{i} \prec \sim z\right) \& z \stackrel{f}{\prec} x\right)$. Since as has been shown, n_{i} is recursive in H_{y}, (Ez) (i) $\left(n_{i} \nprec z\right) \& z \underset{\alpha}{f}$) is recursive in $H_{y^{* *}}$ (by [5, Lemma 1] and the definition $H_{b^{*}}(u) \equiv(E c) T_{1}{ }^{H_{b}}(c$, $c, u)$). So $\delta(i)$ is recursive in $H_{y^{*} *}$.

There must be some number, say, i_{0} such that $\delta\left(i_{0}+1\right)=\delta\left(i_{0}\right)$. For otherwise, by the definition of $\delta(i),(i)(\delta(i+1) \stackrel{f}{\alpha} \delta(i))$. This contradicts the hypothesis of the theorem. Then $\delta\left(i_{0}\right)$ is the least t (in the sense of $\left.{ }_{\prec}\right)$ in M_{f} such that $(i)\left(n_{i} \stackrel{f}{\prec} t\right)$ and therefore $\left\|\boldsymbol{S}\left(f, \delta\left(i_{0}\right)\right)\right\|$ is the least ordinal ζ such that $(i)\left(\left\|S\left(f, n_{i}\right)\right\|<\zeta\right)$. Since $|\operatorname{enm}(i)|=\left\|S\left(f, n_{i}\right)\right\|$ and $|b|$ is the least ordinal ζ such that (i) $(|\operatorname{enm}(i)|<\zeta)$, then $|b|=\left\|\mathbf{S}\left(f, \delta\left(i_{0}\right)\right)\right\|$. This completes the proof.

Let $\alpha \in H A$ mean that α is hyperarithmetical, i.e. there is some $y \in 0$ such that α is recursive in $H_{y}[4, \mathrm{p} .201]$.

Corollary. If $f \in \mathbf{L}, f \notin \mathbf{W}$ and for all $\alpha \in H A,(\bar{i})(\alpha(i+1) \stackrel{f}{\alpha} \alpha(i))$, then for every $b \in 0$, there is some $n \in M_{f}$ such that $|b|=\|\mathbf{S}(f, n)\|$.

Theorem 2. For any recursive $R(\alpha, a, x)$, there is a recursive $R^{\prime}(s, a)$ such that $(\alpha)(E x) R(\alpha, a, x) \equiv(\alpha)(E x) R^{\prime}(\bar{\alpha}(x), a)$ and for no $\alpha \in H A$, (x) $\bar{R}^{i}(\bar{\alpha}(x), a)$.

Proof. By the technique of [3, Lemma 1], we can find a recursive A such that $(\alpha)(E x) A(\alpha, c, x) \equiv(E \alpha)_{\alpha \in H A}(x) \bar{T}_{1}^{\alpha}(c, c, x)$.
Let $\quad(\alpha)(E x) R(\alpha, a, x) \vee(\alpha)(E x) A(\alpha, c, x)$
$\equiv(\alpha)(E x) B(\alpha, a, c, x) \quad$ (with B recursive)
$\equiv(\alpha)(E x) T_{1}^{\alpha}(\sigma(a), c, x)$ (with recursive σ, by [5, Lemma 12]).
By (a), (α) ($E x$) $A(\alpha, \sigma(a), x) \rightarrow(\alpha)(E x) T_{1} \alpha(\sigma(a), \sigma(a), x)$. On the other hand ()$(E x) A(\alpha, \sigma(a), x) \rightarrow(E \alpha)(x) \bar{T}_{1}^{\alpha}(\sigma(a), \sigma(a), x)$. Thus we have i) ($\bar{\alpha}$) $(E x) A(\alpha, \sigma(a), x)$. By (a) and i), we have ii) (α) $(E x) R(\alpha, a, x) \equiv$ $(\alpha)(E x) T_{1}^{\alpha}(\sigma(a), \sigma(a), x)$. By the meaning of A, i) implies iii) for no $\alpha \in H A$, $(x) \bar{T}_{1}^{\alpha}(\sigma(a), \sigma(a), x)$. From ii) and iii) we see that $T_{1}{ }^{1}(s, \sigma(a), \sigma(a), 1 b(s))$ is a recursive $R^{\prime}(s, a)$ as required. This completes the proof of Theorem 2.

For the predicate $R^{\prime}(s, a)$, we find a recursive function $\xi(\underline{a})$ such that $\xi(a) \in \mathrm{L}, n \in M_{\xi(a)} \equiv\left\{n\right.$ is a sequence number $\left.\bar{\alpha}(x) \&(t)_{t<x} \bar{R}^{\prime}(\bar{\alpha}(t), a)\right\}$ and
$\xi(a) \epsilon \mathbf{W} \equiv(\alpha)(E x) R^{\prime}(\bar{\alpha}(x), a)\left[2\right.$, Theorem 1]. In case $(\bar{\alpha})(E x) R^{\prime}(\bar{\alpha}(x), a)$, since for no $\alpha \in H A,(x) \bar{R}^{1}(\bar{\alpha}(x), a)$, we have that for no $\alpha \in H A,(i)(\alpha(i+1)$ $\xi(a)$ $\left.{ }_{<}^{\xi} \alpha(i)\right)$ by arguments similar to $[6,(\mathrm{~J})]$. Then by the corollary of Theorem 1, we have

Lemma 1. For any recursive $R(\alpha, a, x)$, there is a recursive function $\xi(a)$ such that i) if (α) ($E x) R(\alpha, a, x)$ then $\xi(a) \epsilon \mathbf{W}$, and ii) if $(\bar{\alpha})(E x)$ $R(\alpha, a, x)$ then for every $b \in 0$, there is some n such that $|b|=\|S(\xi(a), n)\|$.

Theorem 3 (by Spector). For any recursive $R(\alpha, a, x)$ there is a recursive $S(\alpha, a, x)$ such that $(E \alpha)_{\alpha \in H A}(x) \mathbf{S}(\alpha, a, x) \equiv(\alpha)(E x) R(\alpha, a, x)$.

Proof. By [7, Theorem 1], we can find a recursive function k such that $f \in \mathbf{W} \rightarrow k(f) \epsilon 0 \&\|f\| \leqq|k(f)|$ and $\|f\|<\|g\| \rightarrow|k(f)|<|k(g)|$. Let $\xi(a)$ be the recursive function of Lemma 1 , and $k(S(\xi(a), n))$ be abbreviated to $y(a, n)$. Let f_{0}, f_{1} be the recursive functions of [3, Theorem 2] so that for any $y \in 0,(E \alpha)(x) \bar{T}_{1}^{\alpha}\left(f_{0}(y), t, x\right)$ or $(E \alpha)(x) \bar{T}_{1}^{\alpha}\left(f_{1}(y), t, x\right)$ according as $H_{y}(t)$ or not. Now let us consider the following predicate of γ and β.

$$
\begin{align*}
(n)(t)\left[\left(\gamma\left(2^{n} \cdot 3^{t}\right)\right.\right. & \left.=0 \&(x) \bar{T}_{1} \lambda_{s} \beta\left(2^{n} \cdot 3^{t} \cdot 5^{s}\right)\left(f_{0}(y(a, n)), t, x\right)\right) \vee \tag{A}\\
\left(\gamma\left(2^{n} \cdot 3^{t}\right)\right. & \left.\left.=1 \&(x) \bar{T}_{1} \lambda_{s} \beta\left(2^{n} \cdot 3^{t} \cdot 5^{s}\right)\left(f_{1}(y(a, n)), t, x\right)\right)\right]
\end{align*}
$$

Case 1. ($\bar{\alpha}$) ($E x$) $R(\alpha, a, x)$. Suppose (A) is true, we can show $\gamma \notin H A$. By the meanings of f_{0}, f_{1}, (A) implies that for any fixed $y(a, n) \epsilon 0$, (1) $\lambda t \gamma$ $\left(2^{n} \cdot 3^{t}\right)$ is the representing function of $\lambda t H_{y(a, n)}(t)$ and therefore (2) $\lambda t H_{y(a, n)}(t)$ is recursive in γ. By Lemma 1, we have (3) that for suitable $n, y(a, n) \in 0$ and $|y(a, n)|>|z|$, any pre-assigned constructive ordinal. Since given any $\gamma^{\prime} \in H A\left(\gamma^{\prime}\right.$ recursive in, say, H_{z}), all H_{y} with $|y|>|z|$ are not recursive in γ^{\prime}, then from (2) and (3) it follows that $\gamma \notin H A$.

Case 2. (α) (Ex) R (α, a, x). We can find $\gamma, \beta \epsilon H A$ such that γ and β satisfy (A). By Lemma $1, \xi(a) \in \mathbb{W}$. Then $k(\xi(a)) \in 0, y(a, n) \in 0$ and $\mid y(a$, $n)\left|<|k(\xi(a))|\right.$ for every n. By [2, Theorem 5], $\lambda n t H_{y(a, n)}(t)$ is recursive in $H_{k\left(\xi_{(a)}\right)}$. A function $\gamma \in H A$ is defined by $\gamma(x)=0$ if $x \neq 2^{n} \cdot 3^{t}$, and $\gamma\left(2^{n} \cdot 3^{t}\right)=0$ or 1 according as $H_{y(a, n)}(t)$ or not. A β is defined by $\beta(x)=0$ if $x \neq 2^{n} \cdot 3^{t} \cdot 5^{s}$, and $\beta\left(2^{n} \cdot 3^{t} \cdot 5^{s}\right)=\left\{d_{j}(y(a, n), t)\right\}\left(H_{w_{j}(y(a, n), t)}\right.$, s) where j is 0 or 1 according as $H_{y(a, n)}(t)$ or not, and d_{j}, w_{j} are as defined in [3, Theorem 2]. Then it can be seen that γ and β satisfy (A). $\beta \in H A$ because β is defined in terms of some H_{b} with $|b|<|k(\xi(a))|$ and then is recursive in $H_{k(\xi(a))}$.

From (A) we get $(x) \mathbf{S}^{\mathbf{1}}(\gamma, \beta, a, x)$ by contracting the quantifiers. $\mathbf{S}^{\prime}\left(\lambda t(\alpha(t))_{0}, \lambda t(\alpha(t))_{1}, a, x\right)$ is a $\mathbf{S}(\alpha, a, x)$ for Theorem 3.

NOTES

1. We see that the concept $e \notin \mathrm{~W}$ is as complicated as $e \epsilon \mathrm{~W}$. We can classify all the numbers $e \in \mathbf{L}$ into as many hierarchies as the constructive ordinals. For any $e, e^{\prime} \epsilon \mathrm{L}$, we say that e belongs to a hierarchy higher
than that of e^{\prime} if M_{e} contains a well-ordered segment larger than that contained by M_{e}. Elsewhere the author classified all $e \in \mathbf{L}$ into countable hierarchies based upon a notion $L_{n}(e, z)$ of [7]. We say e belongs to the n-th hierarchy if there is an infinite decreasing sequence ${ }_{\alpha}$
 type of classification can help us to solve the problem raised in [7, p. 25] partly.
2. After reading the first version of this manuscript Dr. Spector showed me a manuscript of Gandy's which contained also a proof of Theorem 3. Theorem 1 of this note is essentially the same as Gandy's except the former contains some contents more specific. Other parts of both proofs were carried out through different routs.

REFERENCES

[1] C. Spector, Hyperarithmetical quantifiers, Fund. Math. vol. XLVIII (1960), pp. 313-320.
[2] C. Spector, Recursive well-orderings, Journ. Symb. Log., vol. 20 (1955), pp. 151-163.
[3] : S. C. Kleene, Quantification of number-theoretic predicates, Compositio Math., vol. 14 (1959), pp. 23-40.
[4] S. C. Kleene, Hierarchies of number-theoretic predicates, Bull. Amer. Soc., vol. 61 (1955), pp. 193-213.
[5] S. C. Kleene, Arithmetical predicates and function quantifiers, Tran. Amer, Math. Soc., 79 (1955), pp. 312-340.
[6] S. C. Kleene, On the forms of the predicates in the theory of constructive ordinals, Amer. J. Math., vol. 77 (1955), pp. 405-428.
[7] G. Kreisel, J. Shoenfield, Hao Wang, Number theoretic concepts and recursive well-orderings, Archive für Math. Log. and Grund., vol. 5 (1960), pp. 42-64.

[^0]
[^0]: Institute of Mathematics, Academia Sinica, Taipei, Taiwan, Cbina

