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A TABLEAU PROOF METHOD ADMITTING THE EMPTY DOMAIN

MELVIN FITTING

1 Introduction. There have been several papers concerning systems of
first order logic whose theorems are valid in all domains including the
empty one. Some, for example, [1, 2] do not admit vacuous quantification.
If vacuous quantification is allowed, two definitions of validity in the empty
domain are possible, depending on how vacuous quantification is interpreted.
Mostowski [5] interprets (Vx)A, where x does not occur free in A, as equiv-
alent to A; Hailperin [3] and Quine [6] interpret (Vx)A as true over the
empty domain. All the preceeding proof systems are axiomatic, however
see [4] for a natural deduction system.

In this paper we present simple and intuitive modifications of the
tableau proof system of [8] (allowing vacuous quantification): one which
produces a logic equivalent to that of Hailperin and Quine, and one which
produces a logic equivalent to Mostowski's. We first sketch the classical
system, then we present our modifications and sketch proofs of correctness
and completeness.

2 The Classical Tableau System. We use x, y, z,... for individual vari-
ables (free and bound); a,b,c,. .. for individual parameters; and A, B, C, . . .
to represent formulas. The notion of formula is defined as usual, allowing
vacuous quantification. By A(x/a) we mean the result of substituting the
parameter a for every free occurrence of the variable x in A A formula
with no free variables is called a closed formula, or a sentence. A formula
with no parameters is called pure.

We use the unified notation of Smullyan [7, 8] in which a stands for any
essentially conjunctive formula, β for any disjunctive, γ for any universal
formula, and δ for any existential. In the charts below we list the four a
forms, and give the respective components, denoted ax and a2, and the three
β forms and their respective components, denoted βx and β2.

ot I g j I a2 β I βi I fe

A Λ B A B A v B A B
~(AvB) ~A ~B ~(A Λ B) ~A ~B
~(A^B) A ~B A Z)B ~A B
— A A A
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Similarly, the two γ forms and their respective instances, and the two
δ forms and their instances, are given in the following charts.

y I γ(a) δ | δ(a)

(Vx)A A(x/a) (3ΛΓ)A A(x/a)
~(lx)A ~A(x/a) ~(V*)A ~A(x/a)

Proofs are in tree form, with the origin at the top. If 0 is a branch of a
tree, by (0,A) we mean the result of lengthening 0 by adding A at the bottom.

If S is a finite set of closed formulas, a tableau for S is any tree con-
structed by the following recursive rules.

If 0 is a sequence of all elements of S, the tree whose only branch is 0
is a tableau for S.

Suppose V is a tableau for S, 0 is a branch of V, and a occurs in 0. The
result of replacing 0 in C by (0, ax, a2) is a tableau for S.

If V is a tableau for S, 0 is a branch of V, and β occurs in 0, the result
of replacing 0 in V by the two branches (0, βι) and (0, β2) is a tableau for S.

If V is a tableau for S, θ is a branch of ϋ, and y occurs in 0, the result
of replacing 0 in C by the branch (0, y(α)), where a is any parameter, is a
tableau for S.

If ΊJ is a tableau for S, 0 is a branch of V, δ occurs in 0, andα is a
parameter noί occurring in any formula in 0, the result of replacing 0 i n C
by <0, δ (α)> is a tableau for S.

The above rules for extending branches may be codified as follows.

a β γ δ

aλ βx I β2 y(a) δ(α) provided a is f new'

A branch of a tableau is called closed if, for some formula A, both A

and ~ A are on the branch. A tableau is called closed if each branch is

closed.
If A is a pure sentence, A is a theorem in the above system if there is

a closed tableau for {~ A}. Correctness and completeness are established
in [8].

3 The Modified Tableau Systems. As we remarked in the introduction, two
notions of validity in the empty domain are possible. If x has no free oc-
currences in A, Mostowski interprets (VAΓ)A and (Ίx)A to be equivalent to A,
even over the empty domain, emphasizing the word vacuous in vacuous
quantification. Hailperin and Quine take (VΛ )A to be true and (3#)Atobe
false in the empty domain, whether or not x occurs free in A, emphasizing
the word quantifiers.

We propose a restriction on the y-rule above. Some of the words in
the restriction are subject to two interpretations. Read one way, the re-
sulting system is equivalent to Mostowski's, read the other, to that of
Hailperin and Quine. The restriction is simply this:

No parameter may be used in extending a branch by an application of the

y-rule unless it already occurs in a formula on that branch.
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The ambiguity referred to above comes in interpreting the words 'used'
and Occurs1 in the case of vacuous quantification. Suppose, at some stage
in the construction of a branch θ of a tableau, we encountered the formula
{\/x)A, where x had no free occurrences in A, and, using the y-rule, we
added A(x/a) to θ. Did we use the parameter a or not? Similarly, if x did
not occur free in A, (lx)A occurred on 0, and we added A (x/a) to fusing
the δ-rule, does the parameter a now occur on the branch or not? Let us
call the usage of 'used' and 'occurs' in which we say a was used or does
occur (albeit vacuously) the liberal usage, and the usage in which we sayα
was not used or does not occur, the strict usage.

In the above modified system, if the words of the restriction are in-
terpreted strictly, the resulting system is equivalent to that of Mostowski.
If the words are interpreted liberally, the resulting system is equivalent to
the system of Hailperin and Quine.

4 Correctness. In this section we sketch a proof that anything provable in
one of the above systems is valid in an appropriate sense.

We call / a Mostowski interpretation in a domain D if (1) D is not empty
and / is an interpretation in the usual sense, or (2) D is empty and / is again
an interpretation in the usual sense, but following the convention that if x
has no free occurrences in A, (Vx)A and (lx)A are identical with A under
the interpretation /. Similarly we call / a Hailperin interpretation in the
domain D if either (1) D is not empty and / is an interpretation in the usual
sense, or (2) D is empty and / is an interpretation in the usual sense, but
with the convention that (V#)A is true and (lx)A is false under I.

We call a formula Mostowski valid (Hailperin valid) if it is true in all
domains under all Mostowski interpretations (Hailperin interpretations).

A formula A is Mostowski satisfiable (Hailperin satisfiable) if, under
some Mostowski (Hailperin) interpretation / in some domain D, A is true. A
branch of a tableau is called Mostowski (Hailperin) satisfiable if the set of
signed formulas on it is simultaneously Mostowski (Hailperin) satisfiable.
A tableau is Mostowski (Hailperin) satisfiable if some branch is.

If ZJ is a tableau and V results from ZJ by the application of one of
the four tableau rules to a branch of ZJ, using the strict (liberal) restriction
on the y-rule, we call ZJr a strict (liberal) extension of Z7.

Lemma. Let ZJ be a tableau for some pure set of sentences S. If V is
Mostowski {Hailperin) satisfiable, and ZJr is any strict (liberal) extension
of V, ZJT is Mostowski (Hailperin) satisfiable.

The proof of the above lemma is a straightforward variant of the cor-
responding lemma for the classical system of section 2; for details of that
proof, see [8].

Theorem. For a pure sentence A, if A is provable in the strict (liberal)
system, then A is Mostowski (Hailperin) valid.

Proof: If A is not Mostowski (Hailperin) valid, ~A is Mostowski (Hailperin)
satisfiable. Then if A were strictly (liberally) provable, by the above
lemma, some closed tableau must be Mostowski (Hailperin) satisfiable,
which is impossible.
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5 Hintϊkka Sets. By a vacuous γ we mean a formula of the form (Vx)A or
^ (lx)A where x does not occur free in A; similarly for vacuous δ. For
vacuous γ andδ formulas we define null instances as follows:

Ύ I Ύ(Φ) δ 1 δ(φ)

(\/x)A A (lx)A A
~(3x)A ~A ~(VX)A ~A

Adapting a definition from [8], if S is a set of sentences and P is a set
of parameters, we call S a Mostowski-Hintikka set with respect to Pif:

(0) for no atomic formula A do both A and ~A belong to S.
(1) (a) a eSzφaieS and a2eS

(b) βe S=^j8i€S or β2eS
(2) ttPfίφ,

(a) ye S=Φγ(a)eS for all aeP
(b) δeS=^>δ(α)€Sfor some <zeP

(3) if P = φ and δ is not vacuous, δ ^S
(4) if P = φ and γ and δ are vacuous,

(a) γeS=Φγ(φ)eS
(b) δeS=#δ(ψ)eS

Similarly we call S a Hailperin-Hintikka set with respect to P if (0) -
(2) as above, and

(3') if P = φ, δ/S.

Let us call a formula AeS Mostowski-minimal if (1) A is atomic or the
negation of an atomic formula, or (2) P =φ and A is a non-vacuous γ. Sim-
ilarly, we call AeS Hailperin-minimal if (1) as above, or (2) P =0 and A is
some γ.

Theorem. If S is a Mostowski-Hintikka set with respect to P, S is Mostow-

ski satisftable.

Proof: Let the domain D of our model be the set P. We may begin to define
a Mostowski interpretation / so that if A is a Mostowski-minimal element
of S, A is true under the Mostowski interpretation we are defining. It can
be shown that such an assignment of truth values to Mostowski-minimal
formulas of S can always be extended to a Mostowski interpretation (in
general, many) for all formulas, and that, under any such Mostowski in-
terpretation /, for any formula A, if AeS, A is true under /.

Remark: K P is not empty, this becomes Hintikka's lemma for first order
logic, and a proof in detail may be found in [8, chapter 5, section 3].

Theorem. If S is a Hailperin-Hintikka set with respect to P, S is Hailperin
satisf table.

The proof of this theorem is like the above except that we now use
Hailperin-minimal elements of S instead of Mostowski-minimal ones.

6 Completeness. We describe a systematic procedure for constructing a
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tableau for {~ A} which will either close, and so prove A, or provide us with
an appropriate Hintikka set containing ~A. The procedure is taken from [8]
with only minor changes. It involves designating some formulas on a
tableau 'finished'.

Let A be a pure closed formula. Begin a tableau for {~ A} by placing
~A at the origin. Then we apply the four branch extension rules systemati-
cally as follows. Suppose, at the nth stage, the tableau we have is closed,
then stop. Also, if no branch extension rule applies to any formula which is
not finished, stop. If neither of these is the case, pick an occurrence of a
formula B, as high up on the tree as possible, which is not yet finished, and
extend the tableau as follows: take every unclosed branch θ passing through
B (that is, on which B lies) and

(1) If B is an a, replace θ by the branch (θ, au a2)
(2) If B is a β, replace θ by the two branches (0, βι) and (θ, β2)
(3) If B is a δ, take the first parameter a which does not occur in θ

and replace θ by (0, δ(a))
(4) If B is a γ, let {a, b, c,..., m] be the (finite) set of parameters

which occur in formulas of θ, and replace θ by the branch ( θ, γ(a),
y(b), γ(c),... ,y(m))

Having done one of (1) - (4) for each branch passing through B, declare
that occurrence of B finished. This concludes the n+lst stage of the syste-
matic procedure.

Suppose A is a pure closed formula and we construct a systematic
tableau for {~A} using the strict interpretation of the y-rule restriction
(which affects the word 'occur' in clauses (3) and (4) above). If the tableau
is closed, A is a theorem of the strict system. If the tableau is not closed,
any open branch is a Mostowski-Hintikka set with respect to the set of
parameters strictly occurring on that branch. Then, by the theorem of
section 5, there is a Mostowski interpretation in which A is false. So we
have the completeness of the strict system relative to Mostowski validity.

Similarly, if we use the liberal interpretation of the y-rule restriction,
we may establish completeness of the liberal system with respect to Hail-
perin interpretations.
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