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SOME RESULTS ON GENERALIZED TRUTH-TABLES

RALPH C. APPLEBEE and BISWAMBHAR PAHI

A generalized truth-table (also called a model) is an algebraic
structure 2R = (A, Z>, Ω) such that A is a non-empty set of elements, D is a
subset of A and Ω is a non-empty finite set of w-ary operations (with n
positive) defined on A. With each model (A,D, Ω) is associated the algebra
(A, Ω), and (A, Ω) is called a full algebra if and only if (iff) for each ωeΩ
the range of ω is A itself. A model (A, D, Ω) is called full iff its associated
algebra is full. The usual two-valued truth-table for the classical proposi-
tional calculus is full. An example of a truth-table which is not full is:

C I 0 1 2

0 1 1 1
*1 0 1 0
*2 1 1 1

The starred elements are designated. A model 2R' is called a super model
of a model 2W iff every well-formed formula (wff) valid in 9R is also valid
in 9W\ Two models are called equivalent iff each is a super model of the
other.

A propositional calculus P can sometimes be extended to another
propositional calculus P' in such a manner that both P and P' have the
same class of full models. An example is the pure implicational fragment
S4i of Lewis's S4 and the intuitionist implicational calculus HIβ Also the
intuitionist propositional calculus H, the classical propositional calculus K
and all intermediate calculi have the same class of full models in which
modus ponens is valid. A study of such extensions is made in [4] and [5],
and in such a study it is sometimes important to know whether or not an
arbitrary finite model has an equivalent full model. This problem is fully
solved here for finite models with one operation and is partly solved in the
general case. We include applications of our results to some well-known
propositional calculi.

For the purpose of this paper we take a fixed but arbitrary language Lo

of order zero with the propositional variables ρl9 p29 pZ9..., a non-empty
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set Ω* of w-ary propositional connectives (with n positive), and the set Γ of
all wffs of LQ defined in the usual way using Lukasiewicz notation. The lower
case Greek letters α, β, γ, and δ, with or without subscripts will be used to
denote arbitrary wffs. If vu v2, ...,vk are precisely the propositional
variables occurring in a wff α, then we sometimes write a as a(v19
V2> y υk) Ή a w ^ β arises from a(vl9 v2,..., v£ by the usual process of
substitution of y, for vi9 then we write β = a(vJΎι, v2/γ2y..., vk/γk). a is
called variable-like iff no propositional variable occurs more than once in
a. In the classical propositional calculus CNpCqNr is variable-like, but
CCpqCNqNp is not variable-like. If a = β{vJvkJrl, v2/vk+2,..., vk/v2ώ and
β = a(vk+1/vlf vk+Jv2,..., v2k/vk), then a and β are called variants of each
other.

We confine our attention to models (A, D, Ω) such that (Γ, Ω*) and (A, Ω)
are similar as algebras, see [6]. For each model (A,D, Ω) and each α,
a(vl9 v2,..., vk) will be regarded as a function from A* to A, and for each
subset B of A,

01(5) = {*€ A I * = a(yl9 y 2 , . . . , yk) for some y l 9 y 2 > . . . , y k e B}.

a(A) is also called the range of a. A model (A, Z), Ω) is reducible to a
model (Ax, Z ,̂ Ω) iff (Au Ω) is a full sub-algebra of (A, Ω), A = Ax Π Z) and
there is a variable-like wff a such that α(A) c A1# A model is called
reducible iff it is reducible to at least one model. The example of a
non-full truth-table given earlier reduces to the classical implicational
truth-table by the variable-like wff Cpq. We now prove a preliminary
lemma needed in the applications of our results.

Lemma. If 9W and 91 are models which reduce respectively to 9W' and 91',
then the direct product model 9R x9l reduces to 9R' x « ' .

Proof: The direct product of full models is full. Let a and β be variable-
like wffs such that α(A) c A', β(B) c B\ where 9R = (A, D, Ω), 9R' =
(A'lD\ Ω), 91 = (£, A, ΩJ and * ' = (B'9 D[, Ωx). Let γ = αί^/β 1, V β 2 , ,
Vk/βk)> where β1', β7 for i Φ j are variants of β and do not share a variable.
Then y(A x B) = α(/3(A x £)) c A' x B'.

Remark: The preceding lemma is true for the direct product of an
arbitrary family of models provided the same variable-like wff reduces
each member of the family.

Theorem 1. There is an effective method for deciding whether or not a
finite model is reducible.

Proof: First we show that there is an effective method for deciding whether
or not any given subset of a finite model is the range of some variable-like
wff a and if so to construct one such α.

Let (A, Df Ω) be a finite model. Consider the finite algebra (A, Ω). In
order to carry out the proof we define inductively the sets Vn

y such that for
each n, Vn will contain the ranges of all variable-like wffs with at most n
connectives.
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Let V° = {A}, and for each &-ary ωe Ω,
Let VZ = ( i c A\X = ω(Y1x Y2x...xYk) for some Yl9 Y2, . . . , Yk e F"" 1 },

and

Let Vn = Vn~ι u U C
ω<Ω

By a simple inductive argument on the number of connectives in a
variable-like wff one can show that the range of a variable-like wff with n
connectives is in Vn. Clearly, Vn c Vn+1 for n ^ O , Since A is finite, the
sequence F°, V1,... can contain only finitely many distinct terms. Let m
be the smallest non-negative integer such that Vm = Vm+r for some r > 0.
Since we have a nested sequence, Vm = yOT+1. Hence by the definition of
V»9 V

m = Vm+i for all i > 0. In fact, m < 2y, where A has j elements.
Since the full sub-algebras, if any, of a finite algebra can be effectively

listed, the preceding proof gives an effective method for checking whether
or not the range of some variable-like wff is contained in one of the full
sub-algebras. For each element of V1 one can construct by using the
definition of V a, variable-like wff whose range coincides with this element.

Remark: Note that if (A, Ω) is full, then V° = V1, and hence the range in
(A, Ω) of every variable-like wff is A.

Theorem 2. Every finite model with exactly one operation is reducible.

Proof: Let (A, D, {ω}) be a finite model, where ω is a fc-ary operation.
Define AQ = A and for each n > 0 let An = ω(Anmml). It follows by induction on
n that An+1 c An for each n ̂  0. Since the An form a decreasing sequence of
non-empty subsets of a finite set, we have, for some r, Ar =A r + 1, i.e.,
Ar = ω(Ar). Thus Ar with ω restricted to it is a full sub-algebra of (A, {ω}).

Let Ω* = {ω*}, where ω* is a fc-ary propositional connective. Let
a0 = pγ and for n > 0, let an = ω*(^l9 α L i , . . . , «ί-i), where each α ^ is a
variant of αi-i and CÛ -X, α^-i do not share a propositional variable for / Φ j .
Thus, α0, ffi, α 2 , . . . is a sequence of variable-like wffs. Moreover, it is
easily verified by induction on n that an(A) = An for each n ^ 0. Thus,
(A, Z), {ω}) is reducible to (Ar, Ar Π D, {ω}), and ar is a required variable-
like wff.

If a = ίKt^/δ!, f2/δ2, . . . , Vk/δk), each δ, is a variable-like wff and no
two distinct δ, share a variable, then β is called a restricted generalization
of α. Every wff is a restricted generalization of any variant of it, and CpCqp
and CCpCqrCqCpr are restricted g e n e r a l i z a t i o n s respectively of
CCpqCrCpq and CCpCCqrsCCqrCps.

We now prove a theorem concerning restricted generalizations which
is of some independent interest and which is needed in the proof of our
main theorem.

Theorem 3. Let 331 be a full model and let β be a restricted generalization
of a, then a is valid in Wl iff β is valid in 2Λ.

Proof: In a full model {A,D,Ω) the range of every variable-like wff is A
itself. (See remark in the proof of Theorem 1.)
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Let a-β(vjξ>u v2/δ2t . . . , vk/δk), where each δ, is variable-like and
no two distinct δ, share a variable. Since a is a substitution instance of
3, ot(A) c β(A). To prove the converse inclusion we note that each δ, is
variable-like and hence has A for its range. Since no two distinct δ, share
a variable they can be made to take simultaneously any arbitrary values.
Thus, for any value that β takes we can find an assignment under which a
takes the same value.

Theorem 4. If a model 2W is reducible to a model 9W', then Wlr is unique and
every full super model ofVt is a full super model ofW.

Proof: Let 9R = (A, D, Ω) be reducible to 9R' = (£, B n D, Ω). Then (B, Ω) is
a full sub-algebra of (A, Ω) and there is a variable-like wff β such that
β(A) c B.

We first show the uniqueness of (Bf Ω). Let (C, Ω) be any full sub-
algebra of (A, Ω) and let a be any variable-like wff. Since a can be
interpreted as a function in (C, Ω) which is full, a(C) = C by the remark in
the proof of Theorem 1. Since C c A, α?(C) = C c α(A). We also have in
particular /3(A) = B. Let y and (C,Ω) be any variable-like wff and full
sub-algebra of (A, Ω) such that γ(A) c C. Since (C, Ω) and (B, Ω), are full
sub-algebras of (A, Ω) and γ and β are variable-like wffs C c β(A) and
£ c γ{A). Therefore, B = C.

Clearly, 3R' = (J5, £ Π Z), Ω) is a full super model of 9K. We now
proceed to show the minimality of 9W'. We first show that every wff valid
in 9Rf is a restricted generalization of some wff valid in 3R. Let a be valid
in 2W'. Consider the substitution Tβ such that Tβ(a) = a* = αί^/β 1, *;2/β2>...,
ι>*/3*), where each /31' is a variant of βj and for i Φ j,β* and βf do not share a
variable. Then, α is a restricted generalization of α* and α* is valid in SB,
for otherwise there is an assignment for the variables of a* such that a*
takes a value de A - Z>. Letting 6, be the value of β' for this assignment
and using the fact that β(A) = β'(A) = £, we have a(blf b2,..., bk) = diB Π i).
But this contradicts the validity of α in9R\ Now, let SW2 be any full super
model of 2W. Since SK2

 i s full anY restricted generalization of any valid wff
of 9W2 is also valid in 2R2 by Theorem 3. Since SW2 is a super model of 8K,
every restricted generalization of any wff valid in VI must also be valid in
2R2. Hence 2K2 is a full super model of 2W\

Remark: If a model 8W is finite and reducible, then the full super model 9Wf

of Theorem 4 can be effectively determined by using the methods of
Theorem 1. The test for equivalence of finite models due to Kalicki [3]
can now be used to determine whether or not SW and SWf are equivalent. If
9Π and SW' are not equivalent, then in view of the minimality of SRf there is
no full model equivalent to 3Π.

The proof of the minimality of 9W' in Theorem 4 implies the following

Corollary: // TO is reducible to 2Rf then there is a substitution Tβ such that
a is valid in 3H' iff Tβ(a) is valid in SR, where Tβ is the substitution
described in the proof of Theorem 4.
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Applications: The denumerable model 2W of Dummett [2] characterizing LC
is not full and is reducible to the usual two-valued model for classical
propositional calculus K by the variable-like wff Np. Since LC is a proper
subcalculus of K it follows by Theorem 4 that 3W has no equivalent full
model. Also by the Corollary, a(vl9 v2,..., vn) is a classical tautology iff
a{vjNvu v2/Nv2,..., vjNvn) is a theorem of LC.

Since CNNNpNp is a theorem of the intuitionist propositional calculus
H and its restricted generalization CNNpp is not provable in H, it follows
by Theorem 3 that H does not have a characteristic full model. The
addition of CNNpp to H gives K. Hence no intermediate propositional
calculus (including LC) other than K has a full characteristic model.

Since p, App, Kpp, CCppp are all equivalent in H, the usual Lindenbaum
models of equivalence classes of wffs for the various negation free
fragments of H and their extensions are full. By Theorem 3, the set of
theorems of each of these calculi is closed under restricted generalization.

Here we establish another connection between theorems of H and K of
the type described in [6, pp. 390-394], If a{vl9 v2,..., vn) is any disjunction-
free wff, then a(vlf v2,..., vn) is a classical tautology iff a(v1/Nv1,
v jNv2,..., vn/Nvn) is an intuitionist tautology. This statement implies
Theorem 5.9 of [6, p. 393]. Let 3/ denote the model obtained from the
Jaskowski model 3; described in [7] by ignoring disjunction. Each such 3,
contains a full sub-model ftj consisting of precisely those elements of 3/
all whose coordinates are either 0 or 1. This is verified by induction. $J
characterizes the set of all disjunction-free classical tautologies. Also
each 3/ is reducible to ft,' by the variable-like wff Np. Hence by a remark
following the Lemma Π,?i 3/ is reducible to n,?i ft'. Now our statement
follows by the corollary.

Let 9W be an infinite characteristic matrix of Lewis's S5 satisfying the
conditions of Theorem 6 of Scrogg [8]. Corresponding to strict implication
we define in 2JΪ, x ^y = -* (xx -y). 3W is reducible to the two-valued
truth-table 9W' by the variable-like wff p ^q. In 9Wf, * acts as the identity
operation. We note that the operation H restricted to 2W' corresponds to
material implication. Hence by the corollary, a is a classical tautology iff
S(a) is a theorem of S5, where S(ά) results from a by replacing each
material implication sign by H leaving the other connectives unchanged and
by replacing each variable υ of a by a variant of p H q such that variants of
p *-$q replacing distinct variables of a do not share a variable.

Let R denote the set of real numbers, let P(R) and O(R) denote
respectively the power set and the class of all open sets of reals (in the
usual topology). By Theorem 9.1 (vii) of [6, p. 478] the model 2B = (P(Λ),
{R}, {Π, u, -S}) characterizes the corresponding fragment of S4, where
A^B is the interior of (R - A) u B. 8W is reducible to the model SW' =
(O(β), {R}, {Π, u, H }) by the variable-like wff p ^q. By Theorem 3.2 (vii)
of [6, p. 386] 9tt' characterizes the positive fragment of H. By statement (3)
of [6, p. 59] the operation *-$ restricted to 3Wf corresponds to intuitionist
implication. Thus, by our corollary, for any negation-free wff a, a is an
intuitionist theorem iff S{a) is a theorem of S4, where S(a) is as described
in the preceding paragraph.
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