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A THEOREM ON »-TUPLES WHICH IS EQUIVALENT
TO THE WELL-ORDERING THEOREM

H. RUBIN and J. E. RUBIN

Using a form of the well-ordering theorem which is due to A, Levy [3]
it is possible to generalize a result of B. Sobocinski [6] and prove the
following theorem: For all natural numbers n and k such that n > 2 and
1<k <n the following proposition is equivalent to the well-ovdeving
theorem.

P(n, B): For each set x which is not finite there exists a family N of un-
ovdered n-tuples of elements of x such that each unovdeved k-tuple of
elements of x is a subset of exactly one of the elements of N.

W. Sierpinski [5] proved that the axiom of choice implies P(3, 2)and
B. Sobocinski [6] proved that P(3, 2) implies the axiom of choice. More-
over, unknown to us, W. Frascella has also been working on this problem.
In [1] Frascella proved that for each natural number n > 2, P(n, n-1) is
equivalent to the axiom of choice and in [2] he proved the main results of
this paper. However, Frascella’s proofs are considerably different from
ours.

Theorem 1. The well-ovdering theovem implies that for all natural
numbers n and k such that n >2 and 1 < k < n, P(n, k) holds.

Proof: Let x be any set which is not finite and let » and k2 be natural
numbers satisfying the hypotheses. By the well-ordering theorem there is
an initial ordinal number w, such that x= w,. Let K be the set of all
unordered k-tuples of elements of x. Then, it is also true that K ~ w,.
{For example, we may well-order K by a relation R defined as follows:
if u, ve K, u Rv<>[(max v <max v) or (max u = max v = w and
max (u ~{w}) <max (v~ {w})) or . .. or (max u = max v and max (u ~ {w} =
max (v ~{w}) and ... and min < min v}].) Let K={ks :B< wo}. In a
similar manner we can well-order the set 7 of all unordered n-tuples of
elements of x, so we also have T ~ w,. Let T = {fﬁ B < Wt

Now, we shall construct a subset N of F which satisfies P(n,2). Let
Ty = ¢. Suppose T, ST has the property that for all B <y < w, kg isa
subset of exactly one element of Ty and for all 8 such that y < B < wq, kg is
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a subset of at most one element of T,. If k, is a subset of exactly one
element of T, define T4, =T,. If &, is not a subset of any element of T,,
let £ be the smallest element s of T such that %k, C s, but for all
B< v kg $ s. (We can always find such an element in T because the set

S={teT : by St and (Vu)uet —(3B)(B < y and ueks ~ ky))}<wqe

Since P ={teT :k, Ct} ~ wy there is an seP ~ S. Any such s cannot
contain as a subset any k; with g < y.) Now, define 7, , = T, U {t;} and if

y is a limit ordinal T, = U/3<y Tg. Clearly N = Uyq,aTy is the required
set.

Using a result of A, Levy [3] we can give a relatively short proof of
the converse. Levy has shown that for each natural number m >0 the
following statement is equivalent to the well-ordering theorem.

Q(m): Every set is the union of a well-ovdered family of finite sets
each of which has at most m elements.

Theovem 2. If P(n,R) holds for some natuval numbers n and k such that
n>2and 1 <k < nthen Q@ - k) holds.

Proof: Suppose x is a set which is not finite and » and % are natural
numbers such that » > 2 and 1< k2 <#n. (Clearly, it is sufficient to prove
Q(n - ) for non-finite sets,) Let y be a well-ordered set such that
yNx=¢ and y ¥ w where

w={u:uCxandu=n-kh

(For example, let y be a set such that y = R(2¥), where for each cardinal
number m, 8(m ) is Hartog’s aleph, the smallest aleph which is ¥m.) By
hypothesis P(n,k) holds for x U y. Let N be a set of n-tuples of elements
of x U y such that each k-tuple of elements of x U y is a subset of exactly
one element of N. For each uex let

N, ={veN :uevandv Ny =k - 1}.

Then there is a ve N, such that v Ny = k. For suppose not. Let ¢ be any
(k - 1)-element subset of y. Then ¢ U {u}is a subset of exactly one element
v of N,. Moreover, each element of N, contains exactly one subset U {u}
where t is a (¢ - 1)-element subset of y. Consequently,

Ny~H={t:tCyandi=Fk-1.

Since y is an aleph, H ~ y. But the mapping which assigns to eaeh {¢ H the
set v ~ (¢ U {u}), where v is the unique element of N, such thatt U {u} C v,
is a 1 - 1 mapping from H into w. Thus, we would have y I w, which is
impossible.

Now, let

M={v :veNandv Ny =k}
and let

L={vny:veM}h
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We have shown that for each uex, M N N, # ¢. Furthermore, since each
element of L has at least £ elements, each element of L is contained in
exactly one element of M. Clearly, L can be well-ordered. For each
te L, let F(t)=v ~ ¢, where v is the unique element of M such that ¢ C v.
Then F yields a well-ordering of a collection of subsets of x each of which
has at most n - & elements and whose union is x. Thus Q(z - %) holds.

We can strengthen our result slightly and prove the following statement
is equivalent to the well-ordering theorem:

For each sel x which is not finile theve exist natural numbers n and
k, n>2and 1< k < nand there exists a family N of unovdered n-tuples of
elements of x such that each unordeved k-tuple of elements of x is a subset
of exactly one of the elements of N.

Using the proof of Theorem 1 we can show that the well-ordering
theorem implies this proposition. The well-ordering theorem follows in
essentially the same manner as in Theorem 2. For we can choose y so that
xNy=¢,y can be well-ordered and

y £ {s :s € x and s is finite}.

Then the proof of Theorem 2 yields a well-ordered family of subsets of x,
each having at most m elements for some finite #, and whose union is x.
But by a result given in [4] (WE 6, p 1), this implies the well-ordering
theorem.
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