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TABLEAU METHODS OF PROOF FOR MODAL LOGICS

MELVIN FITTING

1 Introduction: In [1] Fitch proposed a new proof proceedure for several
standard modal logics. The chief characteristic of this was the inclusion
in the object language, of symbols representing worlds in Kripke models.
In this paper we incorporate the device into a tableau proof system and it is
seen that the resulting (propositional) proof system is highly analogous to a
classical first order tableau system, with the modal operators behaving
like quantifiers. Exploiting this similarity, a tableau completeness proof
for first order logic directly becomes a Kripke completeness proof for
modal logic, and Smullyan's fundamental theorem of quantification theory
(a Herbrand-like theorem) [7] has its analog. Indeed, more than analogy is
at work here; from an appropriate abstract point of view certain modal
logics, first order classical and intuitionistic logic, and various infinitary
logics may be treated simultaneously, an approach due to R. Smullyan and
developed in a forthcoming monograph (see [8] for a preliminary version).

We will treat only tableau proof systems and some familiarity with [7]
is presumed. In addition to being metatheoretically interesting, specific
tableau systems we give for S5, S4, T, B, DS4, DT, and K are quite simple
to use. The extension of these systems to first order systems is straight-
forward, and is discussed briefly in the last section.

2 Kripke model theory: In this section we present Kripke's model theory
for propositional modal logics to establish notation and terminology. [4]
and [5] are the basic references.

By a general model structure we mean a pair, (G, R), where G is a
non-empty set and R is a binary relation on G. If R is an equivalence
relation, (G, R) is an S5 model structure. If R is reflexive and transitive,
(G, R) is an S4 model structure. If R is reflexive and symmetric, (G, R) is
a B model structure. If R is reflexive, (G, R) is a T model structure. If R
satisfies the condition: for any ΓeG there is some ΔeG such that ΓRΔ,
(G, R) is a DT model structure. If R satisfies the previous condition, and is
transitive, (G, R) is aDS4 model structure. If R is transitive, we call (G, R)
a KS4 model structure. Finally, if R has no special conditions placed on it,
we call (G, R) a KT model structure (sometimes just called K).
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Let L be one of the logics S5, S4, B, T, DS4, DT, KS4, or KT, and let
(G, R) be an I-model structure. The triple (G, β, h) is called an L-model
if f- is a relation between elements of G and formulas such that for any
Γ, Γ*€G,

(1) Γh(IA7)^ΓhIandΓh7
(2) Γh(IvF)<^ΓhIorΓhF
(3) Γh K ) <=>Γ>Ί(i.e. not-Γi-X)
(4) ΓH(XDF)ΦΦΓKlor ΓH7
(5) T\-UX ^>for every Γ*e G such that ΓβΓ*, Γ*hX
(6) TV-OX <=>for some Γ*e G such that ΓβΓ*, Γ*KX.

A formula X is called valid in the L-model <G, β,i~) if T\-X for all
ΓeG.

3 Modal tableau systems: In this section let L be one of the logics S5, S4,
T, B, DS4, or DT (we treat KS4 and KT later). Let <G0, βo> be a general
model structure, fixed for the rest of this section. If X is a modal formula
and P € Go, we call PX (P followed by X) a prefixed formula. Let S be a set
of prefixed formulas, <G, R, t-) an L-model, and / a mapping from a subset
of Go to G; we call ί an interpretation for the set F of prefixes of formulas
in S if the domain of / is F and for any P and Q in F, if PR0Q, then I(P)RT(Q).
If, moreover, PXeS implies /(P) h i , we call «G, β,!-},/} an L-realization
of S. We say S is L-realizable if it has an L-realization.

Let <p(#, y) be a function from Go x 2G° to 2G°; we call φ a selection
function for (G0,R0) if, for each finite subset F of Go and each PeF, φ(P, F)
is a non-empty subset of Go such that if Q e φ(P, F), PR0Q. Let φ be a
selection function for (Go, β0); we call ((Go, βo), ̂ ) a tableau structure for
L if

(1) (Go, β0) is a countable model structure for L,
(2) if S is any finite set of prefixed formulas which is L-realizable and

F is the set of prefixes of formulas in S, then:

(a) if PΏXeS or POXeS and Q e φ(P, F), S U {QX} is L-realizable,
(b) If P~ΠXeS or P~OXeS and Qeφ(P,F), Sufe- l } is L-

realizable.
We now show how a tableau proof system for L may be constructed

from any tableau structure for L. In 4 we give a specific tableau structure
for L which is easy to use.

Let «G0, β0), φ) be a fixed tableau structure for the logic L. We
assume the reader is familiar with the first order tableaus of [7] and, in
particular, with the a, β, γ, δ notation. We change the definition of a and β
slightly, and introduce v and π rules, analogous to the γ and δ rules.

We will use X and Y to represent (propositional modal) formulas. We
will call the elements of Go prefixes (they are analogous to parameters in
first order logic), and we will use P and Q to represent them. Since in this
tableau proof system we work only with prefixed formulas, we redefine
a, β and their components as follows:
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0? 1 <*1 I <*2 β 1 & 1 β2

P(XAY) PX PY P(XVY) PX PY

P~(XvY) P~X P~Y P~(XΛY) P~X P~Y

P~(X^Y) PX P~Y P(X^Y) P~X PY

P~~X PX PX

We also define v (necessary) and π (possible) prefixed formulas and their
instances as follows:

v 1 v(Q) π I π(Q)

PΠX QX POX QX
P^OX Q~X P~ΠX Q~X

Let PX be any prefixed formula. By an L-tableau we mean any t ree
constructed as follows. Begin by placing PX at the origin. If an a formula
occurs on a branch, aλ and a2 may be added to the end of the branch. If a β
formula occurs on a branch we may extend it by adding to the end of the
branch two branches, one with βλ and one with β2. Suppose a TΓ formula
occurs on a branch; let P be the prefix of π and let F be the set of prefixes
occurring in formulas on the branch. If Qe φ(P, F) we may add π(Q) to the
end of the branch. We think of φ as selecting prefixes in the relation Ro to
P, but which are otherwise unrestricted by the other prefixes on the
branch. Thus, we will say briefly, we may add π(Q) to a branch containing
TΓ for any related, unrestricted Q. Finally, suppose a v formula occurs on a
branch; let P be the prefix of v and let F be the set of prefixes occurring in
formulas on the branch. If Qe φ(P, F)f we may add v(Q) to the end of the
branch; also if Qe F and PR0Q, we may add v(Q) to the end of the branch.
Briefly, we may add v{Q) to a branch containing v for any related Q which
is either unrestricted or has been used.

Our tableau rules may be summed up as follows:

a β

oti βι I β2

V

v(Q) for any related used or unrestricted Q

π

tf( Q) for any r e la t^d unres tricted Q

A branch of a tableau is called closed if it contains PY and P ~ Ffor
some formula Y and some prefix P. A tableau is called closed if each
branch is closed. X is an L-theorem if there is a closed Z.-tableau for
P~X, for some prefix P.

Intuitively, PX means X is true in the world P. As in all tableau
systems, proof is by refutation: X is a theorem if the assumption that ~X
is true in some world (beginning the tableau with P~X) produces a
contradiction (the tableau closes).
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4 Specific tableau systems: We give specific tableau structures for the
logics of the last section which are easy to work with, and we illustrate
their use.

To produce a system for S5, let G^ be the collection of all positive
integers and let Ro hold between any two integers. If F is a finite subset of
Go, and PeF, let φ(P, F) be simply Go - F. We leave it to the reader to
show that ({GΌ, RΌ), φ) is a tableau structure for S5.

For all the other logics of 3, take Go to be the collection of all finite
sequences of positive integers. If F is a finite subset of Go and PeF, take
φ{P, F) to be the set of all Qe Go such that (1) P is an initial segment of Q,
(2) Q is exactly one integer longer than P, and (3) Q is not an initial
segment of any element of F. By changing the definition of Ro we produce
tableau structures for the various logics. For S4, let PR0Q mean P is an
initial segment of Q (P may be Q itself). For T, let PR0Q mean P i s an
initial segment of Q, and Q is at most one integer longer than P. For B, let
PR0Q mean that either P is an initial segment of Q, and Q is at most one
integer longer than P, or Q is an initial segment of P, and P is at most one
integer longer than Q. To get DS4 and DT, change the corresponding
definitions of Ro above so that PRQP never holds.

Using the above tableau structure for B, the following is a proof that
O D J D l i s a B-theorem (the numbers on the right are only for explana-
tion are not part of the proof.)

1~(ODX=)X) (1)
1ODX (2)
1~X (3)
1, 1ΠX (4)
IX (5)
closure

In this proof lines 2 and 3 are from line 1 by the a rule, 4 is from 2 by
the 77 rule, and 5 is from 4 by the v rule. For a more complicated example,
this time with branching, the following is a T-tableau proof of ( D I Λ ΠY) ^>
D ( I Λ F ) .

1 - [ ( D I Λ Π F ) ^Π(XAY)] (1)

1 ( D I Λ D Y) (2)
1 ~ D ( I Λ 7 ) (3)

1ΏX (4)
IDF (5)
1, 1 ~ ( X Λ Γ ) (6)

1,1-A- (7) 1 , 1 - F (8)
l, ix (9) l, ir (lo)
closure closure

In the above proof, 2 and 3 are from 1 by a, 4 and 5 are from 2 by a, 6
is from 3 by π, 7 and 8 are from 6 by β, 9 is from 4 by v, and 10 is from 5
by v.
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5 Correctness of the tableau systems: Again let L be one of the logics S5,
S4, T, B, DS4, or DT, and let <(G0, #Q>, ψ) be a fixed tableau structure for
L. The following two lemmas are straightforward.

Lemma 1: Let S be a set of prefixed formulas.
(a) If S U {a} is L -realizable, so is S u {en, al9 a2}
(b) If SO {β} is L -realizable, so is one ofSu{β, βx} or Su{β, β2}.

Lemma 2: Let S U {v} be a finite set of prefixed formulas, let F be the set
of prefixes occurring in it, let P be the prefix of v, let Qe F, and let PR0Q.
Then if Si) {v}is L -realizable, so is S u {v, v(Q)}.

Call a branch of a tableau L-realizable if the set of formulas on it is
I,-realizable; call an L-tableau L-realizable if some branch of it is. By
the above two lemmas together with the definition of tableau structure for
L, a simple modification of the proof in [7] to show the corresponding
result for first order logic shows

Theorem: If T is an L-realizable L"tableau and Tr results from T by the
application of a single tableau rule, Tr is L-realizable.

Corollary: If X is provable by an L-tableau, X is valid in all L-models.

Proof: Suppose X is provable, but in the L-model (G, R,\-), for some
Γe G, TψX (so Γi—X). A proof of X begins with P~X(for some prefix P).
But if / is any function from Go to G such that I(P) = Γ, «G, R, H>,7>
L-realizes {P~X}, so by the above theorem we must have a closed
L-realizable L-tableau, which is not possible.

6 Modal Hintikka sets: Let L and ((G0,R0), φ) be as in the last section.
Let S be a set of prefixed formulas, and let F be the set of prefixes
occurring in S. We call 5 an L "Hintikka set if

(0) for no atomic formula A and for no prefix P do both PA and P~A
belong to S

(1) ae S=>αi€ S and a2e S
(2) βeS^β^S or β2e S
(3) ve S=>v(Q)e S for all Qe F in the relation R0to the prefix of v, and

there are Qe F in the relation R0to the prefix of v
(4) πe S =>iϊ(Q)e S for some Qe F in the relation Ro to the prefix of π.

We will show

Theorem: Any L-Hintikka set is L-realizable.

First, let L be one of the logics S5, S4, T, or B, and let S be an
L-Hintikka set. Define an L-model {G, R, 0 as follows. Let G = F, the set
of prefixes in S. Let R = / V F . Then (G, R) is an L-model structure. If A
is atomic, let PHA if PA e S, and extend h to all formulas so that (G, R, b)
is an L-model (this can be done in one and only one way.) It is easy to
show, by induction on the degree of Xthat if PXe S then P \-X, and hence S,
is L-realizable by the L-model (G, R, ι-).



242 MELVIN FITTING

Next, let L be either DS4 or DT, and let S be an L-Hintikka set. Now
define an L-model (G, R,h) as follows. Again let G = F. If PeF, call P
terminal if for no Qe F does PR0Q. Let the relation R* be such that PR'P
for all terminal Pe F. Let R = R0ΪFU R'. Then (G, R) is an L-model
structure. Now we may proceed as before.

7 Completeness of the tableau systems: Again, let L be one of S5, S4, T,
B, DS4, or DT, and let {{Go, RQ), φ) be a tableau structure for L. We begin
with a description of a systematic tableau proceedure, taken from the first
order analog in [7]. It involves designating certain occurrences of prefixed
formulas as 'used'.

Let PX be a prefixed formula. Begin an L-tableau by placing PX at the
origin. Then apply the four branch extension rules systematically as
follows.

Suppose at the nth stage the tableau we have constructed is closed, then
stop. Also if every occurrence of each non-atomic formula on the tableau
has been used, stop. Otherwise, choose an occurrence of a prefixed
formula as close to the origin of the tree as possible, say QY, which has
not yet been used, and extend the tableau as follows: for each branch
through that occurrence of QF,

(1) if QF is an a, add ax and a2 to the end of the branch;
(2) if QY is a β, split the branch and add βx to the end of one resulting

branch and β2 to the other;
(3) if QY is a π, take the first (recall Go is countable) unrestricted

element Q' of GQ such that QR0Q
r, and add π(Q') to the end of the branch;

(4) If QY is a v, let Q/, . . . , Qw

f be the prefixes occurring on the
branch such that QR0Q\ (if any) and add v{Qι), . . . , v(Qή) and v to the end
of the branch; if there are no such prefixes, let Q' be the first unrestricted
element of Go such that QR0Q

r, and add u(Qr) and v to the end of the branch.
Having done the above for each branch through QF, declare that

occurrence of QY used. This concludes the n + 1st stage of the systematic
proceedure.

Now let X be a formula. Choose someP from Go and, using the above
procedure, construct a systematic L-tableau beginning wi thP~X If the
tableau closes at some stage, X is an L-theorem. If the proceedure does
not produce a closed L-tableau, we will generate a finite or infinite tree
which must have an open branch. It is straighforward that an open branch
of a systematically completely constructed L-tableau is an L-Hintikka set
(and contains P~X). Then by 6, in some L-model (G, R, I-), for some
Γe G, Γi—X, YfX, s o l is not valid in all L-models. Thus we have

Theorem: If X is valid in all L-models, X is provable by an L-tableau
{indeed, by a systematically constructed one).

8 The K logics: Ίn [3] we gave a first order tableau system which proved
just those formulas which were classically valid in all domains, including
the empty domain. This is the first order analog of the two K logics whose
model theory we gave in 2. For this section let L be one of the logics KS4
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or KT, let (Go, RO) be an L-model structure, and let φ be a selection
function for (Go, Ro). Changing a definition from 3 somewhat, we now call
((Go, Ro) φ) a tableau structure for L if

(1) (Go, RO) is a countable L model structure
(2) if S is any finite set of prefixed formulas which is L-realizable (as

in 3) and F is the set of prefixes of formulas in S, then if πeS and
Qe φ(P, F) where P is the prefix of π, S u {QX} is L-realizable.

Using a tableau structure for L we construct an L-tableau system just
as in 3, but we make a change in the v rule: if v occurs on a branch we may
add u(Q) for any related, used Q (i.e. we eliminate the possiblity of adding
an unrestricted Q).

Specific L tableau structures are easy to come by; for KS4 the tableau
structure for DS4 of 4 will work, similarly for KT the DT tableau structure
works.

Proofs of completeness and correctness are analogous to the first
order work in [3] and we leave the adaptation of 5, 6, 7 to the reader.

9 A slight generalization: For use in the next section we describe a mild
generalization of the above tableau systems, in which we are able to treat
truth functional combinations of prefixed formulas. Let L now be one of S5,
S4, T, B, DS4, or DT (a similar generalization of KS4 and KT is possible,
but can not be used in the next section, so we do not discuss it), and let
((Go, Ro), ψ) be a tableau structure for L. We call truth-functional
combinations of prefixed formulas generalized formulas, and we use U and
V to represent them. (We continue to use X and Y to represent formulas.)
We re-define a and β as follows:

a 1 o?i 1 a2 β 1 βλ 1 β2

(UΛV) U V (UvV) U V
~(ί/vv) ~υ ~v ~(UΛV) ~U ~ F

•~(E/=>7) U ~ V (U^V) ~U V

The definitions of v and π are unchanged. The a, β, v, and π rules are
still as in 3, but we add prefix reduction rules'.

P(XΛY) P(XVY) P(X^ Y) P~X

(PXΛPY) (PXVPY) (PX^PY) ~PX

^ P ( I A F ) ~P(XVF) ^P(XD Y) ~P~χ

-(PXΛPY) ~(PXVPY) -(PX^PY) ~~pχ

The definition of closure of a branch is changed to: a branch is called
closed iϊ it contains U and ~17 for some generalized formula U. U is called
an Lrtheorem if there is a closed L-tableau for ~U. (Now, X is an
L-theorem if PX is, where P is any prefix.)

We may also generalize the notion of realization. Thus, let S be a set
of generalized formulas, and let/ be an interpretation for the prefixes in S
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in the L-model (G,R,\-). We call PX true under this interpretation if
Up) h i . We call a true if aγ and a2 are both true, and β true if one of βλ or
β2 is true. We call S L -realizable if all the formulas of S are true under
some L -interpretation.

Using the above methods we may show: a generalized formula U is
L-provable if and only if U is true in all L-interpretations for its prefixes.

We note for use in the next section that from the definition of tableau
structure for L we may show

Lemma: Let S be any finite, L-realizable set of generalized formulas; then
if veS {respectively πeS) and Q is unrestricted with respect to S, and
related to the prefix of v irrespectively π), then SU {KQ)} (respectively
S U {π(Q)}) is L-realizable.

10 The fundamental theorem: Again let L be one of S5, S4, T, B, DS4, or
DT, and let «G0, Ro), φ) be a tableau structure for L. In this section we
show Smullyan's fundamental theorem of quantification theory [7] has an
analog for L. Roughly, it says that in a proof the modal part of the
argument can be separated from the truth functional part in a natural way.

If S is a (finite) set of generalized formulas, we call UL-compatible
with S if any L -interpretation for the prefixes in 5 can be extended to an
L -interpretation for the prefixes of U as well. By & regular (generalized)
formula we mean any formula of the form v 3 v(Q) (respectively π D π(Q)),
where Q is related to the prefix of v, (respectively of π). By a regular
sequence for U we mean any (finite) sequence of regular formulas such that
(1) if v 3 v(Q) (respectively π 3 ΊΪ(Q)) occurs in the sequence, v (respec-
tively 7r) is compatible with the set of preceeding generalized formulas and
U, (2) if TΪ ^ π(Q) occurs in the sequence, Q is unrestricted with respect to
the set of prefixes in π, preceeding formulas, and U, and (3) if v 3 u(Q)
occurs in the sequence, either Q already occurs in v, or in a preceeding
generalized formula, or in U, or Q is unrestricted with respect to the set of
prefixes in v9 preceeding formulas, and U. By a regular set for U we mean
a set R whose terms can be arranged in a regular sequence for U. If S is a
set of generalized formulas, by s we mean the conjunction of the formulas
in S. By an augmented regular set for U we mean a finite set S OR where
R is a regular set for U, S is compatible with R u {u}, and the elements of S
are of the form V 3 vr where Vr results from the application of a prefix
reduction rule to V. We now proceed to show the following

Theorem: For any generalized formula U, U is an L-theorem if and only if
there is some R, an augmented regular set for U, such that R 3 U is a
classical tautology.

Lemma: Let S be an L-realizable set of generalized formulas. Then
(a) if v is compatible with S, v 3 v(Q) is regular, and Q occurs in

S U {ι/}, then Su{i/^ v(Q)} is L-realizable,
(b) if v Respectively Ή) is compatible with S, v 3 v(Q) (respectively

π D π(Q)) is a regular formula, and Q is unrestricted with respect to S U {v}
(respectively S U {π}) then S u { ^ v(QJ) (respectively S U {TΓ D π(Q)}) is L-
realizable,
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(c) if V is compatible with S and V results from V by the application
of a prefix reduction rule, Su{7^> V'}is L -realizable.

Proof: We show only (b). Suppose π 3 π(Q) is regular and Q is unrestricted
with respect to S u {π}. S is L -realizable, so there is an L-interpretation /
in some L-model (G, R, h) making all the formulas of S true. Since π is
compatible with S, / can be extended to an interpretation /' for S U {n}.
Certainly all the formulas of S are still true under /'. If π is false, ir 3 ττ(Q)
is true and we are done. If TΓ is true, S u {TΓ} is L-realizable, and hence so
is S U {TT, IΓ(Q)}. Thus S u { u ^ ττ(Q)} is L -realizable.

Let us call a set R augmented regular for a set S of generalized
formulas if R is augmented regular for S.

Lemma: If S is L-realizable and R is augmented regular for S, R U S is
L -realizable.

Proof: By induction on the number of elements in R, using the above
lemma.

Theorem: If R is an augmented regular set for the generalized formula U
and R 3 U is an L-theorem, so is U.

Proof: Since R is augmented regular for U, R is also augmented regular
for ~ £/. If U is not an L -theorem, {~ϋ} must be L-realizable, so by the
above lemma, βu{~ί/} is also. But then ~(βD£7) is L-realizable,
contradicting the fact that R 3 U is an L-theorem.

Corollary: If R is an augmented regular set for U and R => U is a tautology,
U is an L-theorem.

Proof. If R ^ U is a tautology it is provable by the classical a and β
tableau rules, and hence by the a and β rules of the generalized system
above. Thus R 3 U is an L-theorem, and by the above theorem, we are
done.

We thus have half of the fundamental theorem. The converse follows
very simply from the tableau construction. We first make a change in the
v and π rules. In these, when we required the prefix Q to be unrestricted,
it was with respect to the set of formulas on the branch; we now require
that Q be unrestricted with respect to the set of formulas on the tree.
Clearly this makes no change in the set of L-theorems.

Now suppose U is provable. Construct a closed tableau for ~ U (using
the above restriction) and simultaneously construct a set S, and a sequence
Rs of regular formulas as follows. Suppose we have completed the nth stage
in the tableau construction. If the n + 1st step is to add v(Q) to a branch
using the v rule, also add v 3 v(Q) to the end of the sequence Rs of regular
formulas. Similarly if the n + 1st step is to add π(Q) to a branch using the
7Γ rule, also add π 3 π(Q) to the end of the sequence Rs. If the n + 1st step
is to add 7 ' to a branch containing V, using a prefix reduction rule, add
V 3 V to the set S. Clearly the sequence Rs resulting from the completed
tableau is a regular sequence for U, so if R is the set of formulas in the
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sequence Rs, R is a regular set for U; hence S U R is an augmented regular
set for U. Moreover, it is easy to see (SΛ R) D U is provable using only the
a and β rules, and so is a tautology.

11 First order tableau systems: The model theory for the logics treated
above can be generalized to the first order case (in several ways). Cor-
responding to this, appropriate γ and δ rules can be introduced into the
tableau proof systems above. Rather than treat the general case, we work
only with S4, and we give, without proof, tableau systems for S4 with and
without the Barcan formula (the Barcan formula, O(lx)A(x) ^ (ix)OA(x)
makes first order Kripke S4 models "constant domain" models; see [9]);
for first order S4 models without the Barcan formula, see [6].

Let ((Go, Ro), φ) be a tableau structure for S4. We revert now to the
simpler tableau system of 3. We assume we have a countable set of
parameters, α, b, c, . . . , (distinct from bound variables, x,y,z, . . .).
Adapting a definition from [7] we define γ and δ formulas and their in-
stances as follows.

γ I γiμ) δ | δ(a)

P(Vx)A(x) PA(a) P(lx)A(x) PA (a)
P~(lx)A(x) P~A{a) P~(Vx)A(x) P ~A{a)

We add to the α, β, v, Ή rules of 3 the following γ and δ rules:

Ύ
γ(a) for any parameter a

T7~r for any new parameter a {i.e. not yet used on the branch)

The resulting tableau system is first order S4 with the Barcan
formula. For first order S4 without the Barcan formula we must compli-
cate matters somewhat. Let us suppose we have associated with each
prefix P eG0 a distinct countable set of parameters, aP, bP, cP, . . . Then
instead of the above rules, let us add:

y
γ(ap) where ap is any parameter associated with P, such that if Q is

the prefix of γ,PR0Q.

δ
δ(ap) where P is the prefix of δ, and ap is new to the branch.

The resulting tableau system is first order S4, without the Barcan
formula.

The work of [7] may be combined with that of 10 to produce a 'double'
fundamental theorem in which first the first order part of a proof, then the
modal part is separated out.

We also remark that the tableau system for intuitionistic logic of [2]
can be modified to use prefixed signed formulas. If we use the devices
introduced above for first order S4 we may produce tableau systems for
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both regular intuitionistic logic and for Constant domain' intuitionistic
logic. Also versions of the fundamental theorem may be shown. Finally,
devices similar to those of [3] may be used, producing variants of modal
and intuitionistic logic in which the domains of the Kripke models may be
empty.
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