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THE RELATIVE CONSISTENCY OF THE CLASS AXIOMS OF
ABSTRACTION AND EXTENSIONALITY AND THE AXIOMS
OF NBG IN A THREE-VALUED LOGIC

ROSS T. BRADY

This paper is an extension of a previous one entitled ‘‘The Consistency
of the Axioms of Abstraction and Extensionality in Three-Valued Logic’’
[8]. This proof differs from the one in [8] in that the structure M, (below)
contains a model of NBG and the method of generating the sequence of
structures, My, < M; <... <M, <...,is more complicated.

1. The formal system that we shall show to be relatively consistent to

Z -F is the following:

Primitives

1. w, v, w, x, y, 2z, etc. are variables over special classes,i.e., the classes
of NBG.

2. U, V, W, X,Y, Z, etc. are variables over classes.

3. ¢ (is a member of); ~, —, A (connectives and quantifiers of Lukasiewicz
three-valued logic).

Fovmation Rules

1. For variables x, y, X, Y, the following are atomic wffs: xey, xeX,
Xex, Xe Y.

2. The propositional constants 1, 0, ; are atomic wffs.

3. If Band C are wifs and ¥ and X are variables then ~B, B — C, (Ax)B,
(AX)B are wifs.

The three-valued logic concerned is that of Yukasiewicz and the
connectives and quantifiers are represented as follows:

P &q pvqg p—q p<>q p>4q p=q
p/g|l1 5 of1 3 0|1 3 01 5 0f1 5 0|1 3 O
1 {1 £ o0f1 1 1|1 £ 0|1 5 0|1 %2 0|1 30
1)L L o1 + 5111 3]+ 1 4j1 1 1311
0|0 0 0|1 £ 0|1 1 1|0 % 1]1 1 1|0 1 1
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pl~p|To|Fo| Pp|Co
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(AX) ¢(X) has the minimum value of the values of ¢(X), (SX) ¢(X) has the
maximum value of the values of ¢(X). Similarly for (Ax) ¢(x) and (Sx) ¢(x).

All the above connectives and quantifiers can be defined in terms of ~, —,
A as follows:

pva=a4(p—q) — q.
p&q =df ~(~pv ~q).
p<>q =ar (p — q) & (g — D).
p2q=4Dp— (p— 9.
p=q=da(p>Dq) &(q°2D.
Tp=a ~p— ~D.
Fp=a T~p.
Pp=y ~Tp & ~Fp.
Cp=as TPvFP.
(Sx)A =45 ~(Ax) ~A.
(SX)A =45 ~MAX) ~A.

Definitions

X=Y=4AZ) (ZeX<>Z<cY).
%2 y=4/(A2) (z ex =2 £Y).

The definitions of NBG (cf. [6]).

(Ax") ¢(x") =41 (Ax) (M(x) D ¢(x)).
(Sx") ¢lx") =ar (Sx) (M(x) & ¢(x)).
SCIX) =41 (Sx) (A2) (z€ x<>zeX).

(X is a special class in that it has the same special class members as

some special class but X may not lie in the range of the special class
variables.)

Axioms

x2yDKez =yez).

(Ax")(AY')(Sz2")(Au')u'e z'=u' =x"vu' =y').
(Sx")(Ay")(~y'ex").

(S2)Ax]) ... (Axp)(x s ey %) €2 = (X1, e e s X0 3 Vise ey Vn))
where only set variables are quantified in ¢.
(Ax")(Sy " )(Au')(u' ey’ = (Sv')(u'ev! & v'exT)).
(Ax")(Sy"Y(Au")(u"e y' = u' C x').

(Ax")(AN(S2")(Au')(u'e 2" = u'e x' & u'€ ).

(Ax")(Un(x) D (Sy")(Au")u'ey' = (Sv")((v', u") e x & v'e x"))).
(Sx")(Oex'& (Au')(u'ex'D u'U{u'} e x")).

(SYAX)X eY<>H(X, 215 v s Zmy Z1y e+« 524)),

wzm3

€ d

> - n
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where ¢ is either a propositional constant or constructed from atomic
wifs of forms, UeV, Ut v, ue V, ue v, by using only ~, &, A.
E. X=YD2 (A2)(Xe Z<>Ye2).

Extra Axioms

L (AX) ¢(X) — (Ax) ¢(x).

2. (Az)(zex<>zeX) D (Aw)(xc w<>Xcw).
3. F(SCI(X)) D F(Xex).

4. P(SCI(X)) D P(Xeux).
5. C(xey).
6. x2yDx=y.
2

. Take any model % of NBG whose domain is a denumerable set. The
domain will consist of special class constants and the membership between
any two of these constants will be determined as true or false in . To
construct the model of the whole system, we need to extend the above wffs
by adding special class constants of the above model of NBG, a, b, c,...,
and some terms to be defined. The domain of the model will consist of
some of these terms as well as the special class constants. We give the
formation rules for terms and wffs as follows:

1. I x and y are special class variables, ¢ and b are special class
constants, and X and Y are class variables, thenaeb,a ex,x €a, ac X,
Xea, xey, xe X, Xex, Xe Y, are atomic wffs.

2. Any combination of wffs using ~, —, A as in the Lukasiewicz three-
valued logic is a wif.

3. A propositional constant (i.e., 1, 3 or 0) is an atomic wiff.

4. A propositional constant or a wif constructed from atomic wifs using
only ~, &, A is a standard wif.

5. If P is a standard wif and X is a class variable, then {X : P} is a term.

6. If {X:P} and {X :Q} are terms, y is a special class variable,a is a
special class constant and Y is a class variable, then {X: P} ¢ a,
ae{X:P},{X:Pley,ye{X : P},{X : Ple Y, Ye{X : P}, {X : P}e{X:: Q}
are all atomic wffs.

We construct a model for the axioms with domain the set D of all
special class constants and all constant terms {X : P}, i.e., Pis a standard
wff and either has no free variables at all or has X as its only free
variable. Let D%denote the set of all special class constants and so D - D°
is the set of all constant terms. We shall use constants A, B, C, etc. for
members of D. Non-constant terms can be defined from these as follows.
Associate with any term {X: P(X, 2,,...,2,, Z,,...,2Z,)}, for which z,,...,
2,y Z1y...4 Zy are the only free variables, the function which for constants
Qiy...yan Oof DS and A,,...,A, of D takes as value the constant term
[X:PX,01,0005 Oy Ayy...y A} of D.

Let any specification of values, including the value assignments already
given to members of DS in the model R, for all the constant atomic wffs
Ag B, where A and B are members of D, be called a structure on D. Let
V[M](P) denote the value of the constant wif P given by the structure M on
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D. Also let V[M|(1) =1, V[M)(0) = 0 and V[M](3) = 3. Define M, < M, for
two structures M, and M, on D as, for any constant atomic wff P, if
V[M;](P) = 1 then V[M,](P) = 1 and if V[M;](P) = 0 then V[M;](P) = 0. Here,
‘<’ defines a partial ordering on the set of structures, since (i) M < M,
(i) if M, < M, and M, < M, then M, < M, and (iii) if M, < M, and M, < M,
then M, = M, (i.e., M, and M, are the same structure).

From now on, when mentioning values of wffs in a structure it is
automatically assumed that the wiffs are constant ones, i.e., they have no
free variables.

Lemma 1 Let M and M'be two structures on D, such that M < M'. Then,
for any standavd wff P, if VIM|(P) = 1 then VIM'|(P) = 1 and if VI[M](P) =0
then V[M'|(P) = 0.

Proof. By induction on the wiff evaluation procedure. This means that we
start at the values of all the constant atomic wffs obtained by substitution
for free variables in P, and then build up the value of P from these values
according to the connectives and quantifiers in the Lukasiewicz logic. If P
is an atomic wif, the lemma holds.

(i) Let V[M](~Q) = 1. Then V[M](Q) = 0. By the induction hypothesis
V[M'(Q) =0. Hence V[M'[(~Q) =1. Let V[M](~Q) =0. Then as above,
V[M'(~Q) = 0.

(ii) Let V[M}(Q&R) = 1. Then V[M](Q) = 1 = V[M](R). By the induction
hypothesis, V[M'](Q)=1=V[M'|(R). Hence V[M'|(Q&R)=1. Let V[M|(Q& R)
= 0. Then as above, V[M'(Q&R) = 0.

(iii) Let V[M]((Ax) Q(x)) = 1. Then V[M](Q(x)) = 1 for all xe D%, By the
induction hypothesis V[M'|(Q(x)) = 1 for all x¢ DS, Hence V[M"((Ax) Q(x)) =
1. Let V[M]((Ax) Q(x)) = 0. Then as above, V[M']((Ax) Q(x)) = 0.

(iv) The case for (AX) Q(X) is similar to (iii).

Define the structure M, as follows: If AZD’ or B¢D®, then
V[MJ(AeB) = 3. If AeDSand Be DS, then V[M,](AeB) = 1if A¢B is true in
the model % and V[M,)(A € B) = 0 if A ¢ B is false in the model %.

Hence M, with domain DSis a model of NBG satisfying all the axioms.
The model of the whole system will be the limit of a sequence of structures,
My <M, s...<My <...,onD.

Assuming M, defined for some ordinal u, M, is defined as follows.
For all standard wifs P, V[M, (A€ {X: P(X)}) = V[M,](P(A)). If ~zeAv
z€a&. ~zcavzeA is valid in M, for some gq, then, for all b,
VIMyuulAed) =V[M)(aed). If (Ax)(Sz)(2eA&~2zExv.2zex&~2€A) has the
value 1in M, then, for all b, V[M,,](A €b) = 0. If neither (Sx)(Az)(~zeAv
2ex&. ~2exvzeA) nor (Ax)(Sz)(z2eA& ~z2exv.zex& ~z€A) have the
value 1in M, then V[M,,J(A€b) = 3.

For a limit ordinal u, on the assumption that M,, < M, for all v < 7, for
all 7< p, for all atomic wifs P, if V[M,](P) =1 for some v < p then
VM, YP) =1, if V[M,)(P) =0 for some »< p then V[M,}(P) =0, and if
VIM,](P) = 3 for all v < p then V[M,](P) = 3.

Lemma 2 M, s My, for all v < p.
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Proof. By transfinite induction on yu. The induction hypothesis is: M, < M,
for all v < 7, for all 7< y.

(i) w=0: M < M,

(ii) u is a successor ordinal:

(A) LetV[M,)(Ae{X : P}) = 1. There is a n < v such that V[M,](P(4)) =
1 by the method of construction of the structures. Since n < p- 1, My s
M-, by the induction hypothesis. Hence V[M,.,](P(4)) = 1. By the con-
struction of M,, VM, ](A e{X : P}) = 1. Similarly, if V[M,JAe{X : P}) =0
then V[M, A e{X : P}) = 0.

(B) Let V[M,J(Aed) =1 (or 0). There is an n < v such that
VM, J((Sx) (Az) (~2 eAvzex &. ~2exvzeA)) = 1 or V[Mp)((Ax)(Sz)(zeA &
~ZEXV.ZEX& ~28A)) =1,

(a) Let V[M,]((Sx)(Az)(~z eAvzex&. ~2exvzeA)) = 1. Then V[Myy]
(Aeb) = V[My]ae b =1 (or 0), for some a. Sincen < u -1, My< M,_,, by
the induction hypothesis. Hence V[M,.,]((Sx)(Az)(~zeAvzex&. ~z€exv
z€A)) =1and V[]M,Aed) = V[MoJ(@eb) = 1 (or 0), for some a.

(b) Let V[M;|((Ax)(Sz)(2eA& ~zexv.zex& ~z€4)) = 1. I V[M
(Aed) =1, this does not apply. Let V[M,)(Aed) = 0. Sincen < u - 1, M,
M.y, by the induction hypothesis. Hence V[M,_,[((Ax)(Sz)(z €A & ~zexv.
z2ex& ~zeA)) =1and V[M (A eb) = 0.

(iii) p is a limit ordinal: Let v <pu. Let V[M,](A¢B) = 1. Then
V[M,JA eB) = 1 by definition of My. Similarly when V[M, |(Ae B) =0 then
VM JAeB)=0. ffv=p, M, <M.

v]
<

Lemma 3 Theve is an ovdinal M of the second number class such that
My = My 4.

Proof. The increasing chain of structures M, < M, <... <M, <...can be
regarded as two increasing chains of subsets of the denumerable set of all
atomic wifs of the form A ¢ B. One chain is of those atomic wffs taking the
value 1 and the other is of those taking the value 0. If M, =M, then
M, =M, for all ordinals u, ¥ < u, since, by the method of construction,
there is no way of changing the values of any atomic wffs. There is a
denumerable set of ordinals p such that M, # M, .. But the set of all
ordinals of the second number class is non-denumerable, and hence for
some X in this class, M) = M)4,.

3. Now it is necessary to show that M) is the required model.
Theorem 1 All the axioms of NBG ave valid in M.

Proof. By the definitions of M, and the domain D%, M, with D’ as domain is
a model of NBG. By lemma 2, if V[M](A €B) = 1 (or 0) then V[M,]A ¢ B) =1
(or 0). Hence M, with domain DS is a model of NBG.

Theorem 2 Y e{X : P}<>P(Y) is valid in M.

Proof. Let V[M)J(Ae{X :P})=1. Let v be the least ordinal such that
V[M,J(Ae{X : P}) = 1. v is a successor ordinal. Hence V[M,-,(P(4)) = 1.
Since v-1<2x, M,~, <M,, by lemma 2. Since P is a standard wff, by
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lemma 1, V[M,](P(4)) = 1. Similarly, if V[M](Ae{X:P}) = 0, then
V[M,](P(4)) = 0.

Let V[M\}(P(4)) = 1. Then V[M,,,J(Ae{X : P}) = 1. Since M, = My,
V[M)\J(Ae{X : P} = 1. Similarly, if V[M)}(P(4)) = 0, then V[M\JA £{X : P}) =
0.

Theorem 3 The Abstraction Axiom (A) is valid in M.

Proof. By theorem 2, for any standard wff P, Ye{X : P}<> P(Y) is valid in
M). Therefore (SZ)(AXNX e Z<>P(X, Y15+« Yms Y1y...,Y,)) is valid in My,
for all wffs P which are either propositional constants or constructed from
atomic wiffs of forms, UeV, Ucv,ue V, uev by using ~, &, A; since all
wffs of this sort are standard wiffs.

Let P be a standard wff such that V[M,\](P) =1 or 0. Let v(P) be the
least ordinal such that V[M,p)|[(P) = 1 or V[M,p)](P)=0. Form the set of all
constant atomic wffs of P (i.e., atomic wiffs of P with all substitutions made
for any variables that occur in them) which take the value 1 or 0 in M,(p).
Call this the dependent set of P, D(P).

Lemma 4 Let P(A) be a standavd wff such that VIM\](PA)) =107 0. If, for
each Q(A)eD(P(A)), VIM)\]Q(B)) = VIMA)(Q(A)), then VIM\}(P(B)) = VIMy\](P(A)).

Proof. By induction on the wff evaluation procedure. Let P(A) be an atomic
wff such that V[M\]J(P(4)) =1 or 0. Then D(P(4)) = {P(A)}. Hence
V[M\](P(B)) = V[M,](P(A)).

(i) Let P(A) be ~R(A). Since D(~R(A)) = D(R(A)), for each Q(A)e D(R(A)),
VM \J(Q(B)) = V[M,](&A)). By the induction hypothesis, V[M\(R(B)) =
V[M\](R(A)). Hence V[M,](P(B)) = V[M)](P(A)).

(i) Let P(A) be (R(A) & S(A)) and V[M(R(A) & S(4)) = 1. Then
V[M\)(R(A)) = 1 and V[M,](S(A)) = 1. Since ¥(R(A)) < v(R(A) & S(A)), D(R(A))
D(R(A) & S(A)). Hence, for each Q(A)& D(R(A)), V[M\(Q(B)) = V[M,](Q(4)).
By the induction hypothesis, V[M,](R(B)) = V[M)]R(A). Similarly, V[M,](S(B)) =
V[M)](S(A)). Hence V[M)\)(P(B)) = V[M,](P(4)).

(iii) Let P(A) be (R(A)&S(4)) and V[M](R(A)& S(4)) = 0. Then as
above, V[M)\](P(B)) = V[M,](P(4)).

(iv) Let P(A) be (AZ)R(A,Z) and V[M)\((AZ)R(A,Z)) = 1. Then
V[M\(R(A,Z)) =1 for all Z. Since ¥R(A,Z)) <v((AZ) R(4,Z) for all Z,
then D(R(A, Z)) C D((AZ) R(A, Z)) for all Z. Hence, for each Q(4) € D(R(4, 2)),
V[M,\](Q(B)) = V[M)\](@, (4)). By the induction hypothesis, V[M\)(R(B,Z)) =
V[M;\](R(A,Z)). Since this holds for all Z, V[M)\](P(B)) = V[M)\](P(A)).

(v) Let P(A) be (AZ)R(A,Z) and V[M,]((AZ)R(A,Z2)) = 0. Then as
above, V[M,\[(P(B)) = V[M\](P(4)).

(vi) Let P(A) be (Az) R(4,z) and V[M,]((Az) R(4,2)) = 1. Similarly to
(iv), V[M\)(P(B)) = V[M,](P(A)).

(vii) Let P(A) be (Az) R(A,z) and V[M,]((A2) R(4,z2)) = 0. Similarly to
W), VIM(P(B)) = V[M](P(A)). |

Let P be an atomic wff (not 1 or 0) of the form A £{X : @(X)} such that
V[M\J(P) =1 or 0. Define the corresponding standavd wff of P, C(P) as
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Q(A). Let P be a standard wif such that V[M,[(P) =1 or 0. Let P have
dependent set, D(P). We define a general dependent set of P, GD(P) as
follows:

(i) The dependent set D(P) of P is a GD(P).

(ii) I V[M\)(R) =1 or 0, R is an atomic wff (not 1 or 0) and C(R) is
defined for R, then D(C(R)) is a GD(R).

(iii) Let D'be a GD(P). Let SC D'. If Q¢ S, then (D' N3) U U Q* is
a GD(P), where @* is a GD(Q). Qs$

This assumes V[M,](@) =1 or 0, for all Q&S. Note that lemma 5
(below) should be coupled with the definition of a general dependent set so
that the assumption can be made before the construction of the general

dependent sets GD(Q).

Lemma 5 Let P be a standavd wff such that VIM\](P)=1o0r 0. IfD'is a
geneval dependent set of P then, for each Qe D', VIM)](Q) = 1 o7 0.

Proof. By induction on the stages of construction of general dependent sets
of all standard wffs P such that V[M,](P) = 1 or 0.

() By definition of D(P), if @& D(P) then V[M,](Q) = 1 or 0 and hence
the lemma holds for D(P).

(ii) ¥ Qe D(C(R)), then V[M))(@) = 1 or 0 and the lemma holds for
D(C(R)).

(iii) Let D’ be a general dependent set of P. Let SC D'. If Q¢ S, then,
by the induction hypothesis for D', V[M]J(@) =1 or 0 and so, we let

Q* be a general dependent set of Q. Now let Te(D'NS) U QLJSQ*. If
€

Te Q* for some Q¢ S, then, we have by the induction hypothesis for @*,
V[M\[(T) =1 or 0. If TeD'NS, then, by the induction hypothesis for D',

V[M\[(T) =1 or 0. Hence, if T€(D'NS) U U o, then VIM(T) = 1 or
0. Hence the lemma holds. Qes

Lemma 6 Let P be an atomic wff such that VIM\](P) = 1 or 0 and such that
C(P) is defined. If D' is a geneval dependent set of P which is not D(P)
then, for each Qe D', VM, py_,1@) = 1 07 0.

Proof. By transfinite induction on the ordinals ¥(P). y(P) is a successor
ordinal. The induction hypothesis is that the lemma holds for all atomic
wifs @ such that »(Q) < ¥(P).

(1) ¥P)=1: If Qe D(C(P)), then V[M,|(Q) =1or 0. No further members
of general dependent sets of P can be obtained.

(ii) »(P) is a successor ordinal (>1): Use induction on the stages of
construction of general dependent sets of P.

(I) D(P) is not used as a general dependent set in this lemma.

(I Let Qe D(C(R)). In constructing general dependent sets of P, the
only R to consider is where R is P or where R is a member of a general
dependent set of P (which is not D(P)). If R is P, then V[My(p)-,](Q) =1
or 0. If R is a member of a general dependent set of P (not D(P)), then, by
induction hypothesis, V[M,(p)-:](R) = 1 or 0 and hence V[M,(p)-,](®) = 1 or 0.

(II1) Let D' be a general dependent set of P for which the lemma holds.
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Let S C D'. By the induction hypothesis for D', V[M,(p)-1)(@) = 1 or 0, for
all @&S. By the induction hypothesis for the ordinals, the lemma holds for

any general dependent set Q* of @, except for D(Q). Let Te(D'N SU U Q*.

Qe$
If TeQ* (where @* # D(Q)), for some Q €S, then V[My(p-»|(T) =1 or 0. If
TeQ*, where now Q* is D(Q), for some Q ¢S, then, since D(Q) is {Q},
Te D'. By induction hypothesis for D!, V[Myp)_,J(T) =10or 0. ¥ TeD'NST,
then, by induction hypothesis for D', V[My,p)-.[(T) =1 or 0. Hence the
lemma holds.

Lemma 7 Let P(A) be a standavd wff such that VIM\](P) = 1 o7 0. Consider
any geneval dependent set D' of P(A), such that, in the process of construc-
tion (ii) is not applied to any atomic wff of the form CeA. If, for all
Q@)eD’, VIMmIQ®)) = VIM]@Q)), then VIM\l(P®B)) = VIM](PA)).

Proof. By induction on the stages of construction of general dependent sets
of all standard wffs P(A) such that V[M,](P(A)) = 1 or 0, such that (ii) is not
applied to any atomic wffs of form C €A.

(i) Let a GD(P(4)) be D(P(4)). Now by the lemma condition for each
Q(4) £ D(P(4)), V[MJ@(B)) = VM J(QA)). Hence VM(P(B)) = VM, |(P(A)),
by lemma 4.

(ii) Let a GD(P(A)) be D(C(P(A))), where P(A) is an atomic wff (not 1 or
0) of the form Ae{X : @(X)}. Then C(P(A4)) is Q(4). V[M,])(Q(A)) =1 or 0.
By the lemma condition, if R(A) € D(C(P(A))) then V[M)](R(B)) = V[M,|(R(4)).
Hence by lemma 4, V[M)]}(Q(B)) = V[M)])(Q(A)). Therefore, VIM,\|(B e{X :
QX)) = VIM\](Ae{X : QX)}) and V[M)\])(P(B)) = V[M)}(P(A)).

(iii) Let D' be a general dependent set of P(A) and let SC D'. For
each Q(A) € S, let the lemma hold for D’ and the (Q(A))*, by the induction
hypothesis. By the condition of the lemma for all T(4)e(D'NS) U

o (@)%, VILKT®) = VLT (). But since QA € (D' 1S U

Q(Hes (Q(A)* for all @(A)eS, by induction hypothesis, V[M,\]@Q(B)) =

VIMyA](@Q(4)), for all Q(A)eS. Also, for all T(A)e D'N’S, VIM\ (T (B)) =
VIM)A](T(A)). Hence, if U(A)e D', VM \J(U(B)) = V[M)](U(A)). By induction
hypothesis for D', V[M,](P(B)) = V[M,](P(4)).

Lemma 8 If VIM\JAeC) =1 or 0 then AcC has a geneval dependent set
without any wffs of the form Ag B for any B, except for A and for BeDS.
The geneval dependent sets so constructed are such that (ii) is not applied
to any atomic wffs of form A'c A.

Proof. Let the wif AeC be W. The proof is by transfinite induction on
W), which is 0 or a successor ordinal. The induction hypothesis is that
the lemma holds for all wifs Ag C' (call it X) such that ¥(X) < y(W).

(i) ¥(W)=0: AeD%and Ce D% Let the general dependent set be D(W),
i.e., {W}. C(W) is not defined.

(ii) ¥(w) is a successor ordinal: I Ce DS, let the general dependent
set be D(W). Otherwise, V[M,y)-1](Z(A)) =1 or 0, where Z(A) is C(W).
Hence D(Z(A)) is a general dependent set of W. It has a subset Sof all
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atomic wifs of the form A ¢ B, except where B is A or where Be DS. For all
Q, if Q¢ S, then V[M,(y)-1)(@) = 1 or 0. Hence, by the induction hypothesis,
all these wifs @& S have general dependent sets @* without wffs of the

above form. Form the set (D(Z(A4)) NS) U (SJS Q*, which has no atomic
e

wifs of the above form. This is a general dependent set of W which
satisfies the lemma.

Lemma 9 If Ye A<>Ye B is valid in M), then Ac A<>B¢e B has value 1
in M.

Proof. Call AgA, W. Let V[M)J(W)=1 or 0. By lemma 8, W has a
general dependent set D' without atomic wffs of certain forms and
constructed in a certain way. For the sake of lemma 8, the right hand A of
A gA is regarded as different from the left hand A. So (ii) is applied in
forming a general dependent set of Ag A, but apart from this one instance
all the usual conditions apply. »(W) is either 0 or a successor ordinal.

() «W) =0: Then Ac DS,

(A) Let Be DS Then zg A<>z ¢ B is valid in M) and hence in M,. Because
the Extensionality Axiom holds in NBG, A€ y<>Bey is valid in M,. Hence,
Ae A«<>BeA and, since Be A<>Bg B, Ac¢ A<>Bg¢ B is valid in M, and hence
in M.

(B) Let B DS Then ze A<>z ¢ B is valid in M,. Hence by RLukasiewicz
logic, ~2¢ Avz ¢ B&.2¢ Av ~z¢ Bis valid in M). Hence, by construction of
Myt1, V[M4,])(Be A) = V[M ](A €A) and then, since V[M,](B € B) = V[M)\](B €A),
VIM\](B €B) = V[M\]A €A).

(ii) «W) is a successor ordinal: Then A ¢ D By lemma 6, all
members of D' have the value 1 or 0 in M,(y)-,. Hence W is not a member
of D'. Hence D' has atomic wffs containing A, only of the forms
A'g A(A'+ A) and Ae B', where B'e DS, Consider the atomic wff Ae B’

(A) Let ~zeAvzea&.~zeavzeA be valid in M, for some a. Hence
VIMy4.)(Ae B") = V[Myl@€B'). By the condition of the lemma, ~zeBv
ze¢a&. ~zeavzeBis valid in My. Hence V[M)4,|(BeB') = V[M,)(acB') and
V[M\(BeB") = V[M)](A € BY).

(B) Let (Ax)(S2)(2eA & ~zexv.2ex & ~zcA) have the value 1 in M. Hence
V[M\,J(AeB') = 0. (That is, the case (B) is not a possibility if
V[M\](AeB') = 1). By the lemma condition, (Ax)(S2)(2eB& ~2exv.2ex&
~z ¢ B) has the value 1in M. Hence V[My,[(BeB') =0 and V[M,)(BeB') =
V[M\J(AeB'). Hence, if QA)eD’, V[M(Q(B)) = V[M}(Q(A)). By lemma 17,
V[M\[(BeA) = V[My](A€A). Note that the substitution of B for A is only for
the left hand A because (ii) was applied to AgA. By the condition of the
lemma, V[M,\|(BeB) = V[M\|(B€A) and hence V[M,|(BeB) = V[M,](4AcA)
(similarly for the case when V[M,](BeB) is 1 or 0, by setting W as B¢ B).
Hence the lemma holds.

Theorem 4 The Extensionality Axiom (E) is valid in M.

Proof. We will prove: If VeA<>VeB is valid in M) then Ae Z<>BeZ is
valid in M). Let V[MJ(A€C) =1 or 0. By lemma 8, AeC has a general
dependent set D' without any wffs of the form A £ B’ for any B’ except for A
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and cases where B’e DS. Hence the only occurrences of A in D’ are of the
forms: A'eA (A'+ A), AeA and Ac B’ (where B'¢ D®). Consider the atomic
wff Ag B',

(A) Let AgDS.

(i) Let BeDS. Then zeA<>zeB is valid in M,. By the Extensionality
Axiom of NBG, V[M,[(BeB') =V[M,[(AeB') and hence V[M,[(BeB') =
V[M)\(A e B").

(ii) Let BZDS. Then zeA<>zeB is valid in My. By the Lukasiewicz
logic, ~2£AvzeB&. ~2eBvzeA is valid in My. Hence V[My,(BeB') =
V[M,|(A € B") and V[My[(Be B") = V[M)|(A € BY).

(B) Let A¢D*%:

(i) Let ~2eAvzea&. ~2cavzeA be valid in M, for some a. Hence
VM), J(AeB") =V[My|(ae B"). By the condition of the theorem, ~zeBv
zga&. ~zeavzeB is valid in My. Hence V[M, ,|(BeB') = V[My|(aeB') and
V[M\)(Be B") = V[M)](A € BY.

(ii) Let (Ax)(Sz)(zeA & ~zexv.2ex& ~2€A) have the value 1 in M.
Hence V[M)u)(AeB') =0. (That is, the case (ii) is not a possibility if
V[M\J(Ae B") = 1). By the condition (Ax)(Sz)(z2€B& ~z2exv.2€x& ~2¢€B)
has the value 1 in M,. Hence V[M\,,[(BeB') =0 and V[M,\](BeB') =
V[M\J(AeB'). Hence, in all cases, V[M,](Be B") = V[M,[(AeB'). By lemma
9, V[M\](Be B) =V[MA](A gA). By the condition of the theorem, V[M,](A’e B) =
V[M\)(A'eA). Hence, if Q(A)eD', V[M\](Q(B)) = V[M,](Q(A)). By lemma 7,
V[M\)(BeC) = V[M\)J(AeC). Similarly, if V[M\](BeC) =1 or 0, then
V[M\)J(AeC) = V[M)\](BeC). Hence the theorem holds.

Theorem 5 (Az2)(z ex<>z£X) O (Aw)(x e w<>X¢e w) is valid in M).

Proof. (i) Let A£DS. Let zca<>ztA be valid in M,. Hence ~zeav
2eA&. ~2¢Avzea is valid in My. Hence V[M,,J(Aec) = V[My|(@aec) and
VIM\(Aec<sacec) = 1, for any c € D5,

(ii) Let AeDS. Then, by the Extensionality Axiom for NBG, the theorem
holds.

Theorem 6 Each of the following are valid in M.
() Clxey)

(1) F(SCIX)) D F (Xex)

(¢id) P(SCI(X)) D P (Xex).

Proof. (i) is valid by definition of M,. Let V[M)](F(SCI(4))) = 1. Hence
VIM\J((Ax)(S2)(zex & ~2€Av.2eA& ~2¢€x)) =1 and V[M,4,](Aebd) = 0, for
any b. Hence F(Aex) is valid in M). Let V[M)](Aeb) =1 or 0. Then
either AeD’ zea<>zeA is valid in M, for some a, or (Ax)(Sz) ~
(zex<>zeA) is valid in M,. Hence SCI(A) has the value 1 or 0 in M,.
Hence if V[M,]( SCI(4)) = 7 then V[M,][(A€D) = 3.

Theorem 7 (AX)A(X) = (Ax) A(x) is valid in M,.

Proof. Let V[M,)((AX) A(X)) = 1. Then V[M,](A(X)) = 1, for all XeD. Hence
V[M\J(A(x)) = 1, for all x € D, since D’ C D. Therefore V[M,]((4x) A(x)) = 1.
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Let V[M)\J((AX)A(X)) = 3. Then V[MJ(A(X)) = 3 or 1, for all X. Hence
V[M\J(A(x)) = z or 1, for all x. Therefore V[M,]((Ax) A(x)) = s or 1.

Theorem 8. (Az)(zex =2¢£y) D (AZ)(Zex<>Zey) is valid in M),

Proof. Let zea<>zeb be valid in My. If Ae DS, then V[My(Aca<>Aeb) =
1. Let A¢ DS,

(i) ¥ V[M,](SCI(A)) = 1, then, for some c, zec<>z¢cA is valid in M).
Hence V[Myu.JAea) =V[Mylcea) and V[My,[(Aebd) =V[Myl(ceb). But
V[Mol(c€a) = V[My)(c€b) and so V[M)](Ae a<>Aeb) = 1.

(i) ¥ V[M](5CI(A)) =0, then V[MyJ(Aca) =0 and V[M)(Aeb) = 0.
Hence V[M)\[(Aea<s>Acb) = 1.

(iif) If V[M\)](SCI(A)) = 3, then V[M)\JAea) = 5 and V[M)[(Aeb) = 3.
Hence V[M\]J(Aga<>Ac€b) = 1.

4. The above method can be used to extend any set or class theory with a
two-valued model with an axiom of extensionality to a three-valued class
theory satisfying the axioms of abstraction and extensionality. By using
appropriate models of NBG, the consistency and independence of the axiom
of choice, the generalized continuum hypothesis and the axiom of construc-
tibility can be shown. Also the connectives and quantifiers of the three-
valued logic used to define standard wifs can be extended to include any
which satisfy the following property.

(i) Fov connectives T (P, ..., Dn).
Let V[M)(T(p,,..., p»)) =1 (or 0). Let X, (X,) be the set of indices ¢ such
that V[M](p,) = 0 (=1). For some structure M’, let X! (X;) be the set of
indices 7 such that V[M'[(q;) = 0(=1). I X,C X§ and X, C X{, then
VIM'(T(qy,.--,q,)) =1 (or 0).

(ii) For quantifiers (QX)A (X).
Let V[M}((@X) A(X)) = 1 (or 0). Let X, (X,) be the set of all X in D such that
V[M](A(X)) = 0 (=1). For some structure M', let X} (X/) be the set of all X
in D such that V[M'(B(X)) =0(=1). ¥ X, C X} and X, C X!, then
VI[M'[(@X)B(X)) = 1 (or 0).

(iii) For quantifiers (Qx) A(x).
Similar to (ii) except DS for D.

Proposition Any quantifier ov connective defined in tevms of quantifievs
and connectives satisfying the above property also satisfies the above
property.

Proof. (i) Commectives. Let VIMIT(A(qu,+-oy gyevvs Aulgysee., @) =1
(or 0), where T, Ay,..., A, satisfy the property. Let X, (X,) be the set of
indices ¢ such that V[M](q;) = 0 (=1). For some structure M', let X} (X}
be the set of indices ¢ such that V[M'|(v;) = 0(=1). Let X, € X} and
X, C X!. Let Y,(Y,) be the set of indices ¢ such that V[M](A;(g,...,4,)) =0
(=1). Let ieY,U Y,. Because Aj(q,..., g, satisfies the property, and
X, C Xp and X, C X{, V[M'(A;(r1,..., %) = V[M(Aiaq,..., q,)). Hence,
if Y§(Y]) is the set of indices ¢ such that V[M'[(A;(7,..., 7)) = 0 (=1),
then Y; C ¥! and Y, C Y). Since I(A,,..., A,) satisfies the property,
V[M'(T(A,, ..., Ap)) = 1 (or 0).
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(i) Quantifiers. Let V[M|(T((@X)A(A(X)))) =1 (or 0), where I, A and
(@X) satisfy the property. Let X, (X;) be the set of all X from D such that
V[M](A(X)) = 0 (=1). For some structure M’, let X{ (X{) be the set of all X
from D such that V[M'[(B(X)) = 0 (=1). Let X, C X} and X, C X!. Because
A satisfies the property, if V[M](A(A(X))) =1 or 0 then V[M'|(A(B(X))) =
V[M](A(A(X))), for any Xe D. If Y, (Y,) is the set of all X in D such that
VIMI(A(A(X))) = 0(=1), Y4(Y}) is the set of all X in D such that
V[M'[(A(B(X))) = 0 (=1), then Y, C Y} and Y, C Y]. Because (QX) satisfies
the property, if V[M](QX)A(A(X))) =1 or 0 then V[M'[(Q@X)A(B(X))) =
V[M]((@X)A(A(X))). Since I satisfies the property, V[M'|(T((@X)A(B(X)))) = 1
(or 0). Similarly for quantifiers, (Qx).

Some examples of connectives satisfying the property are the follow-

ing.
1 0 3 1 0 i
1 |1,00ors 1,00r% 3% 1 1 1,0o0r 3 3
0 | 1,00ors 1,0o0r3 3 0 1 1 lor 3
R S R E
1 1 1 | 1,00r%
0 1 0 1,0 0r 3
3 | lors 3 3

The FIukasiewicz (AX), (Ax), (SZ), (Sx) are examples satisfying the
quantifier property. The following connectives are not examples:

1|10 ¢ <10 & DlO%Tl c:|
1|1 0 3 1{1 0 % 1{1 0 3 1|1 1]1
ofl1 1 1 ofo 1 3 of1 11 o0 011
(1 &1 3|12z 1 31 11 30 3|0

To show that any of the connectives or quantifiers satisfying the
property above can be used to define standard wffs and hence be substituted
into the Abstraction Axiom, it is only necessary to examine lemmas 1 and 4
in the proof. Lemma 1 is obvious from the definition of the property. In
Lemma 4, leave out the original steps for the connectives and quantifiers
and replace it by the following.

(i) Let P(A) be T(R,(A), ..., R,(A4)) and let V[M,[(T(R,(A), ..., R,(4))) =
1 or 0. Let I(R,(A),..., Ri(A)) be W. Then V[M,y)JW) =1 or 0. Let
X, (X,) be the set of indices ¢ such that V[M,u)](R;(4)) =0 (=1). Since
UR;(A)) < v (W), for all ieX,UX,, D(R;(4)) C D(W), for allieX,UX,. By
the lemma condition, for each Q(A) € D(R;(A)) where i€X, U X;,V[M,\)(Q(B)) =
V[M\](Q(4)). By the induction hypothesis, V[M)\|(R:(B)) = V[M,\](R:(A)), for
all ieX,UX,. Let X{(X{) be the set of indices i such that V[M,|(R;(B)) =
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0 (=1). Hence X, C X§ and X, C X{. By the property of T, V[M)\[(T(Ry(B),...,
RAB) = V[Mun(T(RA(A), .. ., Ra(A))) and VIM(P(B)) = V[MJ(P(A)).

(i) Let P(A) be QZ)R(A,Z) and V[M)\)((RZ)R(A,Z)) =1 or 0. Let
(QZ2)R(A,Z) be W. Let X,(X,) be the set of all Z in D such that
VIMyan(R(A,Z)) = 0 (=1). Since W R(A,Z)) < YW) for all ZeX,UX,,
D(R(A,Z)) C D(W), for all ZeX,U X;. By the lemma condition, for each
Q(A) € D(R(A, Z)), V[M)\)(Q(B)) = V[M))(Q(A)), where zeX,UX,. By the in-
duction hypothesis, V[M\J(R(B, 2)) = V[M)\)(R(A, 2)), for all Ze X, U X,. Let
X4 (X!) be the set of all Z in D such that V[M,](R(B,Z)) = 0 (=1). Hence
X, C X} and X, C X|. By the property of (QZ), V[M\]((RZ)R(B,Z)) =
VM, (@Z)R(A, Z)). Hence V[My[(P(B)) = V[My](P(A)).

(iii) Let P(A) be (Qz)R(A,z). This case follows as for (ii) except that
DS replaces D.

5. There is a further generalization which allows any set or class theory
using a many-valued (finite or infinite) logic L and with a model in which
an axiom of extensionality is satisfied to be extended to a class theory,
using a logic L'of one more value and with a model in which the axioms of
extensionality and abstraction are satisfied.

The many-valued logic L must contain a quantifier S such that (SZ)A(2)
takes the value m (where m is some designated value) if and only if at least
one of the A(Z) are designated and takes the value n (where »n is some
undesignated value) if and only if all of the A (Z) are undesignated (similarly
for (Sz)A(2)); a quantifier A such that (AZ)A(Z) takes the value m (same as
above) if and only if all of the A(Z) are designated and takes the value n
(same as above) if and only if at least one of the A(Z) is undesignated
(similarly for (Az)A(z)); an equivalence connective <> such that p<>q is
designated if and only if p and ¢ take the same value; and an implication
connective D such that p O q is designated if and only if g is designated or p
is undesignated.

The many-valued logic L', which has an extra value (call it pd) added
to L, must contain appropriate extensions of S, A, <> and D. The value pd
is undesignated. p O g is defined so that it is designated if and only if ¢ is
designated or p is undesignated. p<>q is defined so that if p and g take
values in L, then p<>q takes the value in L, if p does not take the value pd
and g takes the value pd or if p takes the value pd and g does not then
p<>q takes the value pd, and if p and g both take the value pd then p<>q is
designated. The quantifier S is defined in L’ as follows, If A(Z) has a
designated value for some Z, then (SZ)A(Z) has the value m. If A(Z) has an
undesignated value, not pd, for all Z then (SZ)A(Z) has the value =.
Otherwise (SZ)A(Z) has the value pd. The quantifier A is defined in L' as
follows. If A(Z) has a designated value for all Z, then (AZ)A(Z) has the
value m. If A(Z) has an undesignated value, not pd, for some Z, then
(AZ)A(Z) has the value n. Otherwise (AZ)A(Z) has the value pd. Similarly
for (Az)A(2) and (Sz)A(2).

The Extensionality Axiom can now be stated as (AZ)(ZeX<>ZeY) D
(AZ)(Xe Z<>Ye Z). The Abstraction Axiom can be stated as (SY)(4X)
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X eY<>0(X, 215+00y Xmy Z1y---5 Zn), Where ¢ is constructed from atomic
wifs Ue V, Ut v, ue V, u€ v, using the connectives and quantifiers used in
forming standard wffs. The Extensionality Axiom for special classes can
be stated as (Az)(zex<>zey) D (Az)(xez<>yez). SCI(X) is defined as
(Sx)(Az)(z ex<>zEX).

The propositional constants are left out from the atomic wifs and if
atomic wifs with some of these values are wanted then perhaps an atomic
wif of the form aebd can be used. The connectives and quantifiers used in
forming standard wifs are ones which satisfy the following property S.

(i) For commectives I(py,..., p,). Let V[M] I(py,..., p,) = k, some
value of L. Let X, be the set of indices ¢ such that V[M](p;) = m, for each
value m of L. For some structure M’, let X), be the set of indices 7 such
that V[M')(q;) = m, for each value m of L. If X, C X}, , for all m of L, then
VMK - -5 4) = B

(ii) For quantifiers (@X)A(X). Let V[M]((@X)A(X)) = k, some value of
L. Let X, be the set of all X in D such that V[M](A(X)) = m, for each value
m of L. For some structure M', let X be the set of all X in D such that
V[M'(B(X)) = m, for each m in L. I X, C X}, for all m of L, then
VIM"((@X)B(X)) = k.

(iii) For quantifiers (Qx)A(x). Similar to (ii) except D for D.

Note that the quantifiers S and A in L' satisfy the property S. For the
definition of M; < M,, for two structures M, and M, the generalization is
as follows. M, < M, if and only if, for any atomic wff P, if V[M,|(P) = m,
for some value m in L, then V[M,](P) = m.

Lemma 1 follows by the generalized property for connectives and
quantifiers used in forming standard wffs. It takes the form:

Let M < M', wheve M and M' ave two structures on D. Then, for any
standard wff P, if VIM)(P) = m, for some value m in L, then VIM')(P) = m.

Define the structure M, as follows. If A¢D® or B¢D®, then V[M,)(A€eB)=
pd. If AeDSand Be DS, then V[M,|(A e B) = the value of L given to A& B in
the model of the special class theory.

Assuming M, defined for some ordinal pu, M,,, is defined as follows.
For all standard wifs P, V[M ,,,](Ae{X : P(X)}) =V[M,|(P(A)). If V[M,](zeA)=
V[M,](z €a) for all z € D5, for some a £ DS, then V[M,, A €b) = V[M,|(aebd).
If there is no a&DS such that for all zg DS V[M,](z €A) = V[M, |(z €a), then
VIM 4. ]A eb) = VM, ]( SCI(A)).

Note that SCI(X) has the property S, because 2z £x only takes values in
L. Also V[M,)(z€A) = V[M,](z £a) for all z £ D5, for some a ¢ D’ if and only
if V[M,](SCl(4)) is designated, and there is no a D’ such that for all
z2eDS, VM, J(z €A) = V[M,](z €a) if and only if V[M,]( SCI(4)) is undesig-
nated.

If 4 is a limit ordinal, on the assumption that M, <M, for all v < 7,
for all 7< p, for all atomic wifs P, if V[M, ](P) =k, for some value % in L,
for some v < p, then V[M, |(P) =%, and if V[M,](P) = pd for all v < y, then
V[M,](P) = pd.
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Lemma 2 follows similarly to the previous proof. In case (B), let
V[M, (A €b) = k, for some value & in L. Then there is an ordinal < v such
that V[M;]( SCI(4) = I, for some value I in L. Sincen s pu~- 1, M, < M,t._1
Hence V[M,-;]( SCI (A)) =1. If 1 is undesignated, ! =k and V[M,,](A £b) =
If [ is designated, then there is an a € DS such that V[M,](z €a) = V[My](z sA)
for all ze D%, Then V[M,)(aed) = k. Hence V[M,_,](z €A) = V[M,](z €a), for
all ze D%, and V[M, |(A £b) = k.

Lemma 3 follows as before except that there is one increasing chain of
subsets of the denumerable set of all atomic wffs for every value in L.
Theorems 1, 2 and 3 follow similarly to their previous proofs. The
definitions of v(P) and dependent set D(P) are the same except that all
values of L must be put in place of values 1 and 0.

Lemma 4 can be shown for connectives and quantifiers satisfying the
property S by a simple generalization using X, where 2 runs over the
values of L, instead of X, and X,.

Corresponding standard wifs and general dependent sets are defined as
before. Lemmas 5, 6, 7 and 8 follow as before with the values of L in place
of 1 and 0.

In lemma 9, (ii) (A) becomes: Let SCI(A) be valid in M,. Then
V[M\[(zeA) = V[M)](z€a), for all zeD’, for some aeD’. Hence
[My+:](A€ B') = V[M,)(ae B'). By the condition of the lemma, V[M](z € B) =
[M)](z€a), for all zeDS. Hence V[Myy|(BeB')=V[M,|(acB'). Hence
[M\)(ae B') = V[M,)(Be B"). (ii) (B) becomes: Let SCI(A) be invalid in M,.
[M)](SCI(A)) # pd because V[M\](AeB') is a value of L. Hence
[My1:](A € B') = V[M,]( SCI(A)). By the lemma condition, V[M,]( SCI(4)) =
[M)](SCI(B)). Hence V[My|(BeB') = V[M,]( SCI(4)) and V[M,](BeB') =
[M)\](A€ B"). The rest of lemma 9 follows as before.

In Theorem 4, (B) (i) and (B) (ii) are similar to (ii) A and (ii) B
respectively of lemma 9. Otherwise the theorem follows as before.
Theorem 5 follows as before.

Theorem 6 needs two monadic operators: C such that Cp is designated
if and only if p takes a value in L, and U such that Up is designated if and
only if p is undesignated. Theorem 6 becomes: (i) C(xey) and
(ii) U(SCI(X)) D . SCIX)<>X¢e x . are valid in M), both of which are obvious.

Theorem 7 becomes: (AX)A(X) D (Ax)A(x) is walid in M), which is
obvious.

Theorem 8 becomes: (Az)(zex<>ze9y) D (A2)(Zex<>Z<ey) is valid in

<<<<<<<

M.
Proof. LetA ¢DS. Let ze a<>z¢ b be valid in M.

(i) If SCI(A) is valid in M), V[My](ze A) = V[M,](z€c), for all z € DS, for
some ceDS. Hence V[Myyul(Aea) = V[MoJc €a) and V[Myu](Aed) =
V[M)c € b). But V[Mo](cea) = V[M,](c €b) and so A eb<>A ga is valid in
M.

(i) If SCIA) is invalid in My, V[My,|(Aca) = V[M,,,](Aed) =
V[M,](SCI(A)). Hence At b<>Aca is valid in M).

6. The above method of avoiding the class paradoxes has certain advan-
tages. It allows each predicate to generate a class and separates the
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‘‘paradoxical’’ class membership statements from the ‘‘non-paradoxical’’
ones using a criterion of circularity of definition. For, in order for a
membership statement to take the value ; (or pd), there must be some
circularity involved, in the sense that its value is dependent on itself or on
the values of membership statements whose values are dependent on
themselves. If there is no such circularity then there is a chain of
dependent membership statements leading from the membership statement
in question right back to membership statements of NBG (or other model)
and propositional constants (# 3 (or pd)). This is represented in the proof
by the general dependent sets of a membership statement. If there is such
a chain of dependent membership statements then the membership state-
ment in question takes a value # 3 (or pd). Basing the system on NBG
allows the whole of mathematics to be deduced in the usual two-valued
logic. One can make true and false statements about the universal class
and Russell class which cannot normally be made in other attempts to avoid
the class paradoxes. One can make true and false statements about classes
of proper classes which cannot be made in NBG.

By defining all classes which can be generated by a predicate we can
get a broader picture and see how the paradoxes arise; indeed, it shows
that it is the circularity of definition of certain membership statements that
leads move divectly to the paradoxes than just the inclusion of a certain
range of classes because true and false statements can be made about these
classes and further, by using some general criterion for the rejection of
classes one may well reject classes which lead to no paradoxes at all.
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