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THE RELATIVE CONSISTENCY OF THE CLASS AXIOMS OF
ABSTRACTION AND EXTENSIONALITY AND THE AXIOMS

OF NBG IN A THREE-VALUED LOGIC

ROSS T. BRADY

This paper is an extension of a previous one entitled "The Consistency
of the Axioms of Abstraction and Extensionality in Three-Valued Logic''
[8]. This proof differs from the one in [8] in that the structure Mo (below)
contains a model of NBG and the method of generating the sequence of
structures, Mo ^ M1 ^ . . . ^ Mμ ^ . . . , is more complicated.

1. The formal system that we shall show to be relatively consistent to
Z - F is the following:

Primitives
1. u, v, w, x, y, z, etc. are variables over special classes,i.e., the classes

of NBG.
2. £/, V, W, X, Y, Z, etc. are variables over classes.
3. ε (is a member of); ~, —*, A (connectives and quantifiers of Lukasiewicz

three-valued logic).

Formation Rules
1. For variables x, y, X, Y, the following are atomic wffs: xεy, xεX,

Xεx,Xε Y.
2. The propositional constants 1, 0, \ are atomic wffs.
3. If B and C are wffs and x and X are variables then ~B, B -> C, (Ax)B,

(AX)B are wffs.

The three-valued logic concerned is that of Lukasiewicz and the
connectives and quantifiers are represented as follows:

p&q pvq P~*q P<r*q p^q p = q
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P 1 ~P 1 TP\ Fp\ p J cp

1 0 1 0 0 1
ϊ ϊ 0 0 1 0
0 1 0 1 0 1

(AX)φ(X) has the minimum value of the values of φ(X), (SX) φ(X) has the
maximum value of the values of φ(X). Similarly for (Ax) φ(x) and (Sx) φ(x).

All the above connectives and quantifiers can be defined in terms of ~, —»,
A as follows:

pvQ=df(P — q) — q.
p&q =df ~(~pv~q).

p^>q =df (/> — q) & (q -> />).
P^ q=df P-+ (/>— ^ ) .
P =q =df (P^ q) Sι(q^ p).

fp =df ~(p~* ~/>).

P/>= /̂ -T/>& ~ψp.
Cp=df ΊpvFp.

(Sx)A =df ~(Ax) - A .
(SX)A=rf/ -(AX) -A.

Definitions

χ= γ=df{AZ){ZεX<^ZεY).
x= y =df (Az) (z εx =z zy).

The definitions of NBG (cf. [6]).

(Ax') φ(x') =df (Ax) (M(x) ^ φ(x)).
(Sxr) φ(x') =df (Sx) (M(x) & φ(x)).

SCI(X) =df (Sx) (Az) (zεx^^zεX).

(X is a special class in that it has the same special class members as
some special class but X may not lie in the range of the special class
variables.)

Axioms

To x = y ^> (x εz =y εz).
P. (Ax'KAy'XSz'HAu'Xu'ε zr = uf =x'v ur = y').
N. (Sx f)(Ay)(~yε* f).
B . (Sz){Ax[)... (Ax^ttxl, ...9xί)εz= φ(x[,..., x'n , yl9..., yj)

where only set variables are quantified in </>.
U. (Axf)(Syf)(AttF)(w'εyf == (Sv')(u'tv' & v'εx')).
W. (Ax')(Syr)(Au')(u'εyr = ur c χr).
S. (Ax'XAyXSz'XAu'Hu'ε z' = u'εx1 & u'εy).
R. (AAΓ')(C/W(ΛΓ) 3 (53;')(Aw f)(^ fε^ f = (Sz;')«^, ^f>εΛ;& t ' ε # ' ) ) ) .
I. (SΛτf)(OεΛrf &(Au')(u'εx'^ uru{u'}εx')).
A. (Sy)(AX)(X- ε Y*>φ(X, zl9..., zm, Zu..., Zn)),
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where φ is either a propositional constant or constructed from atomic
wffs of forms, U ε V, Uε v, uε V, uε υ, by using only ~, &, A.

E. X = 7 3 (Az)(Xε Z^>YεZ).

Extra Axioms

1. (AX)φ&)~*(Ax)φ(x).
2. (A2)(^ε^o£εZ) ^ (A^fλ ε ^ ^ I ' ε ^ ) .
3. F(SCI(X)) D F(Xεx).
4. P(SCIpsΓ)) ^ P ( l ε i ) .
5. C(xεy).
6. # - y ^ # == y.

2. Take any model 9? of NBG whose domain is a denumerable set. The
domain will consist of special class constants and the membership between
any two of these constants will be determined as true or false in 9Ϊ. To
construct the model of the whole system, we need to extend the above wffs
by adding special class constants of the above model of NBG, a, b, c,...,
and some terms to be defined. The domain of the model will consist of
some of these terms as well as the special class constants. We give the
formation rules for terms and wffs as follows:

1. If x and y are special class variables, a and b are special class
constants, and X and Y are class variables, then aεb9a εx9x ε a9 aεX9

Xε a9 xεy, xεX, Xεx, Xε Y, are atomic wffs.
2. Any combination of wffs using ~, —>, A as in the Lukasiewicz three-

valued logic is a wff.
3. A propositional constant (i.e., 1, 1 or 0) is an atomic wff.
4. A propositional constant or a wff constructed from atomic wffs using

only ~, &, A is a standard wff.
5. If P is a standard wff and Xis a class variable, then {X : P} is a term.
6. If {X : P} and {X : Q} are terms, y is a special class variable, a is a

special class constant and Y is a class variable, then {X: P} ε a,
aε{X:P},{X:P}εy,yε{X : P } , { X :P}ε Y, Yε{X :P},{X :P}ε{X::Q]
are all atomic wffs.

We construct a model for the axioms with domain the set D of all
special class constants and all constant terms {X: P}, i.e., P i s a standard
wff and either has no free variables at all or has X as its only free
variable. Let Vs denote the set of all special class constants and so D - Ds

is the set of all constant terms. We shall use constants A, B, C, etc. for
members of D. Non-constant terms can be defined from these as follows.
Associate with any term {X: P(X, zl9..., zm9 Zl9..., Zn)}9 for which zl9...,
zm> zi, > zn are the only free variables, the function which for constants
a19...9am of Ds and Al9...9An of D takes as value the constant term
{X:P(X,au..., am,Al9..., An)} oίD.

Let any specification of values, including the value assignments already
given to members of Ds in the model 9R, for all the constant atomic wffs
Aε B, where A and B are members of D9 be called a structure on D. Let
y[M](P) denote the value of the constant wff P given by the structure M on
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D. Also let V[M](1) = 1, V[M](0) = 0 and V[AΪ\(i) = \. Define Mλ ^ M2 for
two structures Mλ and M2 on D as, for any constant atomic wff P, if
VlM^iP) = 1 then V[M2](P) = 1 and if V[Mλ](P) = 0 then V[M2](P) = 0. Here,
'<* defines a partial ordering on the set of structures, since (i) M ^ M,
(ii) if Mi ^ M2 and Mz ^ M3 then Mλ ^ M3 and (iii) if Mx ^ M2 and M2 ^ M γ

then Mx = M2 (i.e., Mi and M2 are the same structure).
From now on, when mentioning values of wffs in a structure it is

automatically assumed that the wffs are constant ones, i.e., they have no
free variables.

Lemma 1 Let M and Mτ be two structures on D, such that M ^ Mr. Then,
for any standard wff P, if V[M](P) = 1 then V[M'](P) = 1 and if V[M](P) = 0
then V[M'](P) = 0.

Proof. By induction on the wff evaluation procedure. This means that we
start at the values of all the constant atomic wffs obtained by substitution
for free variables in P, and then build up the value of P from these values
according to the connectives and quantifiers in the Lukasiewicz logic. IfP
is an atomic wff, the lemma holds.

(i) Let V[M](~Q) = 1. Then V[M](Q) = 0. By the induction hypothesis
V[Mr](Q) = 0. Hence V[M'](~Q) = 1. Let V[M](~Q) = 0. Then as above,
V[Λf](~Q) = 0.

(ii) Let V[M](Q&fl) = 1. Then V[M](Q) = 1 = V[M](R). By the induction
hypothesis, V[Mr] (Q) = 1 = V[Mf](R). Hence V[M'](Q&R) = 1. LetV[M](Q&R)
= 0. Then as above, V[Mr]{Q8ιR) = 0.

(iii) Let V[M]((Ax) Q(x)) = 1. Then V[M](Q{x)) = 1 for all xεDs. By the
induction hypothesis V[M'](Q(x)) = 1 for zllxεDs. Hence V[M']((Ax)Q(x)) =
1. Let V[M]((Ax) Q(x)) = 0. Then as above, V[M']((Ax) Q(x)) = 0.

(iv) The case for (AX) Q(X) is similar to (iii).
Define the s t r u c t u r e Mo as follows: If AfίDs or BjίDs, then

V[M0](A ε B) = i If A ε Ds and B ε Ds, then V[M0]{A ε B) = 1 if A ε B is true in
the model W and F[M0](A εB) = 0 if A εB is false in the model SΛ.

Hence Mo with domain Ds is a model of NBG satisfying all the axioms.
The model of the whole system will be the limit of a sequence of structures,
Mo ^ Mλ ^... ^ Mμ ^..., on D.

Assuming Mμ defined for some ordinal μ, Mμ+ί is defined as follows.
For all standard wffs P, V[Mμ+1](A ε {X : P(X)}) = V[Mμ](P(A)). If ~z εA v
z εα&. ~z εavz εA is va l id in Mμ for s o m e α, then, for all 6,
y[Mμ+1](Aεδ) =V[M0](aεb). Ii (Ax)(Sz)(z εA &~z εxv.z εx&~z εA) has the
value 1 in Mμ then, for all &, V[Mμ+1](A εb) = 0. If neither (S#)(A£)(~£ εA v
2: εx&. ~z εxvz εA) nor (Ax) (Sz) (z εA & ~z εxv.z εx&, ~z εA) have the
value 1 in Mμ then V[Mμ+1](A εb) = \.

For a limit ordinal μ, on the assumption that Mv ^ MΓ for all v ^ r, for
all T < μ, for all atomic wffs P, if VjM^P) = 1 for some v < μ then
F[Mμ](P) = 1, if V[MV](P) = 0 for some v< μ then F[Mμ](P) =0, and if
F[Mι/](P) = 1 for a l l K μ then V[Mμ](P) = \.

Lemma 2 Mv ^ Mμ ,for all v ^ μ.
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Proof. By transfinite induction on μ. The induction hypothesis is: Mv ^ Mτ

for all v ^ r, for all r < μ.

(i) μ = 0: Mo ̂  Mo.

(ii) μ is a successor ordinal:

(A) Let V[Mv](Aε{X : P}) = 1. There is a 77 < ^ such that V[Mη](P(A)) =

1 by the method of construction of the structures. Since η ^ μ- l9Mη ^

Mμ_! by the induction hypothesis. Hence V[M μ^1](P(A)) = 1. By the con-

struction of Mμ, V[Mμ](A ε{X : P}) = 1. Similarly, if V[MV](A ε{X : P}) = 0

then V[Mμ](A ε{X : P}) = 0.

(B) Let V p l ^ A ε δ ) = 1 (or 0). T h e r e is an η < v such that

V[Mη]((Sx) (Az) (~z εA vz εx 8z. ~z εxvzεA)) = 1 or V[Mη]{{Ax) {Sz) (z εA &

-2 εΛ:v.£ ε#& ~£ εA)) = 1.

(a) Let V[Mη]((Sx)(Az)(~z εA vz εx &. ~£ ε# v2 εA)) = 1. Then Vp^+i]

(A εδ) = F[M0](α ε b) = 1 (or 0), for some α. Since η *ί μ - 1, Mη*z M μ - 1 , by

the induction hypothesis. Hence V[Mμ-i]((Sx) (Az) (~z εA vz εx &. ~z εx v

^ εA)) = 1 and V[Mμ](Aεb) = F[M0](a εδ) = 1 (or 0), for some a.

(b) L e t V[Mη]((Ax) (Sz) (z εA & ~z εx v.zεxb ~z εA)) = 1. If VJM,,]

(A εb) = 1, this does not apply. Let yfM^jίA εb) = 0. Since 77 ^ μ - 1, Mη ^

Mμ-χ, by the induction hypothesis. Hence V[Mμ.1]((Ax)(Sz)(z εA & - ^ ε ^ v .

2 ε*& ~2 εA)) = 1 and V[Mμ](A εb) = 0.

(iii) μ is a limit ordinal: Let v < μ. Let F[M,,](Aεi?) = 1. Then

7[Mμ](AεJ5) = 1 by definition of Mμ. Similarly when V[Mv](AεB) = 0 then

V[Mμ ](A εB) = 0. If ι> = μ, Mv < Mμ .

Lemma 3 There is an ordinal λ 0/ ί/̂ β second number class such that

Mλ = Λfλ+1.

Proof. The increasing chain of structures Mo ̂  Mx ^ . . . ̂  Mμ ^ . . . can be

regarded as two increasing chains of subsets of the denumerable set of all

atomic wffs of the form A εB. One chain is of those atomic wffs taking the

value 1 and the other is of those taking the value 0. If Mv = Mv+ι then

Mv = Mμ for all ordinals μ, v ^ μ, since, by the method of construction,

there is no way of changing the values of any atomic wffs. There is a

denumerable set of ordinals μ such that Mμ ΦMμ+1. But the set of all

ordinals of the second number class is non-denumerable, and hence for

some λ in this class, M\ = Mχ+1.

3. Now it is necessary to show that Mχ is the required model.

Theorem 1 All the axioms of NBG are valid in M\.

Proof. By the definitions of Mo and the domain Ds, Mo with Ds as domain is

a model of NBG. By lemma 2, if F[M0](A εB) = 1 (or 0) then V[Mλ](A εB) = 1

(or 0). Hence Mλ with domain Ds is a model of NBG.

Theorem 2 Yε{X : P}«->P(F) is valid in Mλ.

Proof. Let V[Mλ](A ε{X : P}) = 1. Let v be the least ordinal such that

V\Mv\(Aε{X : P}) = 1. v is a successor ordinal. Hence V[Mι/^ι\(P(A)) = 1.

Since v - 1 ^ λ, Mv^ < M λ, by lemma 2. Since P is a standard wff, by
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lemma 1, V[Mλ](P(A)) = 1. Similarly, if V[Mλ](Aε{X: P}) = 0, then
V[Mλ](P(A)) = 0.

Let V[Mλ]{P(A)) = 1. Then V[Mλ+1](A ε{X : P}) = 1. Since Mλ = M λ + 1 ,
V[Mλ](Aε{X : P}) = 1. Similarly, if V[Mλ](P(A)) = 0, then V[Mλ](A ε{X : P}) =
0.

Theorem 3 The Abstraction Axiom (A) is valid in M\.

Proof. By theorem 2, for any standard wff P, Yε{X : P}<-»P(F) is valid in
Mλ. Therefore (SZ)(AX)Uε Z^>P(X, ^ , . . . , ym, Y19..., F j ) is valid in Mλ,
for all wffs P which are either propositional constants or constructed from
atomic wffs of forms, UεV, Uεv, uεV, uεv by using ~, &, A; since all
wffs of this sort are standard wffs.

Let P be a standard wff such that V[Mλ](P) = 1 or 0. Let v{P) be the
least ordinal such that V[Mv{P)]{P) = 1 or Vr[MI/(P)](P) = 0. Form the set of all
constant atomic wffs of P (i.e., atomic wffs of P with all substitutions made
for any variables that occur in them) which take the value 1 or 0 in MU(P).
Call this the dependent set of P, D(P).

Lemma 4 Let P(Λ) be a standard wff such that V[Mλ](P(/i)) = 1 or 0. If, for
each Q(A)εΌ(P(A)\ V[Mλ](Q(B)) = V[Mλ}(Q(A)% then V[Mλ](P(B)) = V[Mλ}{P{A)\

Proof. By induction on the wff evaluation procedure. Let P(A) be an atomic
wff such that V[Mλ](P(A)) = 1 or 0. Then D(P(A)) = {P(A)}. Hence
V[Mλ](P(B)) = V[Mλ](P(A)).

(i) Let P{A) be ~β(A). Since D(~ft(A)) = D(fl(A)), for each Q(A) ε D(fl(A)),
F[Mλ](Q(£)) = F[Mλ](Q(A)). By the induction hypothesis, y[Mλ](β(5)) =
V[Mλ](R(A)). Hence F[Mλ](P(5)) = V[Mλ](P(A)).

(ii) Let P(A) be (R(A) & S(A)) and F[Mλ](β(A) & S(A)) = 1. Then
V[Mλ](R(A))= 1 and F[Mλ](S(A)) = 1. Since v(R{A)) **v(R(A)&S(A)), D(R(A)) c
D(β(A)&S(A)). Hence, for each Q(A) ε D(R(A)), V[Mλ](Q(B)) = V[Mλ](Q(A)).
By the induction hypothesis, V[Mλ](R(B)) = V[Mλ]R(A). Similarly, V[Mλ](S(B)) =
V[Mλ](S(A)). Hence V[Mλ](P(B)) = V[Mλ](P(A)).

(in) Let P(A) be (R(A)&S(A)) and F[Mλ](β(A) & S(A)) = 0. Then as
above, V[Mλ](P(B)) = y[Mλ](P(A)).

(iv) Let P(A) be (A^β(A,Z) and V[Mλ]((AZ) R(A,Z)) = 1. Then
V[Mλ](R(A,Z)) = 1 for all Z. Since ι<β(A,Z)) ^ v((AZ) R{A,Z) for all Z ,
then D(R(A,Z)) c D((AZ) β(A,Z)) for all Z. Hence, for each Q(A) ε D(β(A,Z)),
^[MA](Q(J5)) = V[Mλ](Q, (A)). By the induction hypothesis, V[Mλ](R(B,Z)) =
V[Mλ](R(A,Z)). Since this holds for all Z, V[Mλ]{P(B)) = V[Mλ](P{A)).

(v) Let P(A) be (AZ)iR(A,Z) and F[Mλ]((A^) R(A,Z)) = 0. Then as
above, V[Mλ](P(B)) = V[Mλ](P(A)).

(vi) Let P(A) be (A^)β(A,2) and V[Mλ]((Az)R(A,z)) = 1. Similarly to
(iv), F[Mλ](P(£)) = F[Mλ](P(A)).

(vii) Let P(A) be (A^)^(A,>ε) and V[Mλ]((Az)R(A,z)) = 0. Similarly to
(v), V[Mλ](P(B)) = V[Mλ](P(A)).

Let P be an atomic wff (not 1 or 0) of the form Aε{X : Q(X)} such that
V[Mλ]{P) = 1 or 0. Define the corresponding standard wff of P, C(P) as
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Q(A). Let P be a standard wff such that V[Mλ](P) = 1 or 0. Let P have
dependent set, D(P). We define a general dependent set of P, GD(P) as
follows:

(i) The dependent set D(P) of P is a GD(P).
(ii) If V[Mλ](R) = 1 or 0, R is an atomic wff (not 1 or 0) and C(R) is

defined for R, then D(C{R)) is a GD(#). _ . ,
(iii) Let Dr be a GD(P). Let S c D ' , If Qε S, then (£>' Π S) U U Q* is

a GD(P), where Q* is a GD(Q). β ε

This assumes V[Mλ](Q) = 1 or 0, for all QεS. Note that lemma 5
(below) should be coupled with the definition of a general dependent set so
that the assumption can be made before the construction of the general
dependent sets GD(Q).

Lemma 5 Let P be a standard wff such that V[Mχ](P) = 1 or 0. If D' is a
general dependent set of P then, for each QεDr, V[Mλ](Q) = 1 or 0.

Proof By induction on the stages of construction of general dependent sets
of all standard wffs P such that V[Mλ](P) = 1 or 0.

(i) By definition of D(P), if Qε D(P) then V[Mλ](Q) = 1 or 0 and hence
the lemma holds for D(P).

(ii) If QεD(C(β)), then V[Mλ](Q) = 1 or 0 and the lemma holds for
D(C(R)).

(iii) Let Dr be a general dependent set of P. Let S c Dr. If Qε S, then,
by the induction hypothesis for Dτ, V[Mλ](Q) = 1 or 0 and so, we let

Q* be a general dependent set of Q. Now let Tε(Dr Π S) U U Q*. If

Γε Q* for some QεS, then, we have by the induction hypothesis for Q*,
y[Mλ](Γ) = 1 or 0. If TεDr Π S, then, by the induction hypothesis for Dr,

V[Mλ](T) = 1 or 0. Hence, if Γε(Z)'ns) u U Q*, then V[Mλ](T) = 1 or
0. Hence the lemma holds. QεS

Lemma 6 Let P be an atomic wff such that v[M\](P) = 1 or 0 and such that
C(P) is defined. If Dr is a general dependent set of P which is not D(P)
then, for each QεD', VtMI/(p)-1](Q) = 1 or 0.

Proof By transfinite induction on the ordinals v(P). v(P) is a successor
ordinal. The induction hypothesis is that the lemma holds for all atomic
wffs Q such that v{Q) < v{P).

(i) v{P) = 1: If Q ε D(C(P)), then V[M0]{Q) = 1 or 0. No further members
of general dependent sets of P can be obtained.

(ii) v(P) is a successor ordinal (>1): Use induction on the stages of
construction of general dependent sets of P.

(I) D(P) is not used as a general dependent set in this lemma.

(II) Let QεD(C(β)). In constructing general dependent sets of P, the
only R to consider is where R is P or where R is a member of a general
dependent set of P (which is not D(P)). If R is P, then F[Mt,(P).1](Q) = 1
or 0. If R is a member of a general dependent set of P (not D(P)), then, by
induction hypothesis, V[Mu(p)~i](R) = 1 or 0 and hence F [ ^ ( P ) - I ] ( Q ) = 1 or 0.

(III) Let Dr be a general dependent set of P for which the lemma holds.
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Let S CD' , By the induction hypothesis for D', y[M^(P).-i](Q) = 1 or 0, for

all QεS. By the induction hypothesis for the ordinals, the lemma holds for

any general dependent set Q* of Q, except for D(Q). Let Tε(Df Π S) u U Q*.
QεS

If ΓεQ* (where Q* * D(Q)), for some QεS, then 7[M^(p-!)](Γ) = 1 or 0. If
ΓεQ*, where now Q* is D(Q), for some QεS, then, since D(Q) is {Q},
Tε Df. By induction hypothesis for Df, V[MV(P)-i](Γ) = 1 or 0. If T εD' Π S,

then, by induction hypothesis for Dr, VfM^p)-^!1) = 1 or 0. Hence the
lemma holds.

Lemma 7 Iβ ί P(A) δe a standard wff such that V[Mχ](P) = 1 or 0. Consider
any general dependent set Dr o/P(Λ), swc/z £ftαί, m the process of construc-
tion (ii) is not applied to any atomic wff of the form CεA. If, for all
Q(A)εD\ v[Mλ](Q(β)) = V[MX](Q(A)), then V[Mλ](P(B)) = v[Mχ](P(A)).

Proof. By induction on the stages of construction of general dependent sets
of all standard wffs P(A) such that V[Mλ](P(A)) = 1 or 0, such that (ii) is not
applied to any atomic wffs of form C εA .

(i) Let a GD(P(A)) be D(P(A)). Now by the lemma condition for each
Q(A)εD(P(A)),V[Mλ](Q(B)) =V[Mλ](Q(A)). Hence V[Mλ](P(B)) = F[Mλ](P(A)),
by lemma 4.

(ii) Let a GD(P(A)) be D(C(P(A))), where P(A) is an atomic wff (not 1 or
0) of. the form Aε{X : Q(X)}. Then C(P(A)) is Q{A). V[Mλ](Q(A)) = 1 or 0.
By the lemma condition, if R(A) ε D(C(P(A))) then V[Mλ](R{B)) = V[Mλ](R(A)).
Hence by lemma 4, V[Mλ](Q{B)) = V[Mλ)(Q(A)). Therefore, V[Mχ\(B ε{X :
Q(X)}) = V[Mλ](Aε{X: Q(X)}) and V[Mλ](P(B)) = V[Mλ](P(A)).

(iii) Let Dr be a general dependent set of P(A) and let S c D*. For
each Q(A) ε S, let the lemma hold for D' and the (Q(A))*, by the induction
hypothesis. By the condition of the lemma for all Γ(A) ε(D f ΠS) U

ρ u L ( ( ? ( Λ ) ) *> nMλ](Γ(£)) = V[Mλ](Γ(A)). But since (Q(A))* c (i)' Π S) U

ρ ( ^ ε 5 (Q(A))* for all Q(A) ε 5, by induction hypotheses, V[Mλ](Q(B)) =

V[Mλ](Q(A)), for all Q(A) ε S. Also, for all T(A) ε D' ΠS, V[Mλ](T(B)) =
V[Mλ](T(A)). Hence, if C/(A) ε D', V[Mλ](U(B)) = V[Mλ](U(A)). By induction
hypothesis for D', V[Mλ](P(B)) = V[Mλ](P(A)).

Lemma 8 If V[Mλ](A εC) = 1 or 0 #^n A εC /̂ αs α general dependent set
without any wffs of the form A ε B for any B, except for A and for B ε Ds.
The general dependent sets so constructed are such that (ii) is not applied
to any atomic wffs of form Afε A.

Proof. Let the wff AεC be W. The proof is by transfinite induction on
v{W), which is 0 or a successor ordinal. The induction hypothesis is that
the lemma holds for all wffs Aε C (call it X) such that vQC) < v(W).

(i) p[W) = 0: AεDs and CεDs. Let the general dependent set be D(W),
i.e., {W}. C(W) is not defined.

(ii) v(w) is a successor ordinal: If CεDs, let the general dependent
set be D(W). Otherwise, V[Mv{ψ)^]{Z(A)) = 1 or 0, where Z(A) is C(W).
Hence D(Z(A)) is a general dependent set of W. It has a subset S of all
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atomic wffs of the form A ε B, except where B is A or where B ε Ds. For all

Q, if Qε S, then VjM^-i^Q) = 1 or 0. Hence, by the induction hypothesis,

all these wffs QεS have general dependent sets Q* without wffs of the

above form. Form the set (D(Z(A)) ΠS) u U Q*, which has no atomic
QεS

wffs of the above form. This is a general dependent set of W which
satisfies the lemma.

Lemma 9 If YεA<^>YεB is valid in M\, then AεA<->BεB has value 1

in M\.

Proof. Call AεA, W. Let V[Mλ](W) = 1 or 0. By lemma 8, W has a
general dependent set D' without atomic wffs of certain forms and
constructed in a certain way. For the sake of lemma 8, the right hand A of
A εA is regarded as different from the left hand A. So (ii) is applied in
forming a general dependent set of AεA, but apart from this one instance
all the usual conditions apply. v{W) is either 0 or a successor ordinal,

(i) v(W) = 0: Then Aε Ds.
(A) Let BεDs. Then zε A<->z ε B is valid in M\ and hence in Mo. Because
the Extensionality Axiom holds in NBG, Aεy<->Bεy is valid in Mo. Hence,
Aε A<->BεA and, since BεA<^>Bε B, Aε A<->Bε B is valid in Mo and hence
in Mλ.
(B) Let BjέDs. Then zεA<r^zεB is valid in M\. Hence by Lukasiewicz
logic, ~zεAvz εB&. zεAv ~zε Bis valid in M\. Hence, by construction of
Mλ+i, V[Mλ+1](Bε A) = V[M0](A εA) and then, since V[Mλ](B εB) = V[Mλ](B εA),
V[Mλ](B εB) = V[Mλ](A εA).

(ii) v{W) is a successor ordinal: Then A £ Ds. By lemma 6, all
members of D1 have the value 1 or 0 in Mv(ψ)_λ. Hence W is not a member
of D'. Hence Dr has atomic wffs containing A, only of the forms
ArεA (A' Φ A) and AεBr, where BfεDs. Consider the atomic wff Aε Br.
(A) Let ~zεAvzεa&,.~zεavzεA be valid in M\ for some α. Hence
F[Mλ+1](AεJ5f) = V[M0](aεBr). By the condition of the lemma, ~ * ε £ v
zεa&. ~zεavzεB is valid in Mλ. Hence 7[M λ + 1](5ε5θ = V[M0]{aεB') and
V[Mλ](BεBf) =y[Mλ](Aε£0.
(B) Let (Ax)(Sz){z εA & ~£ ε# v. z εx& ~£ εA) have the value 1 in Mλ. Hence
V[Mλ+1](AεB') = 0. (That is, the case (B) is not a possibility if
7[Mλ](Aε5') = l). By the lemma condition, (Ax)(Sz)(zεB& ~zεxv.zεx&
~zεB) has the value 1 in Mλ. Hence y[Mλ+1](£ε J31) = 0 and F[Mλ](£ ε B') =
V[Mλ](AεB'). Hence, if Q(A)εD', V[Mλ](Q(B)) = V[Mλ](Q(A)). By lemma 7,
F[Mλ](£εA) = V[Mλ](A εA). Note that the substitution of B for A is only for
the left hand A because (ii) was applied to AεA. By the condition of the
lemma, V[Mλ](BεB) = V[Mλ](BεA) and hence 7 [ M λ p ε 5 ) = V[Mλ](AεA)
(similarly for the case when V[Mk](BεB) is 1 or 0, by setting W as B εB).
Hence the lemma holds.

Theorem 4 The Extensionality Axiom (E) is valid in Mλ.

Proof. We will prove: If VεA<^VεB is valid in Mλ then A ε Z^>B ε Z is
valid in M\. Let 7[Mλ](A ε C) = 1 or 0. By lemma 8, A ε C has a general
dependent set Dr without any wffs of the form A εBr for any Bτ except for A
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and cases where B'εDs. Hence the only occurrences of A in D' are of the
forms: A'εA (A' Φ A), A εA and AεBf (where BrεDs). Consider the atomic
wff AεB'.
(A) LetAεDs.

(i) Let BεDs. Then z εA^>zεB is valid in Mo. By the Extensionality
Axiom of NBG, V[M0](BεBr) = V[M0](AεB') and hence V[Mχ](BεBr) =
V[Mλ]{AεB').

(ii) Let BjίDs. Then zεA^zεB is valid in Mχ. By the Lukasiewicz
logic, ~zεAv zεB8ι. ~zεBv zεA is valid in Mχ. Hence F[M λ + 1](Eεi? /) =
V[M0](A εB') and V[Mλ](B ε Br) = F[MA](A εB').
(B) LetA^Z) 5 :

(i) Let ~z εAv z εa8z. ~z εavzεA be valid in Mχ for some α. Hence
viMλ+i](AεBt) = V[M o](αε50. By the condition of the theorem, ~ 2 ε £ v
2δα&. ^ ε α v 2 ε ΰ i s valid in Mλ. Hence V[Mλ+ι](B εB') = V[M0](aεB') and
V[Mλ](BεB') =V[Mλ](AεB').

(ii) Let (A#)(S,ε)(£εA & ~^εΛ:v.2εΛ;& ~zεA) have the value 1 in Mχ.
Hence 7[M λ + 1 ](Aε5 ; ) = 0. (That is, the case (ii) is not a possibility if
V[Mλ]{AεB') = 1). By the condition (Ax)(Sz)(z εB&, ~z εxv.zεxb ~z εB)
has the value 1 in Mλ. Hence V[Mλ+ι](BεB') = 0 and F [ M λ p ε 5 f ) =
7[M λ ](Aε£') . Hence, in all cases, 7[Mλ](JBεB') = V[Mλ](AεB'). By lemma
9, V[Mλ](BεB) =V[Mλ](A εA). By the condition of the theorem, V[Mλ](A'εB) =
V[Mλ](A'εA). Hence, if Q(A)εD', V[Mλ](Q(B)) = F[Mλ](Q(A)). By lemma 7,
y[Mλ](jBεC) = V[Mλ](AεC). Similarly, if V[Mλ]{BεC) = 1 or 0, then
FtMλΐU ε C) = F[Mλ](5 ε C). Hence the theorem holds.

Theorem 5 (Az)(z εx^^zεX) ^ (Aw)(ρc ε w^^Xε w) is valid in Mλ.

Proof, (i) Let AjίDs. Let ^ ε α o ^ ε A be valid in Mχ. Hence ~zεav
£εA&. ~zεAvzεa is valid in Mχ. Hence V[Mλ+1]{Aεc) =V[M0](aεc) and
V[Mχ](A ε c<-^a ε c) - 1, for any cεDs.
(ii) Let AεZ)5. Then, by the Extensionality Axiom for NBG, the theorem
holds.

Theorem 6 Each of the following are valid in Mχ.

(i) C(xεy)
(ii) F(SCIpO) => F (Xεx)
(in) P(SCI(X)) => P (Xεx).

Proof, (i) is valid by definition of Mo. Let V[Mλ](F( SCI (A))) = 1. Hence
V[Mλ]((Ax)(Sz)(zεx& ~zεAv.zεA& ~zεx)) = 1 and V[Mλ+1](Aεb) = 0, for
any b. Hence F(AεΛ:) is valid in Mχ. Let V[Mλ](Aεb) = 1 or 0. Then
either A εDs, z εa<r>z εA is valid in Mχ for some α, or (Ax)(Sz) ~
(^ εΛτ<->>ε εA) is valid in Mχ Hence SCI (A) has the value 1 or 0 in Mχ.
Hence if V[Mχ]( SCI (A)) = \ then [̂ΛfxKA ε b) = i

Theorem 7 (AY)A(X) ->(A#)A(#) zs i αZzeZ m Mλ.

Proo/. LetF[Mλ]((AX)A(X)) = 1. Then V[Mλ](A(X)) = 1, for a l l X ε D . Hence
F[Mλ](AW) = 1, for all#εZ>5, since 2)5 c D. Therefore V[Mλ]((Ax)A(x)) = 1.



THE RELATIVE CONSISTENCY 171

Let V[Mλ]{{AX)A(X)) = | . Then V[Mλ](A(X)) = \ or 1, for all X. Hence
y[Mλ]CA(Λτ)) = | or 1, for all x. Therefore V[Mλ]((Ax) A{x)) = \ or 1.

Theorem 8. (Az)(z εx = zεy) D (AZ)(ZεΛ;^->Zε;y) zs ?;αZzd m Mλ.

Proof. Let 2 ε α<e->2 ε b be valid in Mλ. If A ε D s, then y[Mλ](A ε a<->A εb) =
1. L e t A ^ D 5 .

(i) If V[Mλ]( SCI (A)) = 1, then, for some c, zεc<->zεA is valid in Mλ.
Hence F[Mλ+1](A ε«) = V[M0](cε a) and F[Mλ+1](A ε b) = V[M0](cε b). But
7[M0](c ε a) = F[M0](c ε 5) and so V[Mλ](A ε a<^A ε b) = 1.

(ii) If y[Mλ](SCI (A)) = 0, then V[Mλ](Aεa) = 0 and V[Mλ](A ε b) = 0.
Hence V[Mλ](Aεa^>Aεb) = 1.

(iii) If V[Mλ](SC\(A)) = I then V[Mλ](Aεa) = f and V[Mλ](Aεδ) = f.
Hence F[Mλ](A ε a<^A ε b) = 1.

4. The above method can be used to extend any set or class theory with a
two-valued model with an axiom of extensionality to a three-valued class
theory satisfying the axioms of abstraction and extensionality. By using
appropriate models of NBG, the consistency and independence of the axiom
of choice, the generalized continuum hypothesis and the axiom of construe-
tibility can be shown. Also the connectives and quantifiers of the three-
valued logic used to define standard wffs can be extended to include any
which satisfy the following property.

(i) For connectives Γ (pl9..., pn).
Let V[M](Γ(pί}..., pn)) = 1 (or 0). Let Xo (Xj be the set of indices i such
that V[M]{Pi) = 0(=l) . For some structure M', let XI (X[) be the set of
indices i such that V[M'](qi) = 0 (=1). If Xo c X'o and X, c X'l9 then
y [ M ' ] ( Γ ( ^ , . . . , ^ ) ) = l ( o r θ ) .

(ii) For quantifiers (QX)A (X).

Let V[M]((QX) A(Jθ) = 1 (or 0). Let Xo (Xλ) be the set of all X in D such that
V[M](A(X)) = 0 (=1). For some structure M', let X'o (X[) be the set of all X
in D such that F [ M ' p ( I ) ) = 0 (=1). If Xo c X'o and X, c X{, then
V[M%{QX)B{X)) = 1 (or 0).

(iii) For quantifiers (Qx) A(x).
Similar to (ii) except Ds for D.

Proposition Any quantifier or connective defined in terms of quantifiers
and connectives satisfying the above property also satisfies the above
property.

Proof, (i) Connectives. Let VlMjTiA^q,, . . . , & ) , . . . , Δ j ^ , . . . , qn))) = 1
(or 0), where Γ, Δ 1 ? . . . , Δm satisfy the property. Let Xo (Xj be the set of
indices i such that F[M](# ) = 0 (=1). For some structure Mr, let X'Q (X[)
be the set of indices i such that y[M'](r, ) = 0 ( = l ) . Let Xo c X^ and
Xι c X{. Let y o(*i) b e t h e s e t o f indices i such that ^ [ M j ί Δ ^ ^ , . . . , qj) = 0
(=1). Let z ε F o u IV Because Δ / ( ^ Ί , . . . , ^w) satisfies the property, and
Xo c XI and Xx c X/, V[M'](^(rly..., rn)) = F[Aί](Δf ( f t , . . . , « , ) ) . Hence,
if Yi(Yl) is the set of indices / such that V[M%Δi(rl9..., rn)) = 0 (=1),
then Fx c Fί and F o c FJ. Since Γ ( Δ 1 ? . . . , Δ j satisfies the property,
V[M'](r(Δl}... , Am)) = l ( o r θ ) .
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(ii) Quantifiers. Let V[M](Γ((QX) A(A(X)))) = 1 (or 0), where Γ, Δ and
(QX) satisfy the property. Let Xo (Xj be the set of all X from D such that
V[M](A(X)) = 0 (=1). For some structure M', let X'o (X[) be the set of all X
from D such that V[M'](B(X)) = 0 (=1). Let Xo c χ'o and Xλ c Xf. Because
Δ satisfies the property, if V[M](A(A(X))) = 1 or 0 then F[M'](Δ(£(X))) =
V[M](A(A(X))), for any XεZλ If Yo (Y,) is the set of all X in Z> such that
V[M](A(A(X))) = 0(=l), Y'0(Y[) is the set of all I in ΰ such that
V[M'](A(B(X))) = 0 (=1), then Yo c F£ and Yi c Y[. Because (QX) satisfies
the property, if V[M]((QX) A(A(X))) = 1 or 0 then V[Mr]((QX)A(B(X))) =
V[M]((QX)A(A(X))). Since Γ satisfies the property, V[M'](Γ((QX)A(B(X)))) = 1
(or 0). Similarly for quantifiers, (Qx).

Some examples of connectives satisfying the property are the follow-
ing.

1 0 I 1 0 I

1 1,0 or \ 1,0 or \ \ 1 1 1, 0 or | \
0 1,0 or \ 1,0 or \ \ 0 1 1 1 or \
2 2 2 2 2 i O r 2 2 2

1 1 1 1,0 or i
0 1 0 1,0 or I
ϊ lor I \ \

The Lukasiewicz {AX), (Ax), (SZ), (Sx) are examples satisfying the
quantifier property. The following connectives are not examples:

-> 11 o I *-> [ l o I D l o I T c

l l o I l l o I l l o i i i 1 1
0 1 1 1 O O l i 0 1 1 1 0 0 0 1
2 1 2 - L 2 2 2 ^ 2 J - - L J - 2 ^ 2 v J

To show that any of the connectives or quantifiers satisfying the
property above can be used to define standard wffs and hence be substituted
into the Abstraction Axiom, it is only necessary to examine lemmas 1 and 4
in the proof. Lemma 1 is obvious from the definition of the property. In
Lemma 4, leave out the original steps for the connectives and quantifiers
and replace it by the following.

(i) Let P(A) be Γ ^ U ) , . . . , R»(A)) and let F ^ A K I X / ^ ) , . . . , Rn(A))) =
1 or 0. Let ΓiR^A),.. ., Rn(A)) be W. Then V[Mu(w)]{W) = 1 or 0. Let
X0(Xι) be the set of indices i such that V\MvW\(Ri(A)) = 0 (=1). Since
v(Ri(A)) ** v(W), for all iεX0VXu D(Ri(A)) Q D(W), for a l H ε X o U ^ . By
the lemma condition, for each Q(A) ε D(Ri(A)) where iεX0U XlyV[Mλ](Q(B)) =
V[Mλ](Q(A)). By the induction hypothesis, V[Mλ](Ri(B)) = F[Mλ](βf (Λ)), for
all iεX0 \JXX. Let X'o (X[) be the set of indices i such that V[Mλ](Ri(B)) =
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0 (=1). Hence Xo c X'o and X, c X[. By the property of Γ, F[Mλ]( 1X^(5),...,
βw(£))) = yjM^^KIXΛ^A),..., β«(A))) and V[Mλ](P(B)) = 7[Mλ](P(A)).

(ii) Let P(A) be (QZ)R(A,Z) and y[Mλ]((QZ)β(Λ,Z)) = 1 or 0. Let
(QZ)β(A,Z) be W. Let Xo (Xj be the set of all Z in D such that
^ [ M ^ p ^ Z ) ) = 0 (=1). Since v{R{A,Z)) ^ v{W) for all ZεX0UXlf

D(R{A,Z)) c D(ΐF), for all Z ε l o u X i . By the lemma condition, for each
Q(A) ε D(β(A,Z)), V[Mλ]{Q(B)) = V[Mλ](Q(A)), where £ εX0 U Xχ By the in-
duction hypothesis, V[Mλ]{R(B, Z)) = V[Mλ](R(A,Z)), for all ZεX0UXλ. Let
XS(Xi) be the set of all Z in D such that FfM^f l^Z)) = 0 (=1). Hence
X0QXί and Xx Q X{. By the property of {QZ),V[Mλ]((QZ)R(B,Z)) =
V[MHW)]((QZ)R(A,Z)). Hence 7[Mλ](P(5)) = F[Mλ](P(A)).

(iii) Let P(A) be (Qz)R(A,z). This case follows as for (ii) except that
Ds replaces D.

5β There is a further generalization which allows any set or class theory
using a many-valued (finite or infinite) logic L and with a model in which
an axiom of extensionality is satisfied to be extended to a class theory,
using a logic L ' of one more value and with a model in which the axioms of
extensionality and abstraction are satisfied.

The many-valued logic L must contain a quantifier S such that (SZ)A(Z)
takes the value m (where m is some designated value) if and only if at least
one of the A(Z) are designated and takes the value n (where n is some
undesignated value) if and only if all of theA(Z) are undesignated (similarly
for (Sz)A(z)); a quantifier A such that (AZ)A(Z) takes the value m (same as
above) if and only if all of the A(Z) are designated and takes the value n
(same as above) if and only if at least one of the A(Z) is undesignated
(similarly for (Az)A(z)); an equivalence connective <-> such that p<->q is
designated if and only if p and q take the same value; and an implication
connective ^ such that p => q is designated if and only if q is designated or p
is undesignated.

The many-valued logic L', which has an extra value (call it pd) added
to L, must contain appropriate extensions of S, A, <π>and D. The value pd
is undesignated. p =) q is defined so that it is designated if and only if q is
designated or p is undesignated. P^->q is defined so that if p and q take
values in I , then /><-># takes the value in L, if p does not take the value pd
and q takes the value pd or if p takes the value pd and q does not then
p^->q takes the value pd, and if p and q both take the value pd then p^>q is
designated. The quantifier S is defined in Lr as follows. If A(Z) has a
designated value for some Z, then (SZ)A(Z) has the value m. If A(Z) has an
undesignated value, not pd, for all Z then (SZ)A(Z) has the value n.
Otherwise {SZ)A(Z) has the value pd. The quantifier A is defined in L' as
follows. If A(Z) has a designated value for all Z, then (AZ)A(Z) has the
value m. If A(Z) has an undesignated value, not pd, for some Z, then
(AZ)A(Z) has the value n. Otherwise {AZ)A(Z) has the value pd. Similarly
for (Az)A(z) and (Sz)A(z).

The Extensionality Axiom can now be stated as (AZ)(ZεX<^>ZεY) ^>
{AZ){XzZ^>YεZ). The Abstraction Axiom can be stated as (SY)(AX)
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(X ε Y<r>φ(X, Zγ,..., xm, Zl9..., Zn)), where 0 is constructed from atomic
wffs Uε V, Uεv, uε V, uεv, using the connectives and quantifiers used in
forming standard wffs. The Extensionality Axiom for special classes can
be stated as (Az)(zεx<->zεy) ^ (Az)(xεz<^>yεz). SCI(X) is defined as
(Sx)(Az)(zεx<r+zεX).

The propositional constants are left out from the atomic wffs and if
atomic wffs with some of these values are wanted then perhaps an atomic
wff of the form aεb can be used. The connectives and quantifiers used in
forming standard wffs are ones which satisfy the following property S.

(i) For connectives T(pl9..., pn). Let V[M] T(pl9..., ρn)) = k, some
value of L. Let Xm be the set of indices i such that V[M](pi) = m, for each
value m of L. For some structure M', let X'm be the set of indices i such
that V[Mr](qi) = m, for each value m of I . If Xm c X'm , for all m of I , then
F[M'](<?15 ...,qn)=k.

(ii) For quantifiers (QX)A(X). Let 7[M]((QX)A(X)) = fc, some value of
L. Let Xm be the set of all X in £ such that V[M](A(X)) = m, for each value
m of I . For some structure M', let X^ be the set of all X in D such that
V[M'](B(X)) = m, for each m in L. If XOT c X£ , for all m of I , then

(iii) For quantifiers (Qx)A(x). Similar to (ii) except Ds for D.

Note that the quantifiers S and A in L ' satisfy the property S. For the
definition of Mx ^ M29 for two structures Mx and M2 the generalization is
as follows. M1 ^ M2 if and only if, for any atomic wff P, if y[Mj(P) = m,
for some value m i n i , then F[M2](P) = m.

Lemma 1 follows by the generalized property for connectives and
quantifiers used in forming standard wffs. It takes the form:

Let M ^ Mr, where M and Mr are two structures on D. Then, for any
standard wff P, if V[M](P) = m, for some value m in L, then v[Mr](P) = m.

Define the structure Mo as follows. If AψDs or BψDs, then V[M0](AεB) =
pd. UAεDs and Bε Ds, then V[M0](A εB) = the value of I given to A εB in
the model of the special class theory.

Assuming Mμ defined for some ordinal μ, Mμ+1 is defined as follows.
For all standard wffs P, V[Mμ+1](Aε{X:P(X)}) = V[Mμ](P(A)). Ii V[Mμ](zεA)=
V[Mμ](z εa) for all z εDs, for some a εDs, then V[Mμ+1](A εb) = V[M0](aεb).
If there is no aεDs such that for all zε D\ V[Mμ](z εA) = V[Mμ](z εa), then
V[Mμ+1](A εb) = V[Mμ]( SCI(Λ)).

Note that SCI(X) has the property S, because z εx only takes values in
L. Also V[Mμ](£ εA) = 7[Mμ](>ε εa) for all z εDs, for some a εDs if and only
if V[Mμ ]( SCI (A)) is designated, and there is no aεDs such that for all
zεDs, V[Mμ](zεA) = V[Mμ](z εa) if and only if V[Mμ]( SCI.(A)) is undesig-
nated.

If μ is a limit ordinal, on the assumption that Mv ^ Mτ for all v ^ T,
for all T < μ, for all atomic wffs P, if V\MV\(P) = k, for some value k in L,
for some v < μ, then V[Mμ ](P) = k, and if V[MU](P) = pd for all j/ < μ, then
7[Mμ](P) = Pd.
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Lemma 2 follows similarly to the previous proof. In case (B), let
F[Mj,](A εb) = k, for some value k in L. Then there is an ordinal η < v such
that ^[M^Jί SCI (A) = I, for some value I in I . Since η ^ μ - 1, Mη ^ M μ - 1 .
Hence V[Mμ^]( SCI (A)) = I. If I is undesignated, I = k and V[Mμ](A εb) ^k.
If Z is designated, then there is a n α ε ^ such that F[M0]Cε εa) = V[Mη](z εA)
ίoY2LllzεDs. Then V[M0](aεb) =k. Hence V{Mμ^](z ε A) = V[M0](z εa), for

al l z εDs, and V[Mμ ](Aεb) =k.

Lemma 3 follows as before except that there is one increasing chain of
subsets of the denumerable set of all atomic wffs for every value in L.
Theorems 1, 2 and 3 follow similarly to their previous proofs. The
definitions of v(P) and dependent set D(P) are the same except that all
values of L must be put in place of values 1 and 0.

Lemma 4 can be shown for connectives and quantifiers satisfying the
property S by a simple generalization using Xk, where k runs over the
values of L, instead of Xo and Xx.

Corresponding standard wffs and general dependent sets are defined as
before. Lemmas 5,6,7 and 8 follow as before with the values of L in place
of 1 and 0.

In lemma 9, (ii) (A) becomes: Let SCI (A) be valid in Mλ. Then
V[Mλ](zεA) = V[Mλ](zεa), for all zεDs, for some aεDs. Hence
y[Mλ+1](A ε B') = V[M0]{aεB'). By the condition of the lemma, V[Mλ](zεB) =
V[Mλ](zεa), for all zεDs. Hence V[Mλ+1](BεB') = V[M0](aεBr). Hence
V[Mλ](aεBf) = V[Mλ](BεBr). (ii) (B) becomes: Let SCI (A) be invalid in Mλ.
F[Mλ]( SCI (A)) Φ pd b e c a u s e V[Mχ](AεBr) is a value of L. Hence
y[Mλ+1](A ε B1) = V[Mλ]( SCI (A)). By the lemma condition, V[Mλ]( SCI (A)) =
V[Mλ](SC\(B)). Hence V[Mλ+ί](B ε B') = V[Mλ]( SCI (A)) and V[Mλ](BεB') =
y[Mλ](Aε5'). The rest of lemma 9 follows as before.

In Theorem 4, (B) (i) and (B) (ii) are similar to (ii) A and (ii) B
respectively of lemma 9. Otherwise the theorem follows as before.
Theorem 5 follows as before.

Theorem 6 needs two monadic operators: C such that Cp is designated
if and only if p takes a value in I , and U such that Up is designated if and
only if p is u n d e s i g n a t e d . Theorem 6 becomes: (i) C(xεy) and
(ii) U( SCI(-X)) Z) . SC\QC)<^Xεx. are valid in Mλ, both of which are obvious.

Theorem 7 becomes: (AX)A(X) z> (Ax)A(x) is valid in Λfλ, which is
obvious.

Theorem 8 becomes: {Az)(zεx<-J>zεy) ^ {A2)(Zεx<->Zεy) is valid in
Mλ.
Proof. Let A jtDs. Let zε a<r^zεbbe valid in M\.

(i) If SCI (A) is valid in Mλ, V[Mλ](zε A) = V[M0](zεc), for all z ε Ds, for
some cεDs. Hence V[Mλ+1](Aεa) = V[M0](c ε a) and V[Mλ+1](Aεb) =
V[M0](c ε b). But V[M0](cεa) = V[M0](c εb) and so A εb<^A εa is valid in
Mλ.

(ii) If SCI (A) is i n v a l i d in Mλ, V[Mλ+ί](Aεa) = V[Mλ+ί](Aεb) =
V[Mλ]( SCI (A)). Hence Aε b*^Aεa is valid in Λfλ.

6. The above method of avoiding the class paradoxes has certain advan-
tages. It allows each predicate to generate a class and separates the
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* 'paradoxical'' class membership statements from the "non-paradoxical"
ones using a criterion of circularity of definition. For, in order for a
membership statement to take the value \ (or pd), there must be some
circularity involved, in the sense that its value is dependent on itself or on
the values of membership statements whose values are dependent on
themselves. If there is no such circularity then there is a chain of
dependent membership statements leading from the membership statement
in question right back to membership statements of NBG (or other model)
and propositional constants (Φ \ (or pd)). This is represented in the proof
by the general dependent sets of a membership statement. If there is such
a chain of dependent membership statements then the membership state-
ment in question takes a value Φ \ (or pd). Basing the system on NBG
allows the whole of mathematics to be deduced in the usual two-valued
logic. One can make true and false statements about the universal class
and Russell class which cannot normally be made in other attempts to avoid
the class paradoxes. One can make true and false statements about classes
of proper classes which cannot be made in NBG.

By defining all classes which can be generated by a predicate we can
get a broader picture and see how the paradoxes arise; indeed, it shows
that it is the circularity of definition of certain membership statements that
leads more directly to the paradoxes than just the inclusion of a certain
range of classes because true and false statements can be made about these
classes and further, by using some general criterion for the rejection of
classes one may well reject classes which lead to no paradoxes at all.
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