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HENKIN STYLE COMPLETENESS PROOFS IN
THEORIES LACKING NEGATION

JOHN L. POLLOCK

As they are customarily formulated, Henkin style completeness proofs
are not applicable to logical theories lacking negation. The purpose of this
note is to show that if such a theory contains disjunction, either as a
primitive logical constant or as a defined one, then a slight modification of
the ordinary constructions can be used to construct a completeness proof.
This procedure yields completeness proofs for a large group of truth-
functionally incomplete propositional calculi. Many of these completeness
results are already known, but this procedure yields a much simpler proof
than the customary ones, and establishes all of these results simultaneously
rather than piecemeal. The procedure can also be used in more complex
cases, for example, first-order theories lacking negation.

1. We assume that the rules of whatever logical theory is being investi-
gated are such that the relation "—>" of deducibility satisfies the following
conditions:

(P) If PeΓ then Γ — P.
(trans) If Γ c Λ and Γ — Pthen Λ — P.
(AE) If Γ - P v Q, Λ U {P} -> R, and Φ U {Q} - R, then Γ u Λ U Φ - Λ .
(AI) If Γ — P then Γ — P v Q and Γ -> Q vP.

Let ' P ^ . . v i V be an abbreviation for tPι v (P2 v (P3 v . . . v P J ) ' . From
(P), (trans), (AE), and (AI) we easily obtain:

(1) If Γ — P v R and Γ u {P} - Q, then Γ - Q v R.
(2) If Γ — (P : v . . . v Pn) then Γ — Pt v P : v . . . v P , ^ v P / + 1 v . . . v Pn.
(3) If Γ - ( P 1 v . . . v P j v ( Q 1 v . . . v Q J then Γ - P, v . . . vP ; ; v Qx v . . . v

Qm.

2. Our objective is to prove that for all Γ, P, if Γ = ^ P (Γ truth-functionally
implies P) then Γ —» P. The strategy is to prove the contrapositive. We
suppose that Γ -/-* P. Consider an enumeration Pn of the formulas of the
language. Define 'Γ — ΣΛ' to mean 'there are Rlf..., fi^eΛ such that
Γ — R ι v . . . v Rk\ Then define inductively:
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A 0 = Γ B0 = {P}.

= (An U {Pn} if An U {P*} / "Bn = (Bn if PweAw+1
w + 1 \An otherwise n+1 \Bn U {Pn} otherwise

This replaces the ordinary Henkin construction which requires negation.

The idea is that A contains true formulas and B contains false formulas.

The objective is now to show that there is a truth value assignment V

resulting in just these sets of true and false formulas, and hence satisfying

Γ but making P false. Such an assignment is obtained by defining, for

atomic formulas R, V(R) = T if ReA and V(R) = F otherwise. It must be

shown that for arbitrary Q, Q is true under V iff QeA.

By the construction, PneA iff PntAn+lf PneB iff PneBn+1, and P«eA«+i iff

PjBn+i, so:

Lemma 1: QeA iffQiB.

Lemma 2: A -/> ΣB.

We prove by induction that An-/>ΣBn: By supposition, Ao-/> P. Suppose

An-/>ΣBn, but An+1 — ΣBn+1. Then there are R1}..., RkeBn+x such that

Ai+i — flx v . . . v Λ*. Suppose P^A,,.,.!. Then Bn+1 = Bn, and An+1 = An U {P«},

so An u {P«}—> Σi5w. But then, by the construction of An+i and contrary to

our supposition, PΛ/AΛ+1. So PΛ/Λι+i Thus AΛ+1 = Λπ, and An - flx v . . . v Rk.

As An -/> ΣBn, one of the Ri is not in J5W, and so must be Pn. Thus by (2),

An — Pn v Rλ v . . . v β^i v β l + 1 v . . . v Rk. By the definition of AΛ+1, as P^/Λ^+i,

we must have An u {P«} — Sx v . . . v Sm for some Sly... , SmeBn. Thus by (1),

A« — (S1 v . . . v Sm) v (Λi v . . . v β,.! v Ri+1 v . . . v Λέ), and hence by (3), An -»

5χv . . . v S^vfijv . . . v jR/.1vΛr+1 v . . . vRk, i.e., AΛ-*Σ5«. But this contra-

dicts the induction hypothesis, so Aπ+1 -/> ΣBΠ + 1.

Therefore, for each n, An 7̂  ΣBn. But if A — ΣB, then for some n, m,

A« — Σ5 W . By (trans), letting k be the maximum of n, m, we have Ak — ΣB^.

Consequently, A / Σ5.

Lemma 3: //A — Q then QeA.

Proof: Suppose A — Q but Q/A. Then by lemma 1, QeB. Then as A — Q,

A— ΣB, which contradicts lemma 2.

To complete the proof that for each R, ReA iff R is true under V, we

need lemmas like:

(i) (P & Q)eA iff P€A and QeA.
(ii) (P v Q)eA iff PcA or QeA.

(iii) (P D Q)eA iff P/β or QeA.

(iv) (P = Q)eA iff, PeA iff QeA.

Which lemmas we need depends of course upon which connectives we have

in our language. Given the appropriate lemmas, the completeness theorem

follows immediately, (ii) follows easily from (P), (AE), and (AI). The
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others can be obtained by employing the usual introduction and elimination

rules:

(KE) Γ — P & Q (KI) Γ -» P and Λ - Q

Γ — P and Γ — Q Γ U Λ - P & Q

(CE) Γ - P D Q and Λ - P (CI) Γ u {P} -» Q

Γ U A — Q Γ — PD Q

(EE) Γ - P = Q Γ-+P =Q (El) Γ U { P } - Q

Λ - P Λ - Q Λ U {g} -» P
Γ ϋ A - V Γ ^ Λ — P Γ U Λ - P Ξ E Q

3. If 'v' is one of the logical constants of a truth functional propositional

calculus, then we can obtain a complete set of rules for that theory by

adopting (P), (AE), (AI), and the introduction and elimination rules cor-

responding to whatever other logical constants are contained in the

calculus. In each case it is easily verified that (trans) holds. If 'v' is not

one of the logical constants, but O> is, then we can define 'PvQ9 to be

<(p D Q) D Q> and the above results still hold. It is of interest however that

we must still have (AE) as a rule (suitably transcribed in terms of '=>')•

(AI) can readily be derived from (CE) and (CI), but (AE) cannot. This can

be seen by considering a three valued semantics:

Q
P D Q 0 1 2

0 2 2 2

P 1 0 2 2

2 0 1 2

Γ=Φ>P iff for all assignments V, if V(P) Φ 2 then there is a QeΓ such that

V(Q) * V(P).

(P), (CE), and (CI) are sound in this semantics, but (AE) fails in the case

where Γ = {(P D Q) D Q}, A = {P D R}, Φ = {Q D R}, and V(P) = 1, V(Q) = 0,

V(R) = 1. However, it follows from the above that (P), (AE), (CE), and (CI)

gives us a complete purely implicational propositional calculus.
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