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THE PRAGMATICS OF FIRST ORDER LANGUAGES. I

ALBERT SWEET

1. Introduction: Pragmatic Interpretations According to the well-known
semiotic principle of Peirce, every signification is a triadic relation
between sign, object, and interpretant. In this paper we shall investigate
the structure of this relation, in the case where the signs are formulas of a
first order language, their objects are taken to be elements in a model of
the language, and their interpretants are taken to be certain valuing
dispositions of the users of the language. We shall show that there are
pragmatically definable linguistic models of the theory of polyadic Boolean
algebras [1]. Then we may represent first order languages by such
linguistic algebras, and their models by appropriate functional algebras;
we shall represent the relevant valuing dispositions of the users of first
order languages by means of pragmatic interpretations, which we now
define.

Let L be the set of all finite sequences of the elements of a given
non-empty finite set Lo. Let V be a three-membered set, which we
represent as {0, 1, 2}. Let C, U, W be arbitrary non-empty sets, disjoint
from one another and from L and V. Intuitively, L is the set of expressions
of a language with alphabet Lo, C is a set of conditions under which the
expressions of L may be valued in the set V by the members of the set U of
users of L, and W is the set of times at which expressions of L may be
valued. The elements 0, 1, 2 of V may be regarded as, respectively, the
values reject, accept, neither accept nor reject. The set C may be
regarded as the total evidence available to the users of L, and subsets of C
as partial evidence, for valuing the expressions of L in the set V.

Let (E be the set of all subsets of C. Let D be the set of all mappings d
from the Cartesian product U x W x € into V such that, for all u, ure U;
w, wre W c c C :

(1.1) d{u,w,c) = d(uf,wf,c) if d(u,w,c) φ 2 Φ d(u',w',c).

An element (u, w, c, υ) of a mapping d in D may be regarded as a disposition
of the user u, at time w, under the set of conditions c, to perform the
valuation υ. (1.1) is a condition of uniformity on the mappings d in D, in the
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sense that such d will contain no dispositions to perform distinct valuations
under conditions germane for the valuations, i.e., under conditions with
respect to which accepting or rejecting valuations are performed. The
constant function in d which maps all (u,w,c) on 0, we shall call do;
similarly for dγ and d2.

It is natural to regard appropriate functions Π from L into D as
pragmatic interpretations of L, insofar as Π assigns to each expression of
L a set of valuing dispositions. If Π is a mapping from L into D such that
there are expressions e, e', e" in L for which

(1.2) H(e) = do; ΐl(e') = d,; Π(e") = d2

then we shall say that Π is a pragmatic interpretation of L. (1.2) insures
the existence of what we shall call the " c o r e " of a pragmatic interpreta-
tion: if Π is a pragmatic interpretation of L, we define the core of Π to be
the mapping π from L x δ onto V such that:

l\ <*) ( ) = \2' ^ π ( β ) K ^ c ) = ZforallueK), we)N.
K } n ' ' (0(1),*/ Il(e)(u,w,c) = 0(1) for some ue\J, weΉ.

for all ee L, c c C, where Π(e)(u,w,c) is the value of the function ΐl(e) for
the argument (u,w,c) in U x W x (L The single-valued property of π defined
by (1.3) follows from (1.1). From (1.3) we also have, for all ee L, c c g :

(1.4) IfU(e) = ϊl{e'), then φ,c) = ir(e',c).

We shall often employ (1.4) without explicit mention of the fact.
The core of a pragmatic interpretation Π of L represents the structure

of Π which is invariant under transformations on Π, regarded as a set of
ordered quintuples (e,u,w,c,v), which leave e and c unchanged: the values
v Φ 2 are preserved under such transformations. It is this invariant
property of pragmatic, interpretations which, we assume, may determine
objects of the signs of L which are uniformly grasped by their users. We
proceed now to clarify this idea in the following manner.

A pragmatic interpretation of L which induces on an appropriate subset
of L the structure of a polyadic Boolean algebra, we shall call a polyadic
interpretation of L. Polyadic interpretations are generalizations of sen-
tential interpretations, which are studied in section 2. Polyadic interpreta-
tions are studied in section 3. In section 4 it is shown that a polyadic
interpretation of L induces on an appropriate subset of L the structure of a
polyadic Boolean algebra. Finally in section 5 the results of the preceding
sections are applied to the problem of characterizing the structure of the
sign relation.

2. Sentential Interpretations Pragmatic interpretations of L which induce
on an appropriate subset of L the structure of a Boolean algebra, we shall
call sentential interpretations. It is convenient first to define the concept
of a proto-sentential interpretation, the motivation for which will become
evident subsequently. We shall refer to a sequence of expressions in L by
juxtaposing the terms which refer to the elements of the sequence.
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Dl. Π is a proto -sentential interpretation of L iff Π is a pragmatic
interpretation of L and there are distinct elements & and ~ of L such that
for all s, sr in L:

I. If U(s) (u, w, c) Φ 2 for some ue U, we W, c c c , then Π(&s ~ s) = do

II. j / s contains only & and ~, ίften Π(s) = d2.

III. ξf Π ( & s ~ s ) = do = Π ( & s ' ~ s ' ) , ίften Π ( & ~ s — s ) = dQ = Π(&&ss '~&ss ' ) .
IV. /jf Π ( & s ~ s ) = d0 = Π ( & s ' ~ s ' ) , ίfcew /or aZZ (u,w,c) in U x W x β , ίfee
values of Π(~s) and Π(&ssf) and (partially) fixed by the values of Tί(s) and
Π(s') according to the tables:

& I 0 1 2

0 1 0 0 0 0
1 0 1 0 1 2
2 2 2 0 2 (*1)

V. For all c c C , if Π(s)(u,w,c) = 1 for some ue \J, we W and Π(sf)(w, w,c) =
1 for some ue\J, we\N, then Π(& ss')(u,w,c) = 1/or som£ ue\J, we\N.

If Π is a proto-sentential interpretation of L, we define:

(2.1) S ={se L: Π(&s~s) = <20}.

By Dl (II): &, ~ / S . By Dl (III): if s, se S, then so are ~s and &ss'. By
Dl (I) and (1.2), S is non-empty. If s,s'eS and ΐl(s)(u,w,c) = 2 =
Π(s f)(^,^, <?), then Π(&ss')(u,w9c) is not uniquely determined by the table
for &: at the argument (u,w,c), Π(&ss') may be either 0 or 2. This
ambiguity may be diminished by further conditions on Π, as in the
subsequent definition of sentential interpretations; but functionality of the
table for & is at any rate not required for the results at which we are
aiming. It is rather the functionality of pragmatic interpretations (and
their cores) which will prove fruitful.

We proceed now to the definition of sentential interpretations. For
perspicuity in referring to expressions of S, we introduce the following
definitions: "(s)&(s f )" for "&ssr", and "~(s)" for " ~ s " , where s, s'e S.
We shall omit brackets introduced by such definitions when this con-
venience is unambiguous. It is also useful to introduce the following
substitutivity notation. Let e(er) be an expression of L containing any
number of occurrences of e'. Then for all err in L we define:

j e(en) expresses ambiguously any result of substituting
\e" for e* at any number of occurrences in e(ef).

In the following definition S is to be understood in the sense of (2.1).

D2. Π is a sentential interpretation of L iff Π is a proto-sentential
interpretation of L and for all ee L; s, s f, str e S; c c C; ue U; we W:

I. // Π(s & - sr)(u, w, c) = 0 = Π(s' &~ s")(u, w, c), then U(s & - s")(u, w, c) = 0.

II. IfU(s8z~s')(u, w,c) = 0, then Π((s & s") & ~ (s f & s"))(u,w,c) = 0.
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III. U(e(s)) = Π(e(—s)).

IV. H(e(s&s')) = U(e(s'&s)).

V. Π(e((s&s f)&s")) = Π(e(s&(s'&s"))).
VI. Π(e(s)) = U(e(s&s)).

Let 77 be the core of a sentential interpretation of L. Then 77

determines a natural equivalence relation R^on the set S (defined by (2.1)),

with respect to which S has a Boolean structure. R^ is defined:

(2.3) R^s9s
f) ijfπ(s&~s',C) = 0= τr(s'&~s,C),

for all s, s'e S. R^ is an equivalence relation on S, by (2.1) and D2(I). Let

& be the binary operation on S such that &(s, sf) = s& s\ Let <- be the unary

operation on S such that ~(s) = ~s. Then from D2 and Dl it follows that:

(2.4) (S,§i,2$ is a Boolean algebra with respect to Rπ.

The proof of (2.4), with inessential differences, is contained in [3]. From

(2.4) it follows that, if R is the intersection of all Redefined by (2.3), then

(S, R) is a sentential calculus. We now define:

(2.5) T o = {se L: π(s,C) = 1}.

By (1.2), To is non-empty, and by D1(I), To is a subset of S. We now assert:

(2.6) (S, To) is a consistent Boolean logic with respect to Rπ .

To contains exactly the elements of S which are R^—equivalent to ~(s& ~s),

where se S. Thus To is a filter of the Boolean algebra on S, with respect to

R^ Moreover, if s, ~se To, then ττ(s,C) = 1 = ττ(~s,C), against D1(IV). Thus

(2.6) is true.

The logic (S, To) is complete, in the sense of To being maximal in S, iff

τr(s,C) Φ 2, for all se S. The intersection of all To defined by (2.5) contains

exactly the tautologies of S, i.e., the elements of S mapped to 1 by every

homomorphism of the algebra (S, &, ~) onto the simple Boolean algebra.

3. Polyadic Interpretations Pragmatic interpretations of L which induce

on an appropriate subset of L the structure of a polyadic Boolean algebra,

we shall call polyadic interpretations. It is convenient first to define the

concept of an I-interpretation of L, the motivation for which will become

subsequently evident.

D3. Π is an I -interpretation of L iff Π is a proto -sentential interpretation

of L and there is a unique element 3 of L, distinct from & and ~, such that

I = {ie L: Π(3i p) = d0for some pe L} and for all e, e1 in L and i in I:

I. Π(3&£) = Π(3~e) = Π(3 3e) = d2.

II. n(e&i er) = Π(e~* e') = d2.

III. Π(β&) = Π(e~) = Π(e3) = d2.

ΓV. If e contains only &, —, 3, and i, then ΐi(e) = d2.

V. If ΐl(li ei...i~ei...i) = d0 (n occurrences of i), then (3i e i.. Λ~

e i.. Λ) = d2 (m Φ n occurrences of i).

VI. I is infinite.
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VII. // Π(&e ~e) ~ d09 then every occurrence of ie I in e is in a part of e of
the form 3z e\ for some e'e L.

From D3(I) it follows that &, ~, 3/1. From D3(IV) it follows that 3/S.
We now define, for positive integer n\

(3.1) Pn = {Fe L: U(Ίi8ιFi . . . i ~Fi . . . i) = d0 for some ie\ (n occurrences

oft)}.
(3.2) K = {ae L: Π(&F a...a~Fa...a)= d0 for some Fe Pn(n occurrences

of a)}.

Intuitively, I is a set of individual variables, Pn is a set of predicates of
degree n, and K is a set of individual constants; these intuitions will be
justified in section 4. We now assert that by D3(Π) and (IV): &, ~, 3jέPn.
And by D3(IΠ): &, ~, 3/K. Finally, from D3(V) it follows that the sets Pn

are pairwise disjoint. The infinitude of I is required in definition (3.11).
As a preliminary to defining the concept of a polyadic interpretation,

we define the concept of a proto-polyadic interpretation. Let Pn and K be
defined by (3.1) and (3.2) respectively.

D4. Π is a proto-polyadic interpretation of L iff Π is an \-interpretation of
L for some I and for all F, tίt..., tn, p, q, e, e' in L:

I. // FePn and t u .. ., feel U K, then for some eeL, Il(e&F tλ.. Λn ~
Ft1...tn) = d0.
II. IfH(e&p~p) = do = H(e'&q~q), then U(e" &&p q -& p q) = d0,for some

e"e L.
III. IfU(e&p~p) = d0, then π{e&~p—p) = d0.
IV. Ifll(e&p~p) = d0 and ie\, then U(e& 3i p~ 3i p) = d0.
V. If U(e 8ιp~p) = dQ, then one of the following conditions holds:

(a) p = Fti.. Λv for some FePn and tly..., tne I U K.
(b) p = hqr and Ϊl(e8ιq~q) = d0 = H(e&r~r) for some e} q, ret.
(c) p = ~q and U{ehq~q) = d0 for some e, qeL.
(d) p = li q and Ii{e&q~q) = d0for some e, qeL.

If Π is a proto-polyadic interpretation of L, we define:

(3.3) Q = {peL: Tl(e&p~p) = d0 for some eeL}.

Then by D4:

(3.4) Q is the smallest subset of L such that:

(a) F h *„eQ,if FePn and tl9..., tne\ U K.
(b) hp q, ~p, It />eQ, if p, qeQ and ie\.

The set S defined by (2.1) is a proper subset of Q, since one may let e in
(3.3) be the empty expression; properness of S follows from D3(VII) and
D4(I). The set P = P 1 U P 2 U . . . defined by (3.1) is non-empty, by (3.4).

For perspicuity we introduce the following definitions: "(/>)& (q)" for
"&pq", "~{p)" for "~p", "(li)(p)" for "lip", and "F(tl9..., tn)" for
((F tx... tn", whenever p, qeQ; ie\; FePn; t19..., tne\ U K. We shall con-
tinue to omit brackets when this convenience is unambiguous.

We shall define a polyadic interpretation as a proto-polyadic interpre-
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tation which induces a polyadic Boolean algebra on the set Q. In virtue of
(3.4), the elements of Q may be regarded as (first order) predicate
formulas by labelling the sets P1, P 2 , . . . , I, K, {&, ~, 3} as sets of predi-
cates of degree 1,2,.. ., individual variables, individual constants, and
appropriate logical constants, respectively. We shall show that in the
pragmatically induced polyadic algebra on Q, there is a representation of
each of these sets which justifies their being labelled as syntactic
categories in the above manner. We now outline this representation,
indicating for each of the above syntactic categories the theorem (to be
proved subsequently) expressing its algebraic counterpart.

The expressions F ePn are representable as predicates (Theorem 2),
and I is the set of variables, of the polyadic algebra induced pragmatically
on Q (Theorem 1). Expressions of the form li, with ie\, are representable
as quantifiers of this algebra (Theorem 1). Expressions of K are
representable as individual constants of the algebra (Theorem 3). The
expressions & and ~ are representable as Boolean operations of the
algebra (Lemma (4.2)).

Henceforth we shall refer to the elements of Q as (predicate) formulas
(of first order), and to the elements of P, I, K, {&, ~, 3} in the grammatical
terminology indicated above. We shall also require the concepts of free
and bound variables of formulas of Q, which may be defined in the usual
way: an occurrence of a variable i in a formula p is defined to be bound if
it is part of an occurrence of some formula It q in p; otherwise the
occurrence of i is free. If p has no free variables, it is closed; otherwise
it is open.

The task of defining polyadic interpretations is facilitated by intro-
ducing the following notation for the formulas of Q. The elements of I may
be ordered lexicographically, in the customary way. Let J = {il9..., in] be
any finite subset of I, in lexicographic order. We then define:

(3.5) 1JP= Hi... in p .

Let H be the set of free variables of p. H is finite since p is a finite
sequence of elements of Lo. We then define, for all j c I:

(3.6) l(j)(p)=\"Jpί{J!ufίnίte'
(ljnHp otherwise.

It is useful to abbreviate "3(l)(/>)" as "l{p)". Then with the customary
conventions about omitting brackets, if H is the set of free variables of p9

3(#)p = 3p. From (3.6) it follows that, where Λ is the empty set:

(3.7) 3(Λ)/> = />.

We may now define the concept of a polyadic interpretation, provided
we apply to the formulas of Q the concept of relettering of bound variables
in the sense of alphabetic variation [2]. If 3z p and 3j q are formulas of
Q, then they are defined to be immediate alphabetic variants if q is like p
except for containing free j where and only where p contains free i. In the
following definition the substitutivity notation (2.2) is employed.
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D5. Π is a polyadic interpretation ofL iff Π is a proto-polyadic interpreta-
tion of L and for all p, q, reQ; J c |; eeL; ue\J; weW; c c C:

I. U(l(p&~l(J)p&q)) = d0.
II. // U(l(p&~q)){u,w,c) = 0 = Π(3(tf&~r))(κ,«;,c), ίftew Π(3(£&~r))

(̂ , #;,c) = 0.
III. IfIίQ(p&~q))(u,w,c) = 0, then U(l((p&r) & ~(q&r)))(u,w,c) = 0.
IV. U(e(p)) = U(e(—p)) = Π(e(/> &/>)).
V. Π(e(/>&?)) = U(e{q&p)).
VI. Π(e(ί&((?&r))) = Π(e((p&g)&r)).
VII. /jfΠ(3(p&~#))(tt,w,c) = 0, tfz£rc Iί(3p)(u,w,c) = Il(3(p&q))(u,w,c).
VIII. Π(e(3(J)(ί>&3(J)^))) = Π(e(3(J)p&3(J)^)).
IX. //Π(3(p&-^))(w, W, C) = 0, ίfeew Π(3(3(J)p& ~3(J)^))(M,M;,C) = 0.
X. If J contains no free variables of p, then U(e(p)) = U(e(l(J)p)).
XL Il(e(lilj p))= π(e(ljlip)),ifi,je\.
XII. If p and q are immediate alphabetic variants, thenU{e{p)) = U(e(q)).

Let 77 be the core of a polyadic interpretation Π of L. Then we have the
following consequences of D5 (Roman numerals refer to conditions of D5
unless otherwise indicated). By I, (3.7), V, and VI, for all cC C, p eQ:

(3.8) ir(3(/>&~/>),c) = 0.
(3.9) Ifττ(ip,c) = 0, then τr(3(p&q),c) = 0,

for all p, qeQ. For proof of (3.9) we note that by hypothesis and IV,
π(3(/>&~~p),c) = 0. Then by II, τr(l((p&q)&~(~p &q)),c) = 0. Then by VII
and I: π(Hp&q),c) = τr(3(p& q&~p&q),c) = 0.

From (3.7) and (3.8) one may establish the useful proposition:

(3.10) π(3((/>&dr)&~p),c) = 0 = τr(3((/>&<7) &-<?),c).

The theory of polyadic interpretations includes the theory of sentential
interpretations. For if Π is a polyadic interpretation of L, then Π is a
proto-sentential interpretation of L and there is S ^ Q, with S defined by
(2.1) and Q by (3.3). Then by D5(I - VI), Π and S satisfy the definiens of D2,
so that Π is a sentential interpretation of L. Then (S, &, ~) is a Boolean
algebra with respect to R̂ , defined by (2.3), and all the Boolean properties
of S which are established in section 2 are also forthcoming. By (3.8) and
D3(VΠ), S is the set of closed formulas of Q.

We shall conclude this section by formulating a notation for expressing
substitution operations on free variables of formulas peQ, which will be
useful in characterizing the pragmatically induced polyadic structure on Q.
Let T be a transformation on the set I of variables. Let ily..., im be the
distinct free variables of peQ, in lexicographic order, such that iik is not
free for 4 m /> (1 — & — rn); i.e., there is an occurrence of 4 ™p which is
part of some formula 3τ4 q in p. Let j l 9 . . . , j m be the lexicographically
first m variables of I which are not in p nor among the variables Ί i, for i
free in p. Such j always exist, by the infinitude of I. With respect to the
above ik, jk e I, we define:
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, v _ the formula obtained from p by relettering each τ4
^τ ~ which occurs bound in p with jk

for all pcQ and transformations T on I. If p is closed, there are no T ^ , so
that pτ = p.

With respect to the operation of substituting terms for free variables
of a formula p, it is convenient to express p as p(il9..., in), where
il9...9in are the free variables of p, in any order; if p has no free
variables, then for the sake of convenience, the i19 . . . , in may be
chosen in any way, so that we may apply this notation to all formulas of
Q. If T is a transformation on I, then p(τil9..., iin) expresses the result of
substituting τi for free i in p = p(il9..., in). Thus if p is closed,
p(τίl9..., iin) = p(ii, . . . , i n ) = P, f o r a l l i u . . .ine\.

We now define a substitution operation S(τ) on the peQ, for each
transformation T on I, whose value S(τ)p is the formula obtained from pT by
substituting ΊI for free i in pτ. Expressing/) as p(il9..., in), according to
the above substitution notation, we define:

(3.12) S(τ)(p(ί1,...,iJ) =/> r(τί!,..., TtJ.

If p i s closed, S(τ) p = p(ril9..., iin) = p(i19...,*„) = P, for al l iy,..., ine I.

F r o m definition (3.12) it follows that :

(3.13) S(τ)~p = ~S(τ)Λ

(3.14) S(δ)p=p,

where δ is the identity transformation on I.

(3.15) S(σ) 3(J) p = S(τ) 3(J) py if σ = 7 on \ - J.

LetaeK, peQ, j c |. Then we define:

/« - fix / x _ j ^ β formula obtained by replacing with a all
\ P\aj) - I vaγiahies ιn j wkich occur free in p.

If p is closed, then p(αj) = />, for all J C | , it also follows from (3.16) that,
for a l l J , # c | :

(3.17) (p&q)(aj) = p{a3) &q(aj).
(3.18) (~PK«j) = ~(P(aj)).

(3.19) M«Λ)=/>

(3.20) p(fljuιι) = (P(Λj))(αtf).
(3.21) ( 3 T O ( f l j ) = 3(ff)(/)(flM)).

4. Polyadic Boolean Algebras of Predicate Formulas Let Π be a polyadic
interpretation of L, π its core, and let Q be defined by (3.3), throughout this
section. Then there is a natural equivalence relation E^ on Q, with respect
to which Q has a polyadic Boolean structure. E^ is defined, for all/), q eQ:

(4.1) Ev(p,q) iff τr(3(/)&~<7),C) = 0 = π(3fe&~/>),C).

Eπ is an equivalence relation on Q, by (3.8) and D5(Π). The statement and
proof of the proposition that there is a polyadic Boolean algebra induced on
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Q by Π requires the following lemma. Let &.(/>, q) = pSzq and ~(p) = ~p, for
p, qeO. Let En be defined by (4.1).

(4.2) (Q,j&,_2l) is a B°°lean algebra with respect to Eπ.

Proof: (Roman numerals refer to conditions of D5, unless indicated
otherwise.) Q is closed under the operations &_ and _~, by (3.4). By (3.8),
φ((p&q)&~(P&q)),C) = 0. Then by V, π(3 ((p&q) &~ (q &/>)), C) = 0. In this
way one shows:

(i) Eπ(p&q,q8zP).

In the same way one may show:

(ii) EΠ(P&(q&r),(P&q)&r).

We next show:

(iii) if Eπ(p,q),then Eπ(~p,~q).

By hypothesis, π(3(p&~q),Q = 0. Then by IV and V, π(3(~?&~~/>),C) = 0.
In this way one obtains (iii). We next assert:

(iv) if Eπ (p ,q), then Eπ(p & r, q & r),

which follows directly from III. We next assert:

(v) if Eπ(p&~q,r&~r), then Eπ(p,p&q).

By hypothesis, ττ(3((/>& -?)& ~(r& ~r)),C) = 0. Then by VII and (3.8):
τr(3(/>&-<?),C) = ff(3((/>&-^)&(r&-r)),C) = 0. Then by III, IV, V: π(3((/> &
/)) &~(q8ιp)),C) = iτ(l(P&~(P&q)),Q = 0. This with (3.10) gives (V). We
next show:

(vi) if Eπ(P,p8zq),then Eπ(P& - ^ , r & ~ r ) .

By hypothesis, π(3(/>&~(p&q)),C) = 0. Then by (3.10), II, and (3.9):
π(3(/>&-^),C) = O = π(3((ί>&~^)&-(r&-y)),C). For all ft ^, r e Q : π(3((r&-
r)& (̂/> & ~ί?)),C) = 0. Thus (vi) is true; and by (i)-(vi), (4.2) is proved.

Let _S be the mapping from transformations T on I to transformations
S(τ)r on Q, defined by (3.12). Let 3̂  be the mapping from subsets J of I to
transformations 3(J) on Q, defined by (3.6).

Theorem 1. (Q, l,_S,j[) is a locally finite polyadic Boolean algebra of
infinite degree, with respect to Eπ.

Proof: We first show that (Q, I; :S) is a transformation algebra with respect
to Eπ. By (3.8) and (3.13):

(SI) Eπ(S(τ)~P,~S(τ)p).

We next observe that S(τ)(p&#) and S(τ) £&S(τ)# are alphabetic variants,
i.e., intertransformable by a succession of immediate alphabetic varia-
tions. For:

S(τ)/>(ή, ...,im)& S(7)q(im+1,... , z m 4 j = pτ(τil9... ,iim) 8ιqΓ(τim+1,..., τ z O T + n ) ;

S(7)(p&q)(il9..., im, im+1,..., im+k) = (p &q)λΊh, > -, τ i O T + Λ ) ;
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where im+ί,..., ίm+jz are the free variables of q distinct from those of p.
Thus S(τ)(£&#) and S(τ)p&,S(τ)q differ at most in relettering of bound
variables, as follows. Any relettering in transforming p&q to S(τ)(/>& q) is
either identical to the corresponding relettering in transforming either p to
S(τ)/> or q to S(τ)#, or else employs a variable which does not occur in S{i)p
or S(τ)#. Then S(τ)(p&<?) may be obtained from S(τ)£& S(i)q by successive
reletterings with variables not in the latter, so that the two formulas are
alphabetic variants. Then by (3.8) and repeated applications of XII:

(52) Eπ(S(τ)(p8ιq), S(τ)p& S(τ)tf).

By (SI) and (S2), the transformations S(τ) on Q are Boolean endomor-
phisms with respect to Eπ. If δ is the identity transformation on I, then by
(3.14):

(53) E^Sίδ)^.

S(στ)p and S(σ)S(τ)p are alphabetic variants, where σ and T are
transformations on I. For S(στ)p(i1,..., in) = pσΓ ( α i ^ , . . . , στzw), and
S(σ)S(7)p(il9..., in) = S{d)pT{iiu . . . , iin) = (p Γ ) σ (στ^,. . . , στ4). Now p is
an alphabetic variant of pστ, since the latter is obtained by relettering
distinct bound variables of p with distinct variables not in p. For the same
reason, pτ is an alphabetic variant of p; and (pτ)σ is an alphabetic variant of
pτ, and hence of pσr. If any relettering with σii (for i free in p) is required
in the above alphabetic variation of pστ and (pτ)σ via pτ and p, then there is
an alternative relettering involving some variable distinct from such στί9

so that there is an alphabetic variation of pστ and (pτ)σ which does not
involve relettering with στz\ This is also an alphabetic variation of
Pστ(στiu . . . , σiin) and {Pτ)σ{σΊiu . . . , σiin). Thus by XII:

(54) Eπ(S(στ)p,S(σ)S(τ)/)).

We next show:

(55) f/EAifaE,(δ(τ)f,S(τ)ί),

By hypothesis of (S5), π(3(J)(/?& ~q),C) = 0, where J is the set of free
variables of p&~q. Now 3(τJ)S(τ)(p& ~q) is an alphabetic variant of
3(J)(/>&~ q). For any relettering in transforming p&~q to (p&,~q)r

requires variables distinct from those of p&~q and from those in T J .
Then by XII, π(3(S(τ)(£& ~<?)),C) = 0. Now S(τ)(/>&~<?) is analphabetic
variant of S(τ)/>& S(τ) ~q = S(j)p8z~S(7)q, as shown in the proof of (S2).
Then π(3(S(τ)£& ~ S(τ)#),C) = 0. In this way, (S5) is shown.

By (SI) - (S5), (Q, I,_S) is a transformation algebra with respect to Eπ.
We next show that (Q, I, 3) is a quantifier algebra with respect to E .̂ By
(3.7):

(31) Eπ{p,3(A)p).

By repeated applications of XI, for all J, H c |

(32) En(3(JUH)p,l(J)3(H)p)
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By VIII, for j c | :

(33) Eπ{l(J)(p&l(J)q), l(J)p&l(J)q).

We next observe that, by I, IV-VI: τr(3(/>& ~3(J)p),C) = 0. Then by III,

τr(3(p& ~(p& 3(J)/))),C) = 0. This with (3.10) proves:

(34) Eπ(p,p&l{J)p).

Let E^ft,, q&~q) for some <? e Q. Then for all J c | :

(35) EΛ^ί^ftJ

Since Eπ(p0,q & - #), we have π(3(/>0& - (<?& ~tf)),C) = 0. Then by VII:

π(3/?0,C) = π(3(/>0& q& ~#),C) = 0 = π(Ί(H)po,C), where H is the set of free

variables of p0. Then by X, XI, for all J C | : π(3(J)3(ff)ft>,C) = 0 =

7r(3(ff)3(J)ί>0,C). Then by (3.9): τr(3(tf)(3(J)/>0& (~/>o)),C) = 0. This with I

gives (35).

(36) ifEπ{p,q), then E f f(3(J)p, 3(J)<?),

for all j c I. (36) follows immediately from IX. By (31)-(36), (Q, 1,3) is a

quantifier algebra with resepct to Eπ. For proof that (Q, I,_S, 3) is a polyadic

algebra, it remains to show that 3_ and _S are related in the proper way. If

J c I and σ = T on I-J, then:

(351) Eπ(S(σ)l(J)p,S(τ)l(J)p),

by (3.15). Finally, if T is one-one on T " 1 J3 then:

(352) Eτr(3(j)S(τ)/?JS(τ)3(τ-1j)p).

For these formulas are alphabetic variants. 3(J)S(τ)/> is 3(J)/)Γ(τz1,... ,τ4),

with free variables Tt/J; and 5(7)3(7"^)/) is (3(τ" 1 j)p) r(τί 1,. . ., T ^ ) , with

free variables it such that Z ' / T ' V . Thus the formulas of (3S2) have the

same free variables. Since Ί is one-one on T ' V , T introduces no reflexivity

into S(τ)/> which may be obscured in S(τ)3(τ"1J)/? by binding such variables

in p before they are transformed by T. Thus 3(J) and 3(T" X J) contain the

same number of quantifiers. Each distinct 3(J)-binding in 3(J)S(τ)p may be

relettered with some distinct variable not in p nor 3(J)S(τ)p nor S(τ)3(τ"1J)/);

the resulting formula is an alphabetic variant of the formulas of (3S2).

Thus (Q, I, S,j3) is a polyadic algebra with respect to En. Let peQ and J

be the set of free variables of p. Then by (3.6) and (3.7): 3(\-J)p =

3((l -J) ΠJ)p = 3(Λ)/> = p. Then Ê (/>, 3(1 -J)p): each />eQ has the set of its

free variables as finite support. (Q, I,_S, 3) is therefore locally finite. The

proof of Theorem 1 is complete.

Let Q* be the subset of Q whose elements contain no individual

constants αeK. If K is empty, then Q = Q*. Q* is closed under the opera-

tions & and - of (4.2). Moreover, if peQ*, then S(τ)/>, 3(J)/>eQ*.

Corollary (Theorem 1). (Q*,I,_S,3_) is a polyadic subalgebra of (Q, I, j>,_3)?

with respect to Eπ.
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Let the set S be defined by (2.1). S is closed under the operations &
and ~ of (4.2). Then we have:

(4.3) (S,j&,_2:) is a Boolean subalgebra of (Q,&,~9 with respect to Eπ.

Let the sets Pn be defined by (3.1). If the mapping (il9... ,in) ->
Fi1.. .in, for (il9..., in)e Γ and F e Pn, is a predicate of the polyadic algebra
on Q, we shall say that the expression Fe Pn is representable by this
predicate.

Theorem 2. The expressions FePn are representable by predicates of the
polyadic algebra on Q.

Proof: Let FePn. Then for each n-tuple of variables (iu . . . , in) e Γ, there
is a formulaFi 1 . . ,ineQ, by (3.4), and moreover:

(4.4) E^SCOF^ . . Λn, Fit,.. Mn),

for all transformations T on I. By (3.11), (Fiι.. Λn)τ = Fiλ.. . in. Then by
(3.12) the formulas of (4.4) are identical. Thus the mapping (ix,..., Q —>
Fiι. ..in is a predicate of the polyadic algebra on Q, and Theorem 2 is
thereby proved.

Let the set K be defined by (3.2). If aeK there is a mapping from
subsets J of I to transformations aj on Q such that the value of aj at p e Q is
p{aj), defined by (3.16). If this mapping from subsets J of I to transforma-
tions aj on Q is a constant of the polyadic algebra on Q, we shall say that
the expression a is representable by this constant.

Theorem 3. The expressions aeK are representable by constants of the
polyadic algebra on Q.

Proof: By (3.17) and (3.18), each mapping a3: p —» p(a3) is a Boolean
endomorphism on Q with respect to Eπ. By (3.19)-(3.21):

(Cl) Eπ(p,p(aA)).
(C2) Eπ(p(ajUH), {{P{aj)){aH)).

(C3) En(O(H)p)(aj), l{H)(p(aj_H))).

We next show:

(C4) Eπ(l(J)(p(aH))ΛMJ-H)p)(aH)).

If P = P(h,.. , in), then l{J)(p(aH)) = l{J)p(tlf..., tn), where tk = a if 4 e ff,
and 4 = h otherwise; and (l(J-H)p)(aH) = l(J-H)p(uι,..., un), where uu~ a
if iktH, and % = 4 otherwise (1 ^ & — w). Then 4 = uk For let 4 = β Then
^ e ί ί , and uk~ a- tk. Now let ί̂  = 4 - Then ik 4H, and % = 4 = 4 We next
show that ik is bound in both or neither of the formulas of (C4). Let 4 be

bound in 3(J)(p(aH))- Then ikeJ-H, and is bound in (l(J-H)p)(aH). The
converse is obvious. Thus the formulas of (C4) may differ only in vacuous
prenex quantifiers. Then by X and XI, (C4) is true.

(C5) E^SίT^)^), SίT)^^^))).

The formulas of (C5) are alphabetic variants. For (S(7)p(il9..., in)){aj) =
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(pτ(τii,..., iin))(<*j) = PAtu . . , tn), where tk = τik if TiktfJ, and tk = a other-
wise. And S(τ)(p(ar-ij)) is the formula obtained by substituting τ t for
free £ in p(aΓ-ij)> which is of the form p(uly . . . ,un), where Uk = 4 if
h^Ί~ιJ> and uk = a otherwise. Then S(τ) (p(aτ_lj)) is of the form
P(a

τ-ij)r(wi> > wn), where w^ = τίk if u^ = iky and Wfz=a otherwise. Now let
Wk = T4? so that ^ = Wk. Then ikέΊ~lJ, so that τikfί J. Then /̂  = τ4 = ̂ .
In the same way, if w^ = α, then 4 = β = ^ Thus the formulas of (C5) may
differ only in so far as p(aτ-ij)τ is obtained by relettering p(aτ~\3) with
some variable jeτ"1J which is pre-empted in relettering p as pT9 because.;
is free in p, but does not occur in p(aτ^lj). Then the formulas of (C5) are
alphabetic variants; so that (C5) is true by XII. The proof of Theorem 3 is
complete.

4.1 Polyadic Logics We continue to let TΓ be the core of a polyadic
interpretation Π of L, with Q the set of formulas determined by Π. We then
define the set T of formulas whose universal closures are accepted under
the total evidence C.

(4.5) T = {peQ: τr(3~/>,C) = 0}.

The set T is a filter, or dual ideal, of the Boolean algebra on Q, with
respect to E .̂ For if p1 = ~(^& ~q) for some qeQ, then for all peQ:

(4.6) peTiffEAp,Pi),

which is an abbreviation of:

(4.7) τr(3~p,C) = 0 ίjF π(3(£&~ft),C) = 0 = φ(p1&~p),C).

(4.7) is established as follows. In general we have that, π(l(p8ι ~pi), C) =

0. If π(3~/>,C) = 0, then φip, & ~/>),C) = 0. Conversely, if τr(3(/>i & ~/>),C) =

0,thenτr(3~/>,C) = π(3(~/>&~/>i),C) =0.
T is the unit element of the polyadic quotient algebra of Q modulo the

congruence E . Let "V(J)p" abbreviate "~l(J)~p". We then assert that
the filter T of the algebra on Q is polyadic, that is:

(4.8) ifpeT,thenV(J)p,S(7)peT,

for all peQ, J c H, and transformations T on I. If peT, then π(l(H)~p,C) =
0, where H is the set of free variables of p, and we have, for all J c I:
τr(3(J)3(tf)~/>,C) = 0 = τr(3(ff)3(J)~ AC) = τr(3~V(J)/>,C). We next observe
that 3~S(τ)p is an alphabetic variant of 3~p, a fact which maybe estab-
lished as in the proof of (S5). (4.8) is thereby established.

In general, if (A,I,S,3) is a polyadic algebra and M is a polyadic ideal
of A, then (A, M) is defined (solecistically) to be a polyadic logic. We shall
employ the dual concept of a polyadic logic (A, M), where M is a dual ideal,
or filter, of A.

Theorem 4. (Q, T) is a consistent polyadic logic with respect to Eπ.

By (4.6) and (4.8), T is a polyadic filter of the algebra on Q. For proof that
(Q, T) is consistent, let To = T Π S. Then To is the unit element of the
Boolean quotient algebra on S/Eπ. Thus To is, with respect to Eπ, a filter of
the Boolean subalgebra (S,^, ~). We then assert a lemma for Theorem 4:
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(4.9) (S, To) is a consistent Boolean logic with respect to Eπ.

If s, ~seT 0 , then s and ~s are formulas of Q with no free variables; but
then by D5(X): τr(3~s,C) = π(~s,Q = 0 = π(3s,C) = Φ,C), against Dl (V).
Thus (4.9) is true, and Theorem 4 follows immediately: if T = Q, then
To = 5; thus properness of T follows from properness of To.

4.2 Closed Formulas of Q The set S of syntactically closed formulas of Q
(formulas with no free variables) does not coincide with the set 3(Q) =
{peQ: Eπ(p, lp)} of algebraically closed formulas of the polyadic algebra on
Q. Rather S is properly included in 3(Q). That syntactically closed
formulas are algebraically closed follows immediately from D3 (VII) and
D5 (X). Moreover, if peT, then Eπ(p,3p) even if /?/S; formulas of the form
~(q & ~q) with free variables are in T but not in S.

3(Q) and S are further related in the following way. If To is maximal in
S, then for each seS, ir(s,C) Φ 2: the set C of conditions is germane for S.
The converse is also true: π(s,C) = 1 iff π(3~ s,C) = 0 iff seT; and π(s,C) =
0 iff π(3 s,C) = 0 iff ~seT. Thus we have shown:

(4.10) (S, To) is complete iff C is germane for S,

where completeness of (S, To) is to be understood as maximality to To in S,
and germaneness of C for S is to be understood as the proposition that
τr(s,C) Φ 2 for all seS. Now the polyadic logic (Q, T) is complete iff the
associated Boolean logic (3(Q), T Π 3(Q)) is complete. As we have seen,
T c 3(Q), so that T Π 3(Q) = T. Then the following relationship holds
between S and 3(Q):

(4.11) (5, To) is complete iff (3(Q),T) is complete.

If T is maximal in 3(Q), then To is maximal in S. Conversely, let pe 3(Q)
and To be maximal in S. Then τr(3(3/>&~/>),C) = 0 = τr(3/>& 3~/>,C), by
D5(VΠI). Then by Dl(l), 3/>& 3~/>e5. Now Ip and 3~p are syntactically
closed formulas and hence elements of S. Then π(3/>,C) Φ 2 Φ τr(3~/>,C), by
hypothesis of c o m p l e t e n e s s of (S,T0). Then from the fact that
τr(3/>& 3~/>,C) = 0, it follows that - p e T or pel.

We conclude this section with the observation that Eπ restricted to S
coincides with the relation R̂  defined by (2.3), since polyadic interpreta-
tions are also sentential interpretations. For if s, s'eS, then s&~s f and
sr&~s are closed, and by D5(X): Rπ(s,sr) iff Eπ(s,sτ). We also remark
that To = T Π S is identical to the set To defined by (2.5).

5. On Peirce's Concept of Logic as Semiotic We have shown that a
polyadic interpretation of L determines uniquely the subsets Q and Qo =
P U I U K U {&, ~, 3} of L, such that there is a polyadic Boolean algebra on
Q (Theorem 1), the elements of Q are sequences of elements of Qo (3.4),
and the elements of Qo are represented in the algebra on Q by algebraic
counterparts of the syntactic categories of the predicate calculus (Theo-
rems 1-3). We have, to be sure, used in the pragmatic meta-language of L
such concepts as freedom and bondage of variables of expressions of Q.
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Thus what we have shown is that if the users of L employ some concepts
equivalent to the above, in the sense that their valuations constitute a
polyadic interpretation of L, then we may recognize, and express in the
pragmatic m eta-language of L, the fact that such valuations determine the
polyadic algebra (Q, I, _S, _3_).

We shall not pursue further the grammatical significance of this
result, but shall proceed to analyze its semantical significance. If Π is a
given polyadic interpretation of L and eeL, then a valuing disposition
(u, w, c, v)eΐl(e) may be regarded as an interpretant of e in a sense
generalized from that in which pointing at the object of e (if pointing were
possible) would be an interpretant of e. Now such direct ostensive
interpretations of signs as pointing are not always possible; and it was the
beauty of Peirce 's idea that every genuine signification nevertheless
involves some interpretant, which it is the task of logic to discover. The
theory of polyadic interpretations is suggested as a contribution to this
program for logic, restricted to signs of first order languages.

If the objects signified by the logical constants 3, &, ~ of the formulas
of Q (which we shall call the meanings of the logical constants) are taken
as, respectively, the mappings 1_, &, ~_ of the polyadic algebra on Q, then
because this algebra is induced by a polyadic interpretation we may say
that the meanings of the logical constants are fixed pragmatically.

In what sense might the objects of the descriptive signs of the formulas
of Q be fixed pragmatically? We shall suggest a partial answer to this
question for the formulas themselves, on the assumption that the possible
objects of the formulas peQ are the images (propositional functions) μp in
semantic interpretations μ of the polyadic algebra on Q. Thus if Π is a
polyadic interpretation of L, with core TΓ and formulas Q, then for all
p, qeQ; eeL, and for all semantic interpretations μ of Q (i.e., polyadic
homomorphisms μ of (Q, I,JS, 3), with respect to Eπ, onto a model):

(5.1) IfU(e(p)) = U{e(q))9 then μ(p) = μ(q).

The antecedent of (5.1) entails that Eπ(p,q), from which the consequent
follows immediately. Relative to Π, the antecedent of (5.1) may be taken to
express the pragmatic synonymy of p and q, and the consequent of (5.1) may
be taken to express the semantic synonymy of p and q. This result, that
pragmatic synonymy entails semantic synonymy, in the sense of (5.1), is
suggested as a partial explication of Peirce's semiotic principle that the
object of a sign is fixed pragmatically, i.e., by the entire general intended
interpretant of the sign. The deeper question naturally arises how to
associate with formulas of Q those propositional functions which they might
be said to signify relative to specific polyadic interpretations. The answer
to this question would evidently be of value for the logical foundations of the
philosophy of science.
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