A THEOREM ON n-TUPLES WHICH IS EQUIVALENT TO THE WELL-ORDERING THEOREM

H. RUBIN and J. E. RUBIN

Using a form of the well-ordering theorem which is due to A. Levy [3] it is possible to generalize a result of B. Sobocinski [6] and prove the following theorem: For all natural numbers n and k such that $n>2$ and $1<k<n$ the following proposition is equivalent to the well-ordering theorem.
$\mathbf{P}(n, k)$: For each set x which is not finite there exists a family N of unordered n-tuples of elements of x such that each unordered k-tuple of elements of x is a subset of exactly one of the elements of N.
W. Sierpinski [5] proved that the axiom of choice implies $\mathbf{P}(3,2)$ and B. Sobociński [6] proved that $\mathbf{P}(3,2)$ implies the axiom of choice. Moreover, unknown to us, W. Frascella has also been working on this problem. In [1] Frascella proved that for each natural number $n>2, \mathrm{P}(n, n-1)$ is equivalent to the axiom of choice and in [2] he proved the main results of this paper. However, Frascella's proofs are considerably different from ours.

Theorem 1. The well-ordering theorem implies that for all natural numbers n and k such that $n>2$ and $1<k<n, P(n, k)$ holds.

Proof: Let x be any set which is not finite and let n and k be natural numbers satisfying the hypotheses. By the well-ordering theorem there is an initial ordinal number ω_{α} such that $x \approx \omega_{\alpha}$. Let K be the set of all unordered k-tuples of elements of x. Then, it is also true that $K \approx \omega_{\alpha}$. (For example, we may well-order K by a relation R defined as follows: if $u, v \in K, u R v \longleftrightarrow[(\max u<\max v)$ or $(\max u=\max v=w$ and $\max (u \sim\{w\})<\max (v \sim\{w\})$) or . . . or ($\max u=\max v$ and $\max (u \sim\{w\}=$ $\max (v \sim\{w\})$ and \ldots and $\min u \leqslant \min v\}]$.) Let $K=\left\{k_{\beta}: \beta<\omega_{\alpha}\right\}$. In a similar manner we can well-order the set T of all unordered n-tuples of elements of x, so we also have $T \approx \omega_{\alpha}$. Let $T=\left\{t_{\beta}: \beta<\omega_{\alpha}\right\}$.

Now, we shall construct a subset N of \boldsymbol{F} which satisfies $\boldsymbol{P}(n, k)$. Let $T_{0}=\phi$. Suppose $T_{\gamma} \subseteq T$ has the property that for all $\beta<\gamma<\omega_{\alpha}, k_{\beta}$ is a subset of exactly one element of T_{γ} and for all β such that $\gamma \leqslant \beta<\omega_{\alpha}, k_{\beta}$ is
a subset of at most one element of T_{γ}. If k_{γ} is a subset of exactly one element of T_{γ} define $T_{\gamma+1}=T_{\gamma}$. If k_{γ} is not a subset of any element of T_{γ}, let t_{γ} be the smallest element s of T such that $k_{\gamma} \subseteq s$, but for all $\beta<\gamma, k_{\beta} \nsubseteq s$. (We can always find such an element in T because the set
$S=\left\{t \epsilon T: k_{\gamma} \subseteq t\right.$ and $(\forall u)\left(u \in t \rightarrow(\exists \beta)\left(\beta<\gamma\right.\right.$ and $\left.\left.\left.u \epsilon k_{\beta} \sim k_{\gamma}\right)\right)\right\}<\omega_{\alpha}$.
Since $P=\left\{t \epsilon T: k_{\gamma} \subseteq t\right\} \approx \omega_{\alpha}$, there is an $s \in P \sim S$. Any such s cannot contain as a subset any k_{β} with $\beta<\gamma$.) Now, define $T_{\gamma+1}=T_{\gamma} \cup\left\{t_{\gamma}{ }^{\prime}\right\}$ and if γ is a limit ordinal $T_{\gamma}=\bigcup_{\beta<\gamma} T_{\beta}$. Clearly $N=\bigcup_{\gamma<\omega_{\alpha}} T_{\gamma}$ is the required set.

Using a result of A. Levy [3] we can give a relatively short proof of the converse. Levy has shown that for each natural number $m>0$ the following statement is equivalent to the well-ordering theorem.
$\mathbf{Q}(m)$: Every set is the union of a well-ordered family of finite sets each of which has at most m elements.

Theorem 2. If $\mathbf{P}(n, k)$ holds for some natural numbers n and k such that $n>2$ and $1<k<n$ then $\mathbf{Q}(n-k)$ holds.

Proof: Suppose x is a set which is not finite and n and k are natural numbers such that $n>2$ and $1<k<n$. (Clearly, it is sufficient to prove $\mathbf{Q}(n-k)$ for non-finite sets.) Let y be a well-ordered set such that $y \cap x=\phi$ and $y 甘 w$ where

$$
w=\{u: u \subseteq x \text { and } \overline{\bar{u}}=n-k\} .
$$

(For example, let y be a set such that $\overline{\bar{y}}=\aleph\left(2^{\overline{\bar{x}}}\right)$, where for each cardinal number $m, \aleph(m)$ is Hartog's aleph, the smallest aleph which is $\neq m$.) By hypothesis $\mathbf{P}(n, k)$ holds for $x \cup y$. Let N be a set of n-tuples of elements of $x \cup y$ such that each k-tuple of elements of $x \cup y$ is a subset of exactly one element of N. For each $u \in x$ let

$$
N_{u}=\{v \in N: u \in v \text { and } \overline{\overline{v \cap y}} \geqslant k-1\} .
$$

Then there is a $v \in N_{u}$ such that $\overline{\overline{v \cap y}} \geqslant k$. For suppose not. Let t be any ($k-1$)-element subset of y. Then $t \cup\{u\}$ is a subset of exactly one element v of N_{u}. Moreover, each element of N_{u} contains exactly one subset $t \cup\{u\}$ where t is a ($k-1$)-element subset of y. Consequently,

$$
N_{u} \approx H=\{t: t \subseteq y \text { and } \overline{\bar{t}}=k-1\} .
$$

Since $\overline{\bar{y}}$ is an aleph, $H \approx y$. But the mapping which assigns to each $t \in H$ the set $v \sim(t \cup\{u\})$, where v is the unique element of N_{u} such that $t \cup\{u\} \subseteq v$, is a $1-1$ mapping from H into w. Thus, we would have $y \precsim w$, which is impossible.

Now, let

$$
M=\{v: v \in N \text { and } \overline{\overline{v \cap y}} \geqslant k\}
$$

and let

$$
L=\{v \cap y: v \in M\} .
$$

We have shown that for each $u \in x, M \cap N_{u} \neq \phi$. Furthermore, since each element of L has at least k elements, each element of L is contained in exactly one element of M. Clearly, L can be well-ordered. For each $t \in L$, let $F(t)=v \sim t$, where v is the unique element of M such that $t \subseteq v$. Then F yields a well-ordering of a collection of subsets of x each of which has at most $n-k$ elements and whose union is x. Thus $Q(n-k)$ holds.

We can strengthen our result slightly and prove the following statement is equivalent to the well-ordering theorem:

For each set x which is not finite there exist natural numbers n and $k, n>2$ and $1<k<n$ and there exists a family N of unordered n-tuples of elements of x such that each unordered k-tuple of elements of x is a subset of exactly one of the elements of N.

Using the proof of Theorem 1 we can show that the well-ordering theorem implies this proposition. The well-ordering theorem follows in essentially the same manner as in Theorem 2. For we can choose y so that $x \cap y=\phi, y$ can be well-ordered and

$$
y \mathbb{Z}\{s: s \subseteq x \text { and } s \text { is finite }\} .
$$

Then the proof of Theorem 2 yields a well-ordered family of subsets of x, each having at most m elements for some finite m, and whose union is x. But by a result given in [4] (WE 6, p 1), this implies the well-ordering theorem.

BIBLIOGRAPHY

[1] Frascella, W., "A generalization of Sierpinski's theorem on Steiner triples and the axiom of choice," Notre Dame Journal of Formal Logic, 6 (1965) 163-179.
[2] Frascella, W., Block designs on infinite sets, Ph.D thesis, University of Notre Dame (1966).
[3] Levy, A., "Axioms of Multiple choice," Fundamenta Mathematicae, 50 (1961-62) 475-483.
[4] Rubin, H. and Rubin, J. E., Equivalents of the axiom of choice, North-Holland Publishing Co., Amsterdam (1963).
[5] Sierpiński, W., "Sur un problème de triades," Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsorie. Classe III. 33-38 (1940-45) 13-16.
[6] Sobociński, B., "A theorem of Sierpinski on triads and the axiom of choice," Notre Dame Journal of Formal Logic, 5 (1964) 51-58.

Michigan State University
East Lansing, Michigan

