A SEMI-LATTICE THEORETICAL CHARACTERIZATION OF ASSOCIATIVE NEWMAN ALGEBRAS

BOLESŁAW SOBOCIŃSKI

The aim of this note ${ }^{1}$ is to stress a fact which, due to the original formulation of Newman's systems given in [1], can be easily overlooked: an associative Newman algebra can be considered as a semi-lattice with respect to the binary operation \times to which the additional postulates are added concerning the properties of the binary operation + (which is neither a lattice-theoretical join nor a lattice theoretical symmetrical difference) and the unary operation -, i.e., the complementation peculiar to this system. Namely, it will be shown that in the field of the axioms A1-A11 the proper axioms of system \mathfrak{D} of associative Newman algebra, cf. [2], section 3, i.e., the postulates
F1 $[a b]: a, b \in B . \supset . a=a+(b \times \bar{b})$
F2 $[a b]: a, b \in B . \supset . a=a \times(b+\bar{b})$
H1 [abc]: $a, b, c \in B . \supset . a \times(b+c)=(c \times a)+(b \times a)$
L1 [abc]: $a, b, c \in b . \supset . a \times(b \times c)=(a \times b) \times c$
are inferentially equivalent to the following formulas: $F 1, F 2, L 1$ and
F33 [ab]: $a, b \in B . \supset . a \times b=b \times a$
C1 [abc]: $a, b, c \in B . \supset . a \times(b+c)=(a \times b)+(a \times c)$
and, moreover, that the idempotent law with respect to operation \times, i.e.,
F7 [a]: $a \in B . \supset . a=(a \times a)$
is a consequence of the axioms $F 1, F 2$ and $C 1$.
Proof: In [2], section 3, it has been proved that the formulas F33 and C1 follow from $F 1, F 2, H 1$ and $L 1$. On the other hand, let us assume $F 1, F 2$, L1, F33 and C1. Then:

[^0]| $C 2$ | $[a b c]: a, b, c \in B . \supset .(a+b) \times c=(a \times c)+(b \times c)$ | [F33;C1] |
| :--- | :--- | ---: |
| $F 3$ | $[a b]: a, b \in B \cdot \supset . a=(b+\bar{b}) \times a$ | $[F 1 ; F 33]$ |
| $K 1$ | $[a b]: a, b \in B \cdot a+a=a \times \bar{a} \cdot b+b=b \times \bar{b} . \supset . a \times(b \times b)=(a \times b) \times b$ | |
| | | $[$ [L1] |
| $F 7$ | $[a]: a \in B . \supset . a=a \times a$ | |
| PR | $[a]: \operatorname{Hp}(1) . \supset$. | |
| | $a=a \times(a+\bar{a})=(a \times \bar{a})+(a \times a)=a \times a$ | $[1 ; F 2 ; C 1 ; F 1]$ |

Since, $c f$. [2], section 2, it has been proved that $\{C 1 ; C 2 ; F 1 ; F 2 ; F 3$; $K 1\} \rightarrow\{F 1 ; F 2 ; H 1 ; L 1\}$, we have $\{F 1 ; F 2 ; H 1 ; L 1\} \rightleftarrows\{F 1 ; F 2 ; L 1 ; F 33 ; C 1\}$. And, moreover, it is shown that $F 1, F 2$ and $C 1$ imply $F 7$. Thus, the proof is complete.

The mutual independence of the axioms $F 1, F 2, L 1, F 33$ and $C 1$ is established by using Newman's example E10, cf. [1], p. 271, matrices 1 ? and $\not \approx 4, c f$. [3], section 4, and the following algebraic tables (matrices):

An7

+	0	α	β	γ	δ
0	0	α	β	γ	δ
α	α	α	δ	δ	δ
β	β	δ	β	δ	δ
γ	γ	δ	δ	γ	δ
δ	δ	δ	δ	δ	δ

\times	0	α	β	γ	δ
0	0	0	0	0	0
α	0	α	0	0	α
β	0	0	β	0	β
γ	0	0	0	γ	γ
δ	0	α	β	γ	δ

x	\bar{x}
0	δ
α	β
β	γ
γ	α
δ	0

and

AH8

+	0	α	β	γ	δ
0	0	α	β	γ	δ
α	α	α	δ	δ	δ
β	β	δ	β	β	δ
γ	γ	δ	β	γ	δ
δ	δ	δ	δ	δ	δ

\times	0	α	β	γ	δ
0	0	0	0	0	0
α	0	α	0	0	α
β	0	0	β	β	β
γ	0	0	γ	γ	γ
δ	0	α	β	γ	δ

x	\bar{x}
0	δ
α	β
β	α
γ	α
δ	0

Matrices $\mathbb{A R} 7$ and $\mathbb{A} \mathbb{A}$ are the examples KP_{1} and E1 of Stone, cf. [4], p. 731, and Newman, cf. [1], p. 268, respectively, but adjusted to the primitive unary operation - of system \mathfrak{D}. Since:
(a) example E10 verifies all postulates of (non-associative) Newman algebra, but falsifies $L 1$, and the formulas $F 1, F 2, F 33$ and $C 1$ are provable in the field of that system, cf. [2] and [3],
(b) matrix fill verifies $F 2, L 1, F 33$ and C1, but falsifies $F 1$, cf. [3], section 4,
(c) matrix fif 4 verifies $F 1, L 1, F 33$ and C1, but falsifies $F 2$, cf. [3], section 4,
(d) matrix 朋7 verifies $F 1, F 2, L 1$ and $F 33$, but falsifies $C 1$ for $a / \alpha, b / \beta$ and c / γ : (i) $\alpha \times(\beta+\gamma)=\alpha \times \delta=\alpha$, and (ii) $(\alpha \times \beta)+(\alpha \times \gamma)=0+0=0$,
(e) matrix $8 \notin \mathbb{A}$ verifies $F 1, F 2, L 1$ and C1, but falsifies $F 33$ for a / β and $b / \gamma:$ (i) $\beta \times \gamma=\beta$, and (ii) $\gamma \times \beta=\gamma$,
we know that the axioms $F 1, F 2, L 1, F 33$ and $C 1$ are mutually independent.

REMARK: Although it is established above that associative Newman algebra can be considered as a semi-lattice with respect to the operation \times, the axiom-system $\{F 1 ; F 2 ; L 1 ; F 33 ; C 1\}$ does not contain $F 7$, i.e., the idempotent law for \times, as an independent axiom. If for some reasons it would be desired to have an axiom-system of this algebra such that its axioms would be mutually independent, and that it would contain $F 7, F 33$ and L1, such axiomatization can be constructed as follows: Assume, as the axioms, $F 7, F 33, L 1$ and instead of $F 1, F 2$ and $C 1$ the formulas

```
F1* \([a b]: a, b \in B . \supset . a \times a=a+(b \times \bar{b})\)
\(F 2^{*} \quad[a b]: a, b \in B . \supset . a \times(a \times a)=a \times(b+\bar{b})\)
C1* [abc]: \(a, b, c \in B\). J. \((a \times((a \times a) \times(a \times a))) \times(b+c)=(a \times b)+(a \times c)\)
```

It is self-evident that the axioms $F 7, F 33, L 1, F 1^{*}, F 2^{*}$ and $C 1 *$ are mutually independent, and that $\{F 1 ; F 2 ; L 1 ; F 33 ; C 1\} \rightleftarrows\{F 7 ; F 33 ; L 11 ; F 1 *$; $\left.F 2^{*} ; C 1 *\right\}$. I was unable to construct a more natural axiom-system possessing the required property.

REFERENCES

[1] Newman, M. H. A., "A characterization of Boolean lattices and rings," The Journal of the London Mathematical Society, vol. 16 (1941), pp. 256-272.
[2] Sobociński, B., "An equational axiomatization of associative Newman algebras," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 265-269.
[3] Sobociński, B., "A new formalization of Newman algebra," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 255-264.
[4] Stone, M. H., "Postulates for Boolean algebras and generalized Boolean algebras,'" American Journal of Mathematics, vol. 57 (1935), pp. 703-732.

University of Notre Dame
Notre Dame, Indiana

[^0]: 1. An acquaintance with the papers [1], [2] and [3] is presupposed. An enumeration of the formulas discussed in this note is the same which they have in [3] and [2]. The axioms A1-A11, cf. [3], section 1, will be used tacitly in the deductions presented in this note.
