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A THEOREM ON n-TUPLES WHICH IS EQUIVALENT
TO THE WELL-ORDERING THEOREM

H. RUBIN and J. E. RUBIN

Using a form of the well-ordering theorem which is due to A. Levy [3]
it is possible to generalize a result of B. Sobocinski [6] and prove the
following theorem: For all natural numbers n and k such that n> 2 and
1 < k <n the following proposition is equivalent to the well-ordering
theorem.

P(n, k): For each set x which is not finite there exists a family N of un-
ordered n-tuples of elements of x such that each unordered k-tuple of
elements of x is a subset of exactly one of the elements of N.

W. Sierpinski [5] proved that the axiom of choice implies P(3, £)and
B. Sobocinski [6] proved that P(3, 2) implies the axiom of choice. More-
over, unknown to us, W. Frascella has also been working on this problem.
In [1] Frascella proved that for each natural number n>2, P(n, n-1) is
equivalent to the axiom of choice and in [2] he proved the main results of
this paper. However, Frascella's proofs are considerably different from
ours.

Theorem I . The well-ordering theorem implies that for all natural
numbers n and k such that n>2 and 1 < k <n, P(n, k) holds.

Proof: Let x be any set which is not finite and let n and k be natural
numbers satisfying the hypotheses. By the well-ordering theorem there is
an initial ordinal number ωa such that x& ωa. Let K be the set of all
unordered &-tuples of elements of x. Then, it is alβo true that K « ωa.
(For example, we may well-order K by a relation R defined as follows:
if u, v € K, u R v O [ (max u < max v) or (max u = max v = w and
max (u ~{w}) <max {v~ {w})) or . . . or (max u = max υ and max (u ~ {w} =
max (v ~ {w}) and . . . and min u ** min v}].) Let K = {kβ : β < ωa}. In a
similar manner we can well-order the set T of aH unordered w-tuples of
elements of x, so we also have T a ωα. Let T = {tβ : β < ωa}.

Now, we shall construct a subset N of T which satisfies P(n,k). Let
To = φ. Suppose Ty^T has the property that for all β < γ < ωω kβ is a
subset of exactly one element of Tγ and for all β such that γ < β < ωa, kβ is
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a subset of at most one element of TΎ. If ky is a subset of exactly one
element of TΎ define TΎ+1 = TΎ. If kγ is not a subset of any element of TΎi

let tγ be the smallest element s of T such that kΎ c s, but for all
β < Ύ> kβ <£ 5. (We can always find such an element in T because the set

S = {teT : kΎ c t and (Vu)(uet ->(3j3)(j3 < y andwefy - fey))}^ωβ-.

Since P = {ίeT : &r c £} & ωaf there is an seP ~ S. Any such 5 cannot
contain as a subset any kβ with β < y.) Now, define T r + 1 = TΎU {tγ} and if

γ is a limit ordinal Tγ = U/3<y

 Γ/3 Clearly N = [JΎ<ωaTγ is the required
set.

Using a result of A. Levy [3] we can give a relatively short proof of
the converse. Levy has shown that for each natural number m>0 the
following statement is equivalent to the well-ordering theorem.

Q(m): Every set is the union of a well-ordered family of finite sets
each of which has at most m elements.

Theorem 2. If P(n,k) holds for some natural numbers n and k such that
n >2 and 1 < k < n then Q(n - k) holds.

Proof: Suppose x is a set which is not finite and n and k are natural
numbers such that n> 2 and 1 < k < n. (Clearly, it is sufficient to prove
Q(n - k) for non-finite sets.) Let y be a well-ordered set such that
y Π x - 0 and y % w where

w = {u : u c x and u = n - k}.

(For example, let y be a set such that y - H2X), where for each cardinal
number m, K(ra) is Hartog's aleph, the smallest aleph which is $m.) By
hypothesis P(n,k) holds for x U y Let N be a set of ^-tuples of elements
of x u y such that each &-tuple of elements of x U y is a subset of exactly
one element of N. For each uex let

Nu ={veN :uev and υ Π y ^k - l}.

Then there is a v e Nu such that v Π y > k. For suppose not. Let t be any
(k - i)-element subset of y. Then £ u{w}is a subset of exactly one element
v of Nu. Moreover, each element of Nu contains exactly one subset t U {u}
where Ms a (k - i)-element subset of y. Consequently,

Nu »JET = {* : ί c y and F= ^ - i}.

Since y is an aleph, H ̂  y. But the mapping which assigns to eaeh te H the
set f ~ (t U {w}), where z; is the unique element of Nu βueh that t U {u} ζ t;,
is a 1 - 1 mapping from i? into ^ . Thus, we would have y ^ w, wfeich is
impossible.

Now, let

M = {υ :veN and υ Π y ^k}

and let

L = {υ Π y : υ e M}.
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We have shown that for each ue x, M Π Nu Φ 0. Furthermore, since each
element of L has at least k elements, each element of L is contained in
exactly one element of M. Clearly, L can be well-ordered. For each
te L, let F(t) = v ~ t, where v is the unique element of M such that t c v.
Then F yields a well-ordering of a collection of subsets of x each of which
has at most n - k elements and whose union is x. Thus Q(n - k) holds.

We can strengthen our result slightly and prove the following statement
is equivalent to the well-ordering theorem:

For each set x which is not finite there exist natural numbers n and
k} n> 2 and i < k < n and there exists a family N of unordered n-tuples of
elements of x such that each unordered k-tuple of elements of x is a subset
of exactly one of the elements of N.

Using the proof of Theorem 1 we can show that the well-ordering
theorem implies this proposition. The well-ordering theorem follows in
essentially the same manner as in Theorem 2. For we can choose y so that
x Π y = φ, y can be well-ordered and

y ^ {s : s c x and 5 is finite}.

Then the proof of Theorem 2 yields a well-ordered family of subsets of x,
each having at most m elements for some finite m, and whose union is x.
But by a result given in [4] (WE 6, p 1), this implies the well-ordering
theorem.
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