A THEOREM ON *n*-TUPLES WHICH IS EQUIVALENT TO THE WELL-ORDERING THEOREM

H. RUBIN and J. E. RUBIN

Using a form of the well-ordering theorem which is due to A. Levy [3] it is possible to generalize a result of B. Sobociński [6] and prove the following theorem: For all natural numbers n and k such that n > 2 and 1 < k < n the following proposition is equivalent to the well-ordering theorem.

P(n, k): For each set x which is not finite there exists a family N of unordered n-tuples of elements of x such that each unordered k-tuple of elements of x is a subset of exactly one of the elements of N.

W. Sierpiński [5] proved that the axiom of choice implies P(3, 2) and B. Sobociński [6] proved that P(3, 2) implies the axiom of choice. Moreover, unknown to us, W. Frascella has also been working on this problem. In [1] Frascella proved that for each natural number n > 2, P(n, n-1) is equivalent to the axiom of choice and in [2] he proved the main results of this paper. However, Frascella's proofs are considerably different from ours.

Theorem 1. The well-ordering theorem implies that for all natural numbers n and k such that n > 2 and 1 < k < n, P(n, k) holds.

Proof: Let x be any set which is not finite and let n and k be natural numbers satisfying the hypotheses. By the well-ordering theorem there is an initial ordinal number ω_{α} such that $x \approx \omega_{\alpha}$. Let K be the set of all unordered k-tuples of elements of x. Then, it is also true that $K \approx \omega_{\alpha}$. (For example, we may well-order K by a relation R defined as follows: if u, $v \in K$, $u \mathrel{R} v \iff [(\max u < \max v) \text{ or } (\max u = \max v = w \text{ and } \max (u \sim \{w\}) < \max (v \sim \{w\}))$ or . . or $(\max u = \max v \text{ and } \max (u \sim \{w\}) = \max (v \sim \{w\})$ and . . and $\min u \le \min v$].) Let $K = \{k_{\beta} : \beta < \omega_{\alpha}\}$. In a similar manner we can well-order the set T of all unordered n-tuples of elements of x, so we also have $T \approx \omega_{\alpha}$. Let $T = \{t_{\beta} : \beta < \omega_{\alpha}\}$.

Now, we shall construct a subset N of T which satisfies $\mathbf{P}(n,k)$. Let $T_0 = \phi$. Suppose $T_{\gamma} \subseteq T$ has the property that for all $\beta < \gamma < \omega_{\alpha}$, k_{β} is a subset of exactly one element of T_{γ} and for all β such that $\gamma \leq \beta < \omega_{\alpha}$, k_{β} is

a subset of at most one element of T_{γ} . If k_{γ} is a subset of exactly one element of T_{γ} define $T_{\gamma+1} = T_{\gamma}$. If k_{γ} is not a subset of any element of T_{γ} , let t_{γ}' be the smallest element s of T such that $k_{\gamma} \subseteq s$, but for all $\beta < \gamma$, $k_{\beta} \notin s$. (We can always find such an element in T because the set

$$S = \{t \in T : k_{\gamma} \subseteq t \text{ and } (\forall u)(u \in t \to (\exists \beta)(\beta < \gamma \text{ and } u \in k_{\beta} \sim k_{\gamma}))\} \prec \omega_{\alpha}.$$

Since $P = \{t \in T : k_{\gamma} \subseteq t\} \approx \omega_{\alpha}$, there is an $s \in P \sim S$. Any such s cannot contain as a subset any k_{β} with $\beta < \gamma$.) Now, define $T_{\gamma+1} = T_{\gamma} \cup \{t_{\gamma}^{*}\}$ and if γ is a limit ordinal $T_{\gamma} = \bigcup_{\beta < \gamma} T_{\beta}$. Clearly $N = \bigcup_{\gamma < \omega_{\alpha}} T_{\gamma}$ is the required set.

Using a result of A. Levy [3] we can give a relatively short proof of the converse. Levy has shown that for each natural number m > 0 the following statement is equivalent to the well-ordering theorem.

 $\mathbf{Q}(m)$: Every set is the union of a well-ordered family of finite sets each of which has at most m elements.

Theorem 2. If P(n,k) holds for some natural numbers n and k such that n > 2 and 1 < k < n then Q(n - k) holds.

Proof: Suppose x is a set which is not finite and n and k are natural numbers such that n > 2 and 1 < k < n. (Clearly, it is sufficient to prove $\mathbf{Q}(n-k)$ for non-finite sets.) Let y be a well-ordered set such that $y \cap x = \phi$ and $y \not\equiv w$ where

$$w = \{u : u \subseteq x \text{ and } \overline{u} = n - k\}.$$

(For example, let y be a set such that $\overline{y} = \aleph(2^{\overline{x}})$, where for each cardinal number $m, \aleph(m)$ is Hartog's aleph, the smallest aleph which is $\not\leq m$.) By hypothesis $\mathsf{P}(n,k)$ holds for $x \cup y$. Let N be a set of n-tuples of elements of $x \cup y$ such that each k-tuple of elements of $x \cup y$ is a subset of exactly one element of N. For each $u \in x$ let

$$N_u = \{ v \in N : u \in v \text{ and } \overline{v \cap y} \ge k - 1 \}.$$

Then there is a $v \in N_u$ such that $\overline{v \cap y} \ge k$. For suppose not. Let t be any (k-1)-element subset of y. Then $t \cup \{u\}$ is a subset of exactly one element v of N_u . Moreover, each element of N_u contains exactly one subset $t \cup \{u\}$ where t is a (k-1)-element subset of y. Consequently,

$$N_u \approx H = \{t : t \subseteq y \text{ and } \overline{t} = k - 1\}.$$

Since $\overline{\overline{y}}$ is an aleph, $H \approx y$. But the mapping which assigns to each $t \in H$ the set $v \sim (t \cup \{u\})$, where v is the unique element of N_u such that $t \cup \{u\} \subseteq v$, is a 1 - 1 mapping from H into w. Thus, we would have $y \preceq w$, which is impossible.

Now, let

$$M = \{ v : v \in N \text{ and } \overline{v \cap y} \ge k \}$$

and let

$$L = \{v \cap y : v \in M\}.$$

We have shown that for each $u \in x$, $M \cap N_u \neq \phi$. Furthermore, since each element of L has at least k elements, each element of L is contained in exactly one element of M. Clearly, L can be well-ordered. For each $t \in L$, let $F(t) = v \sim t$, where v is the unique element of M such that $t \subseteq v$. Then F yields a well-ordering of a collection of subsets of x each of which has at most n - k elements and whose union is x. Thus $\mathbf{Q}(n - k)$ holds.

We can strengthen our result slightly and prove the following statement is equivalent to the well-ordering theorem:

For each set x which is not finite there exist natural numbers n and k, n > 2 and 1 < k < n and there exists a family N of unordered n-tuples of elements of x such that each unordered k-tuple of elements of x is a subset of exactly one of the elements of N.

Using the proof of Theorem 1 we can show that the well-ordering theorem implies this proposition. The well-ordering theorem follows in essentially the same manner as in Theorem 2. For we can choose y so that $x \cap y = \phi$, y can be well-ordered and

$$y \not\equiv \{s : s \subseteq x \text{ and } s \text{ is finite} \}.$$

Then the proof of Theorem 2 yields a well-ordered family of subsets of x, each having at most m elements for some finite m, and whose union is x. But by a result given in [4] (WE 6, p 1), this implies the well-ordering theorem.

BIBLIOGRAPHY

- [1] Frascella, W., "A generalization of Sierpiński's theorem on Steiner triples and the axiom of choice," Notre Dame Journal of Formal Logic, 6 (1965) 163-179.
- [2] Frascella, W., *Block designs on infinite sets*, Ph.D thesis, University of Notre Dame (1966).
- [3] Levy, A., "Axioms of Multiple choice," Fundamenta Mathematicae, 50 (1961-62) 475-483.
- [4] Rubin, H. and Rubin, J. E., *Equivalents of the axiom of choice*, North-Holland Publishing Co., Amsterdam (1963).
- [5] Sierpiński, W., "Sur un problème de triades," Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie. Classe III. 33-38 (1940-45) 13-16.
- [6] Sobociński, B., "A theorem of Sierpiński on triads and the axiom of choice," Notre Dame Journal of Formal Logic, 5 (1964) 51-58.

Michigan State University East Lansing, Michigan