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CONVENTIONALIST AND CONTINGENCY-ORIENTED
MODAL LOGICS

R. ROUTLEY

No modal logic so far presented adequately represents radical
conventionalism. Yet conventionalism about modalities is a very pervasive
doctrine. In this paper we make a start on filling this serious gap in the
literature.

Radical conventionalism is distinguished by the thesis:

(R). All assertions of modalities are contingent.

Consequently according to the radical conventionalist, VD/>, VO/> andVV/?
are true, that is statements of necessity, possibility and contingency are
themselves contingent. Strawson has recommended adoption of "the
convention . . . that intensional statements are contingent'\x For a large
class of languages, including the systems considered below, Strawson7s
thesis that intensional statements are contingent is tantamount to (R).

Radical conventionalism is inconsistent with all Lewis modal logics, as
we shall show. It does not follow, however, that radical conventionalism is,
as has often been assumed, inconsistent. One of our main aims is to exhibit
a class of consistent modal logics in which thesis (R) is satisfied. This is a
major step towards showing that radical conventionalism is a consistent
doctrine.

We distinguish radical conventionalism from two other main positions
regarding modality which have also been called conventionalisms. For
radical conventionalism has frequently been confused with these other
doctrines, to the detriment of each position since each pair of positions
entails mutually inconsistent principles. The positions inconsistent with
radical conventionalism are these:
(1) Primitive conventionalism according to which there are really no
necessary or—what is equivalent-—no noncontingent propositions. Those
propositions which are taken to be necessary are really a special kind of
contingent propositions, i.e., generalisations about linguistic usage of
conventions. J. S. Mill is an early advocate of this view.2 Developed
versions of primitive conventionalism, designed to counter obvious objec-
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tions such as that there are noncontingent propositions, commonly reappear
as reductionist programmes according to which all propositions normally
classed as necessary reduce under analysis or translation to contingent
propositions.

Taken literally, primitive conventionalisms assert (p)~Πp or (/>)V/>,
and so entail the postulate of universal possibility (/>)<>/>. These are of
course inconsistent with all those modal systems which assert Πq, for
some q. They are however consistent with a number of modal logics
developed by Lemmon (in [10]), namely with those Lemmon systems
contained in system E (of [11, p. 214]). E coincides with the Falsum
system, the system which appears to encapsulate the sentential modal logic
of primitive conventionalism. The falsum system, with postulate set
consisting of some independent axiom set for sentential logic, uniform
substitution, material detachment, and the axiom

AO ~Ώp (or AO'Vp)

is consistent and complete over the usual two-valued matrices for
sentential logic together with the matrix:

p 1 T F
Πp \ F F '

The postulates of this Falsum system are independent and the system does
not reduce modality, since p 3 Dp is inconsistent with it.
(2) Linguistic theories of logical necessity, according to which logically
necessary propositions are propositions true in virtue of, or as a con-
sequence of linguistic data of some sort, such as data about the senses of
expressions. Carnap's approach [2, p. 10] is typical of these theories:

A sentence 6/ is L-true in a semantical systems if and only if 6,* is
true in S in such a way that its truth can be established on the basis of the
semantical rules of the S alone, without any reference to (extra-linguistic)
facts.

The modal logics associated with linguistic theories are inconsistent
with ~Πp and VD/>, but are compatible with S5 modal structures.

Radical conventionalism is inconsistent with primitive conventionalism.
For according to the radical conventionalist doctrine, which we now outline,
there are necessary sentences, such as ~(p&,~p), and impossible sen-
tences do not reduce to contingent sentences. But that they are necessary
or impossible is itself contingent; and this contingency is ascribed to
(linguistic) conventions of some kind.

We avoid going into all the details that have to be filled out satis-
factorily to make radical conventionalism a cogent doctrine, namely an
account of exactly how the necessity that necessary statements have may be
ascribed to conventions of whatever kind, and convincing arguments for the
positions. For these details, even if they could be satisfactorily elaborated,
are not needed in investigating the sentential modal logics associated with
radical conventionalisms.

What is important, however, for the choice of a system-notation is that
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radical conventionalism operates at the linguistic level. For it is sentences
and their parts, not propositions, that are affected by linguistic conventions.
Radical conventionalism involves nominalism at least in this respect: that
if modalities were assigned to standard propositions, rather than sentences
say, the case for asserting that Dp is contingent, rather than necessary
when true, would be undermined. Consider, to illustrate, p^> p where it is
supposed both Ώ(p 3 p) and VD(/> D p). Given the usual sentence/proposition
distinctions any variation in the necessity of p^> p, designed to show
VD(/)3 /)), would be attributed to the view that the sentence (pDp'
expresses a different proposition, the modal value of which is invariant. In
this way it would be guaranteed that Ώ{p "D p) is necessary, i.e., the S4
thesis DD(/>3 p) would be ensured. Thus a conventionalist may still adopt
the S4 postulates provided he is prepared to say that different propositions
are expressed when conventions are changed. Radical conventionalism
would be transformed into a linguistic theory. Part of the contrast then,
between radical conventionalism and the linguistic theory is that these
theories adopt different identity criteria for propositions, that the theories
are coupled with different theories of propositions.

To vindicate (R) along conventionalist lines, the theory of propositions
or sentences to which modal values are assigned, which carry modalities,
has to be appropriately specified so that certain modal values may vary
under change of conventions. Moreover the conventionalist has always to
connect with his propositions associated sentences, for as has already been
remarked it is these that are affected by linguistic conventions. (Here the
familiar difficulty over the modal values of unexpressed propositions
arises). The simplest solution, and one which follows at once given the
Occamist or nominalist assumptions conventionalists commonly do make,
is to eliminate propositions altogether, and to take sentences as the
carriers of modality. Conventionalism and nominalism, though logically
distinct, are sympathetic positions, and they fit together easily in em-
piricist and Occamist schemes. Indeed conventionalists usually assume
that sentences carry modalities, and argue on the basis of this to (R).

For these reasons we assume that sentence-variables '/>', {q9, (r' etc.,
not propositional variables, carry modalities. There is room then for the
conventionalist to argue that whilst a sentence may be necessary—or
contingent—because of suitable linguistic conventions, its being necessary—
or contingent—is always a matter that is contingent on contingent linguistic
conventions.4 Thus when V , ζΠ9 and '<>' are considered as sentence-
forming operators on sentences, the sentences VΠp9

9 Wp9 and VOp' are
prima facie true. We find that these theses are consistent with substantial
fragments of systems up to and including S3, and that S3 augmented by VV/>,
though not by VD/>, is consistent.

Since VV/> entails OOP, radical conventionalist systems entail the
principle OOp. Modal systems containing postulates asserting the universal
possibility of possibility were first suggested by Lewis (in [12, p. 497]).
The motivation which led Lewis to consider his C13, OOP, was this: that
whilst it would be allowed that there are necessary propositions it could
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well be claimed, in opposition to the S4 thesis that these propositions are
necessarily necessary, that there are no necessarily necessary proposi-
tions, that is that ~DG/>, and so OO~/>, is true for every proposition p.
But on what sort of grounds could this be claimed? Unfortunately Lewis
does not give any reason why someone might want to assert (p) ~DD/>.

We offer two broad sets of reasons why a person may want to claim
that no propositions are necessarily necessary: (a) that already mentioned,
that the person subscribes to a conventionalistic theory of logical necessity,
and (b) that the person adheres to a psychologistic theory of (logical)
necessity. Typical psychologistic theories are provided by British em-
piricists such as Hume (according to Pap's exposition in [18]) and Bentham
(see [17]), and by Kant (see Pap [18]). But both these sorts of theories
lead, even at the sentential level, to systems distinct from Lewis's system
S6, and beyond systems subsequently discussed in the literature.

Just as it is worth considering the stand taken by a person who rejects
the characteristic S4 thesis outright, so it is interesting to investigate the
effect of the outright rejection of S5. Now we know that ~VV/> added even
to SI is sufficient to generate S5; consequently this axiom typifies S5 better
than does the usual S5 postulate <>p D ΏOp since this postulate when added
to SI does not lead to S5 at all. (For details see Montgomery and Routley
[15] and [16]). To mimic the Lewis case for investigating the addition of
OO£ one would say: It might well be claimed, in opposition to the S5 thesis,
that all statements are contingently contingent. Universal rejection of the
characteristic S5 thesis leads too to a new class of consistent modal logics,
which include universal contingency of contingency postulates. In particu-
lar, addition of VV/> to S2 and S3 leads to contingency-oriented systems
which properly include Lewis systems S6 and S7 respectively.

Since Lewis's time systems S6, S7, S8 and S7.5 ([1], [7], [9], [23]) have
been briefly discussed in the literature. Completeness results for the first
three of these systems have been claimed by Kripke, but the semantical
models sketched cast no real light on the problems of interpreting the
systems. Some more illuminating suggestions as to how to interpret
systems like S6 and its extensions are worth following out, at least for
philosophical and historical reasons. These interpretations fall, as before,
into two classes: (a) linguistic and conventionalistic interpretations, and
(b) psychologistic interpretations of modality.

An interesting proposal as to how to interpret S6 along linguistic lines
has been made by J. L. Mackie (in [13])5. Mackie has suggested inter-
preting Op? as 'qu(~/>) is forbidden by linguistic rules', or as 'qυ(/>) is
demanded by linguistic rules'. On this interpretation ~DD£, for according
to Mackie, it is false that the sentence 'sentence qu(~/>) is forbidden by
linguistic rules' is demanded by linguistic rules. At the same time, a
system for this linguistic interpretation should not contain the S8 thesis
DO Op, for it is a simple fact, not a requirement of language, that it is not
necessary that language requires what it does. Thus if we confine attention
to Lewis systems then we are restricted to S6 or S7. Mackie presents
these points for deciding in favour of S6: "In attempting to provide a
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logical system for this interpretation we are proposing that the require-
ments of language are at least consistent. We may also assume that they
are consequential in the sense that if both p D q and p are linguistically
required, so is q, so that we have the thesis D(p => q) .Πp'D Πq and its
equivalent Ώ(p 3 q) D. Πp^> Πq. But this does not entail the distinctive
thesis of S3 and S7, Π[π(P ̂  q) ^ . Ώ(Up ^> Πq)], and I can see no reason why
this should hold for this interpretation." Mackie concludes that of the
Lewis systems S6 is the most appropriate. However the interpretation does
not verify all the postulates, and it verifies various principles not included
in S6. As to the first point, the interpretation, though it verifies Up => />,
does not validate the S6 law D(D/> => p). According to Mackie "we assume
that language is at least so far adequate to the world that nothing forbidden
by linguistic rules would be true;" and such a requirement on linguistic
rules does suffice for the vindication of Πp ̂  p. But it is not always
forbidden by the linguistic rules that linguistic rules forbid the exclusion of
truth, a fact well-known to totalitarian regimes which can, and do, fix
linguistic rules to preclude (linguistic) statement of certain truths. Thus
Π(Πp ^ p) is definitely rejected under this linguistic interpretation, unless
some attempt is made to introduce special metalinguistic rules.

To arrive at a system which satisfies Mackie's linguistic interpreta-
tion we must retreat at least to S6e, a system obtained from S6 by
weakening Ώp-$p to Πp^> p. Since Mackie's consequentiality requirement
is likewise not necessitated by linguistic rules, without yet another suitable
metalinguistic rule, we are forced to retreat further—perhaps back to E6, a
system got from Lemmon's E2 by adding the axiom OO/>. A linguistic
interpretation can be given to E6. To be formally specific let us symbolise
'qu(/>) is forbidden by linguistic rules7 as (Fp'. We require that (F' satisfy
the following conditions—formulated using sentential logic as the underlying
logic—

(1) Fp^> ~p Mackie's requirement that what is forbidden
by the linguistic rules (of L) is false.

(2) F{p8ι~q) & Fq^>. Fp. Mackie's consequentiality requirement.
(3) Ao> B-> FB z> FA A related consistency rule.
(4) ~F ~Fp. A conventionalist requirement.

These requirements on ζF9 are consistent and reasonable. If we require
further that (F9 satisfies just these conditions at the sentential level, then
it is easy to show that E6 is consistent and complete under Mackie's
linguistic interpretation. This completeness result does not provide a
decision procedure for E6; but since E6 has the finite model property (as
we shall show elsewhere) it is decidable.

That the linguistic account so construed is compatible with primitive
conventionalism is a shortcoming. For the account no longer asserts any
sentence as necessary. To surmount this problem the following obvious
requirement on ζF9 should be added:

(5) The negations of theses of sentential logic are forbidden by the
linguistic rules (of L).
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However in the presence of rule (3) this leads to inconsistency. We
explain the point with respect to E6. If we simply add to E6 the thesis
E(p^> P), without curtailing the rules of E6 to apply to theses of E6 only,
inconsistency results as follows:

(a) The rule of necessitation is derivable thus:

A — p^p D . A

— D(/>=> p) 3 . DA
- DA

(b) Hence ΠΠ(p => p), contradicting OO~(P => p).

Thus in the presence of (5), rule (3) should be abandoned or replaced. If (3)
is simply dropped, then an interpretation for the system (SO.5 + OOP) is
provided. But a readily acceptable replacement for (3) is:

(3r) F(A& ~B) -> F(FB & ~FA)

that is, if A without B is linguistically forbidden then we can infer that B's
being forbidden without A's being forbidden is also forbidden. The resulting
linguistic interpretation provides a complete interpretation for yet another
uninvestigated modal logic, namely one obtained from Lemmon's P2
(of [10]) by restricting necessitation just to tautologies and adding the
axiom OOp.

By demanding for the interpretation a language Ls which imposes
special metalinguistic rules—to the effect, first, that it is linguistically
forbidden in Ls that what is forbidden be true and, second, that if it can be
shown that A linguistically necessitates B in Ls then B's being forbidden
linguistically necessitates in Ls A's being forbidden—an interpretation for
S6 results. For, let 'Fp' read Sentence qu(/>) is forbidden by the linguistic
rules of language Ls

9. Then in place of conditions (1) and (3) on 'F', under
this interpretation with its metalinguistic rules, we demand the stronger
conditions, (3f) and:

(2 0 F{Fp&p)

The oddness of the metalinguistic rules of Ls should not be under-
emphasised; especially odd is the rule which forbids that anything forbidden
is true. For this rule effectively prevents the desired and intended
conventionalistic interpretations. If, in defiance of this, we require that 6F9

satisfies just the conditions (2 0, (2)9 (3r), (4) and (5) then S6 is consistent
and complete with respect to this interpretation.

It is quite unsatisfactory to require that 6F9 satisfies just this last set
of conditions or just (1-5). For on the understood reading of (F9

9 'F'
satisfies further conditions; for instance not just does (4) hold under the
understood reading, so does ~FFp. If the linguistic interpretation correctly
admits OOP there would seem to be no grounds for excluding VV/>. But
addition of VV/> would properly extend E6 and S6 to new systems QE2 and
Q2. Nor are these new systems complete with respect to pre-analytic
linguistic interpretations. For the conventionalist thesis VDft and its
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equivalent V Op, are not theorems of QE2 or of Q2. Indeed V Up is not even
consistent with Q2 or S6; V Up cannot be consistently added even to SI. Yet
it is plain that Mackie should adopt V Up; for according to him "it is clear
that with this interpretation (p is necessary' is itself not a necessary
statement, but a statement of a contingent linguistic fact".

One trouble with a metalinguistic rule ensuring U(Up^> p) is that it is
inconsistent, on linguistically incontestible assumptions, with the linguistic
thesis that possibility statements are contingent linguistic statements, that
is with V O/>—as follows:

1. U(p D Op) contraposing U(Up => p)
2. Up^UOP distributing 1.
3. Π(/>D p)

4. UOψip) from 2, 3.
5. ~0(p^p) from 4.

Alternatively the rule form U(A => B), UA -> UB, is sufficient.

Dp -? p and p^Op are indefensible under linguistic interpretations of
modality which concede that there are (or may be) necessary truths:
although a sentence may in fact be necessary, this is contingent according
to linguistic interpretations; so the consequent of 2 is always false. Thus
if there is any true sentence of the form UA, Q/>D U0p fails. Con-
sequently, since U(p^> q) D. Up^> Uq appears valid under linguistic and
conventionalistic interpretations, Up^p and p -3 Op are linguistically
indefensible.

That these laws come out as indefensible on this interpretation is a
telling objection to such linguistic interpretations of modality. For on these
accounts necessity is not sufficient to necessarily, or logically, guarantee
truth; necessary truth is not a kind of truth; what is necessary might not
even be true ! Worse, on conventionalist theses to which these linguistic
interpretations lead, it is just an accident that the actual world isn't an
impossible one ! For given Wittgenstein's dictum that the world is every-
thing that is the case, then the conjunction of all true statements, W (the
world), is as a matter of fact possible since W => OW and W. But since
(p) Up, UOW; hence O^OW, i.e. it is possible that the world is impossible.
The same formal anomolies occur under psychologistic interpretations.

Some of the systems we present are open to an alternative psycho-
logistic interpretation.. Under such interpretations modal assignments are
interpreted in terms of some psychological notion such as actual con-
ceivability, indubitability or imaginability, e.g. 'Op9 is interpreted as 'p is
imaginable9. Όnάer these interpretations the variables of conventionalistic
systems should be reinterpreted as ranging over propositions or contexts.

On the face of it imaginability, indubitability and such like vary from
person to person, according to the person's psychological features. It
would seem then that '<>' psychologically interpreted should be relativized
to ζOx

9 where the subscript variable ranges over persons. Such an account
of modality is in fact implicit in Bentham (see Ogden [17, p. 50]). But such
a relative interpretation offers no account of the standard person-invariant



138 R. ROUTLEY

modalities; some assumptions are needed in order to reach a psychologistic
theory of the standard modalities. To overcome the problem certain well-
known but unconvincing shuffles are made, for example an assumption of
similarity of humans in respect of relevant psychological abilities is
introduced, or presupposed as when 'conceivability by the human mind' or
'conceivability by men' is adopted, or a rationality assumption is made.
(This last assumption may lift the interpretation out of the psychological
class, depending on how it is elaborated).

A typical outcome is Hume's imaginability criterion of possibility:
according to Hume (on Pap's well documented reading, [18, pp. 75-85]) p is
possible if and only if p is humanly imaginable. The modal reduction theses
OOp, V Op and V Ώp appear to hold straight off under Hume's account. For
what is imaginable, according to Hume, is certainly contingent on which
senses human beings have. So it is contingent that Op; hence, accounting
for this contingency in Hume's way, VOp. It follows, by transformations
Hume could hardly refuse, that OOp and V Ώp. It might be objected that
this is all very well where what is at stake is, for example, the imagin-
ability of a colour or a smell, but that there is nothing contingent about the
imaginability of a contradiction such as p & ~ p. The point is well taken if
some test of contradictoriness (entailing impossibility) stands over and
above the test of unimaginability. It is not unambiguously clear where
Hume stands on this issue, but for the psychologistic interpretation here
described it is assumed that imaginability is the sole criterion.

Since certain distribution principles such as ϋ ( / θ q) =>. Πp^> Πq and
some strengthenings of this principle appear valid under the human
imaginability criterion, various of the logics we develop are susceptible of
a Humean interpretation. Under a psychologistic interpretation such as
Hume's the principles Ώ{ΏP D P) and Ώ(p^> OP) are not valid, and even
Ώp^> p and p D Op are precarious. It seems, however, that human imagin-
ability can be doctored up so that Ώp^> p and p 3 Op do hold though not
necessarily, by denying that human imaginability is so weak that there are
actual states of affairs, such as sounds of a very high pitch (Pap's example
[18, pp. 79-80]), which humans cannot imagine.

By suitabily strait-jacketing ζp is humanly imaginable' symbolised Ήp'
we can prove certain of our systems consistent and complete under the
relevant psychologistic interpretations, much as we did for related
conventionalistic interpretations. For example if we require that Ή9

satisfy just the following conditions, formulated with sentential logic as
sublogic—

(1) ~H(p&~q)^. EpZ) Hq
(2) p^Hp
(3) CHp &CCp

where CA -dj HA & H ~ A, then system QR0.5 is consistent and complete
with respect to this psychologistic interpretation.

In spite of the semantical motivation for many of the systems
developed the remainder of the paper is descriptive rather than semantical.
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However features of the foundational systems and their extensions, and

consistency and independence results for these systems, are often of

philosophical as well as formal interest, for reasons we have elaborated;

and the way is prepared for subsequent semantical investigations.

Foundation Systems. Church's bracketing and notational conventions ([3,

pp. 74-81]) are in general adopted, with certain additions. The '&' is used

for conjunction. Numerals preceded by 'F9 are references to items

designated by the same numerals in Feys Modal Logics [5]. References to

the rule of uniform substitution US are omitted. ζMD' denotes the rule of

detachment for material implication and 'SD' the rule for strict implica-

tion. 'SL' refers to standard results obtainable from sentential logic and
(SSE9 the rule of substitutivity of strict equivalents. '(X+Y)9 denotes the

system formed by augmenting the system X by the postulates Y; '(X - Y)9

the system obtained by deleting Y from the postulates of X. Systems with

rules additional to US and MD are often distinguished by appending

subscripts to the system label. These correspond to the rule number.

The basic apparatus for the systems is now presented.

Primitive connectives: Π, ~ , D.

Definitions: A & B =df ~(A D ~B)

A v B=df ~A~D B

A= B=df ( A D B) & (5D A)

OA=df ~D~A

A-$B=df D ( A D B)

A= B=df (A-IB) & (BΊA)

\7A=df OA8z O~A

AA=df Π\AvΠ~A

Axioms:

Al p^.q^p Asl p - 3 . q => p

A2 po (<? D r ) =>./>=> q =>./>=> r As2 pZ)(q-Dr)^.p^q^.p^r

A3 ~pZ) ~qΌ. qΏ p As3 ~/> D ~q -3. tfD p

A4 p-Sq^.Πp^Ώq As4 p-Sq^.Πp^Πq

A41 p^q^.Ώp-SΏq As4r p -3 q -3 . Ώp -3 D#

As5 (psq) &{q -3 r) -β . p-lr

As6 Up & D^-^ D(p & q)

A7 Πp~D p As7 Πp-^p

A8 D~/>=> ~Πp As8 Π~p^~Πp

A9 OOP As9 ΠOOP

A10 Up -3 Ώq D. up => Πq

All VV/>

A12 VD/)

A13 Op

Rules:

Rl US A - 5 β

 A I
R2 MD A, A^ B — B

R3 DA —A



140 R. ROUTLEY

R4 A= B -*ΠA = ΌB

R5 A^B—ΠA^ΏB

R6 All B-> DAD ΠB

R7 If A is a theorem of SL then ΏA

R8 SSE

The primitive connectives and definitions and rules Rl and R2 are

common to all systems. The five systems following are formed by adding

these sets of postulates:

SO.5s = {Asl,As2,As3,A4 R3)

Sls ? 4 = {Asl,As2,As3,As4,As5 R3, R4}

S2^5 = {Asl, As2, As3, As4 R3, R5}

S2.5g = {Asl, As2, As3, A4r, As6 R3)

S3g = {Asl, As2, As3, As4f, As6 R3}

Corresponding to each of these systems are further systems S0.5e, SI4, S2g,

and S3e, formed by replacing the rule R3 by the axiom A7, i.e., sche-

matically

SXe= (SX°- R3+ A7).

Thus S0.5e, S2.5e and S3e are rule simplified systems. Further systems

SO.5a, Sls?4, S2.5s>5 and S3s are obtained from zero systems by adding A8;

thus

SXd= (SX° + A8)

The notation was chosen so as to parallel, as far as standard notation

permits, Lemmon's choice (in [10 and 11]) of notation for his epistemic

systems (E systems) and deontic systems (D systems). Thus just as

Lemmon's D systems are obtained from his C systems by adding A8 so are

super-d systems obtained from zero systems by addition of A8, and as

E systems are obtained from C systems by adding A 7 so super-e systems

result from zero systems by addition of A7.

Lewis systems are obtained by adding to SXe systems axiom As7. Thus

SX = (SXe+As7) (X= 1 - 3).

Systems based on Lemmon's C-, D-, and E-systems ([11, p. 47], [10])

are also introduced. For a distinctive set of conventionalistic systems can

be based on these Lemmon systems. The relevance of the Lemmon

systems will emerge still further when the semantics of our non-normal

modal logics are investigated. (As to how see Lemmon [11, II]). Lemmon's

2-systems have the following postulate sets:

C26 = {Al, A2, A3, A4 R6)

D26 = {Al, A2, A3, A4, A8 R6}

E26 - {Al, A2, A3, A4, A7 R6}

There is a deliberate jump from D2 to D3, the weakest of Lemmon's

3-systems (in [10]), to guarantee reduction theses in D3. To obtain D3

Lemmon introduces the axiom schema:
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(D) If A is fully modalised, then \-ΏA D A

where A is fully modalised if and only if all occurrences of variables in A

are within the scope of a modal operator.

We shall, however, also introduce more conservative 3-systems,

reached just as stronger 3-systems like E3 and D3 are reached, from

corresponding 2-systems. Accordingly we define the systems:

C3^ = {Al, A2, A3, A4, A4f R6]

D3e = {Al, A2, A3, A4, A4r, A8 R6}

E36 = {Al, A2, A3, A4r, A7 R6]

Lemmon's systems D3 and a related system C3 are defined instead as

follows:

C36 = {Al, A2, A3, A4r, (D) R6\

D36 = {Al, A2, A3, A4r, A8, (D) R6}

It appears that there are various intermediate systems to be investigated

as well, e.g., the systems C3g and D3g obtained from C3g and D3g by

omitting A4 from the postulate sets and adding A10.

Extension of Foundation Systems. A class of modal systems asserting the

universal possibility of possibilities is obtained by adding A9 to systems

already introduced. These systems are a first step in the direction of

contingency-oriented and conventionalist systems. 6-systems (S6°, S6d, S6e,

S6, C6, D6, E6, etc.) are obtained by adding A9 to the postulate sets of

2-systems (S2°, S2d, S2e, S2, C2, D2, E2, etc.); 6.5-systems (S6.5° etc.) by

adding A9 to the postulates of corresponding 2.5-systems; 7-systems

(S7°, etc.) by adding A9to postulates of corresponding 3-systems (S3°, etc.).

Addition of the anticonventionalist axiom As9 asserting the necessity of

the universal possibility of possibilities leads to a stronger class of modal

systems. For example there are consistent systems obtained by adding

As9 to 2-systems, 2.5-systems and to 3-systems.

Systems like the 6- and 8-systems may be obtained by adding A9 or

As9 to systems weaker than S2°. But whereas in S6° OO/> guarantees

0(0/>&0#)-by:

1. OO(/>&<7) US.

2. O(pkq) -$Op&Oq F41.3.

3. OO(/>& q) => O(O/>&Otf) 2, F33.321, MD.

4. O(Op8zOq) 3, 1, MB.

•—in systems which lack the consistency postulate (effectively F40.Ϊ)

universal possibility of joint possibility does not follow from universal

possibility of possibility. Consequently in weaker systems A9 (and also

As9) may be viewed as only the first of a sequence of progressively

stronger assumptions of possibility of joint possibility. Once sentential

variables are suitably ordered and indexed, e.g., pL9 p2, . . . , / > » , . . . , the

sequence of assumptions is given by:

Λ9n O/\ {Opί)



142 R. ROUTLEY

for n = 1, 2, 3, Then A91 = A9. The sequence of inclusive systems

based on SO.5 by adding A9ι, A92, . . . , A9n, . . . A9n was pointed out to us
by M. K. Rennie. There appear to be similar extensions of systems of SO.5
order such as SO.5, and of systems of SI order.

Contingency-oriented systems result by adjoint All, VV/>, instead of
A9. All asserts the universal contingency of contingency. On its own it is
not sufficient to provide the distinctive features of conventionalistic
systems, since linguistic conventionalism asserts the universal contingency
of all assignments of logical modalities. Conventionalist systems insist on
both All and A12, Up. A12 yields Op in all our foundations systems and we
find that All is derivable in systems (S2° +A12) and stronger, though not in
(SO.5 +A12). To label the wealth of resulting systems we adopt the
following notation:

'Q . . . ' represents the system ( . . . . +A11) ,
'R . . . ' represents the system ( + A12) ,
'QR . . . ' represents the system ( . . . . + All + A12).

In cases where the system label begins with 'S9 the 'S' is dropped; e.g.

(S2°+A12) is called R2°

Some Results on Foundatίonal Systems.

Theorem 1. Any system which includes one of the following sets of
postulates: {A!, A2, A3; Rl, R2J, {AsJ, AS2, AS3; Rl, R2, R3J or{Asl, As2,
As3,A7; Rl, R2} deductively includes SL.

Proof: The first set provides Church's postulates ([3, p. 119]) for P2, and
the axioms of this set are immediately forthcoming from either of the other
sets by application of R3 or A 7, Rl and R2. Hence all the systems intro-
duced deductively include SL.

Theorem 2. R7 is a derived rule of any system having one of the following
sets of postulates: {Asl, AS29 AS3; one of A4, A4f, As4, As4r, R4t R5, R6;
one of A7, R3; and Rl, R2J.

Proof: In any such system the rule \-A-%B -* hϋ)Ao> ΠBis derivable. The
result follows by consideration of the axioms Asl, As2,As3, this derived
rule, Rl, R2, induction on the length of a proof, and theorem 1.

Theorem 3. S0.5e is deductively equivalent to the system SO.5 (of Lemmon

[10, p. 180]).

Proof: (1) SO.5e deductively includes SO.5; for S0.5e deductively includes
SL by theorem 1, and Lemmon's postulates A", (l f), (2) are R7,A4 and A7,
and R7 is derivable in S0.5e by theorem 2.

(2) SO.5 deductively includes S0.5e; for Asl, As2,As3 are derivable in
SO.5 by SL and R1;A4 and A7 are (1) and (2); and Rl and R2 are part of the
SL formulation of SO.5.

Theorem 4. S1O

3>4 is deductively equivalent to Sl°[(Feys 5, pp. 43-45]).
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Proof: (1) Sl°3 4 deductively includes Sl°. The postulates for Sl° are

derivable in Sl°3?4. SD (F30.23) is a derived rule by R3 and R2. Sl°3?4

contains SL by theorem 1. F30.22 is derivable by SL. F30.ll, F30.12,

F30.13, F30.14 follow by SL and theorem 2. F30.15 is As5. F30.24 (SSE),

follows by induction using R4 and the rules

A = B — (C D A) = (C D 5)

A = 5 — (A => C) = (5 3 C)

A = B— ~A = ~B

which may be derived (as in [10, p. 178-179]). By SL, theorem 2 and SSE,

the definitions of Sl° are all provable as strict equivalences in Sl°3?4.

(2) Sl° deductively includes Sl°3?4. The postulates of Sl°3>4 are de-

rivable in Sl°: Asl,As2,As3 follow from F34.1. As4 is F33.311, As5 is

F30.15, Rl is F30.21, R2 is F32.211, R3 is F34.2, R4 is F31.19. The de-

finitions follow as in (1) above.

Note that although R3 is derivable is Sl° it is independent in (Sl°3 4 -

R3) since it is needed to make R2 operative.

Theorem 5. S2°3 5 is deductively equivalent to S2°.

Proof: (1) S2°3?5 deductively includes S2°. It suffices to show that S2°3?5

contains As5, R4, F40.1. The result then follows from theorem 4.

ad R4: Immediate from R5 and SL.

ad As5: R7is a derived rule of S2°3 5 by theorem 2.

1. pD q-%.qΌ rz>. pΏ r SL, R7.

2. p^(q^r)-$.p&q^r SL, #7.

3. ps(q^> r)-l.p& q-ir 2, R5.

4. p-iq-i. #=> r - s . />=> r 1, R5.
5. q^r^(pΏr)-^.q-^rz). p-^r As4.

6. p^q^>. q^ r -3. £D r 4, Λ3.

7. ^ D r -3(/>=> r) D. ̂  -3r 3. /> -3r 5, #3.

8. p-iq'D. q^>r~D. p s r 6, 7, SL.

9. H ^ ^ r D H ^ 8, 4, 5, Λ2.
10. (p-sg) & (g-3r)-s. p e r 3, 9, Si).

ad F40.J:

1. ~p^~(p&q) Theorem 2, β7

2. D~p-3D~(/>& q) 1, Λ5.

3. pz> q-i. ~qz> ~p SL, #7.

4. p s q ^ . ~q-i~ p 3, Λ5.

5. -D-(/>& )̂ -3~D~/> 4, 2, SD.

6. O(p& (?)-5Op 5, £>/O.

(2) S2° deductively includes S2°3?5. It suffices to show that R5 is

derivable in S2°, and this is demonstrated as F46.1.

Theorem 6. S3°3 is deductively equivalent to S3° (Sobociήski [22, p. 53]).
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Proof: (1) S3°3 deductively includes S3°: S3°3 deductively includes Sl° by a
modification of the argument in the proof (1) of theorem 4. Proofs are
required for F30.15 and F30.24{SSE).

ad F30.15: R7 is derivable by theorem 2.

1. (£ D q) & \q D r) -3. £ => r # 7
2. (£-3 0) & (?-3r)-3D{(£D 0) & fa D r)} As6

3. p'D q -3. # => r =>. /> => r # 7
4. />-§# -3. #=} r -3. pz> r As4',3,SD
5. qz>r-3(p^>r)-3.q-%r^.p-^r As4r

6. ρr^(pr)D.^r^.Hr 5, fl3
7. p-lqz).qz> r-%.pz> r 4, R3

8. p-%qz>. q-^r -% . p^r 6, 7, SL.

9. D|(p?)&(P^)H.H^ As4',l,SD

10. ( H i ) & (tf-3*Ή . P-*r 8, 2, 9, MD, SD

ad F30.24; The derivation is as in theorem 4 except that R4 must be
As4r and SL.

To complete this half of the proof it remains to show that F50.01 is

provable in S3°3.

ad F50.01:

1. ~^~/>-?.D~^ϋ~p As4
2. p-Sq^. ~q-S~p S*L, R7,As4, SD

3. D-^G-H.-Π"Ή~D-ί 2
4. £-30-3. OpΊOp 1,2,3, F30.15

SL, S£>, z y o .

(2) S3° deductively includes S3°3. The postulates of S3°3 with the
exception of As4f and As^ have been derived in Sl° in the course of the
proof of theorem 4 above, As6 is F44Λ, a theorem of S2°, and As4r is
derivable in S3° as in the proof of F51.ll in S3.

Theorem 7. The systems SO.5%, Sle

4, S2e

5, S2.5e, S3e are proper extensions
of systems S0.5°3, Sl°3 4 , S2°3?5, S2.5°3, S3°3 respectively.

Proof: The following set of matrices satisfies the postulates of the second
set of systems, but does not satisfy A7.

3 I 1 2 3 4 I ~ I D

*1 1 2 3 4 4 1
2 1 1 3 3 3 3
3 1 2 1 2 2 3
4 1 1 1 1 1 3

These are Lewis and Langford Group IV but with only the value 1
designated. AZfails for £ = 2 .

Theorem 8. The systems Sl4, S25, S2.5, S3 are proper extensions of
systems Sle

4, S2e

5, S2.5e, S3e respectively.
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Proof: The following set of matrices satisfies the postulates of the second
set of systems, but does not satisfy F36.0, p -3O/>, a theorem of SI.

D I 1 2 3 4 5 6 7 8 I - I •

* 1 1 2 3 4 5 6 7 8 8 2

* 2 1 1 3 3 5 5 7 7 7 6

* 3 1 2 1 2 5 6 5 6 6 6

* 4 1 1 1 1 5 5 5 5 5 6

5 1 2 3 4 1 2 3 4 4 6

6 1 1 3 3 1 1 3 3 3 6

7 1 2 1 2 1 2 1 2 2 6

8 1 1 1 1 1 1 1 1 1 6

The set is adapted from F50.1 (due to Parry). F36.0 fails for p = 1.

Theorem 9. The postulates of S3°3 are independent.

Proof: (1) Λsl is independent by the matrices:

D 1 2 3 4 I - •
* 1 1 4 4 4 4 1
* 2 1 2 3 4 3 2

3 1 2 2 4 2 3
4 1 1 1 1 1 4

These satisfy the remaining postulates but fail for As 1 {p = 2, q = 1).
(2) As2 is independent, for every set of postulates for S3 contains at

least one axiom with three variables (Diamond and McKinsey [4, p. 962]).
(S3e + Πp-^p) is deductively equivalent to S3. Hence As2 is independent in
(S3e + ΏpΊp) and hence in S3e.

(3) As3 is independent by the matrices

=> l 2 - I D

* 1 1 2 1 1
2 1 1 2 2

which satisfy the remaining postulates and fail for As3 (p = 2, q = 1)
(4) As4' is independent by Parry's matrices F50.1 which fail for

As4' (/> = l,tf= 2).
(5) As6 is independent by the following matrices (due to Ivo Thomas):

D I 1 2 3 4 I - I D

* 1 1 2 3 4 4 1
* 2 1 1 3 3 3 3

3 1 2 1 2 2 3
4 1 1 1 1 1 4

These satisfy the remaining postulates but fail for As6 (p = 2, q = 3).
(6) Rl is independent since without it the longest theorem cannot be

longer than the longest axiom.
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(7) R2 is independent since without it the shortest theorem cannot be
shorter than the shortest axiom (and p D p is a theorem).

(8) R3 is independent since with it R2 is inoperative.

Theorem 10. (i) The postulates of S3e are independent, and (ii) the
postulates of S3 are independent.

Proof: (i) As in theorem 9 except that the independence of A7 follows for
the same reason that R3 is independent in S3°3.

(ii) Except for As 7 the result follows from (i). As 7 is independent by
the Lewis Group IV matrices F36.1.

Theorem 11. S3e properly includes S3* (Sobociήski [22, p. 53]).

Proof: It is easily shown that S3e contains the postulates of S3*, and As5, a
theorem of S3e by theorem 6, is not provable in S3* (Thomas [24, p. 199]).

Theorem 12. If A is a thesis of SL then OA is a thesis of Sl°9 S2°, S2.5°
and S3° and all systems which include them.

Proof: By induction over proofs in SL, as outlined in F34.1.

Theorem 13. Each of the following inclusions is proper:

S2?>5 c S2.5? c S3?

S 2 ^ 5 c S2.5^ c S3^
S2j' c S2.5 e c S3 e

S25 c S2.5 c S3

Proof: Improper inclusions of S2.5* in S3* a r e immediate . To show that
S2* i s improper ly included in S2.5* it i s n e c e s s a r y to prove that As4 i s a
theorem of S2.5a.

(i) f-S2.5§ (/> ~ ^ ) & (q^r)^.p^r

1. p^q -3. q ̂  r -3 . p D r A4r, SL, Theorem 2.
2. # : = > r ^ ( / > 3 r ) D . < 7 - 3 r - β . £ β r A4f

3. p-^q^.q^r-^.p^r 1, R3.
4. p^q ^.q^r -3 ./>-S r 3, 2, SL.
5. (p^q)&(q^r)-3Π{(pDq) & (qΌr)} As6.
6. Π{(p^> q) & (q ̂ >r)}^.p^r A4r, SL, Theorem 2.
7. {p-*q)b(q^r)-i.p-ϊr 4, 5, 6, MZ>, SZλ

(ϋ) »-S2.5§(/>-^)& Πp-iUq

1. (/> D q) &P^q Theorem 12, SL.
2. D((/>D tf) & $-3Dtf A4',MD
3. D(/>3#) & D£-3D((/>=> #) & />) As6
4. (p-^q) βiΠp^Πq 2, 3, (i), SL.

(iii) hS2#5o p & 0 - 3 r - 3 . / > - 3 f a D r ) Theorem 12,A4 r

Finally HS2.58/>-?.? -3. D/> D Ώq (iii) and (ii) by SD.

The inclusions are however proper. For A4' is not provable in S25 (the
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most comprehensive of the S2' systems) by the Parry-Huntington matrix
F50.1, with values 1 and 2 designated; and As4r in S2.5 by the same matrix
F50.1 with values 1, 2, 3, 4, designated.

Corollary: SSE is a derived rule of S2.5*.

Theorem 14. The postulates 0/S2.53 are independent.

Proof', As for theorem 9. A4* is independent by F50.1 with/) = 1 and? = 2.

Theorem 15. (i) The postulates of S2.5e are independent, and (ii) the
postulates o/S2.5 are independent.

Proof: As for theorem 10. A4' is independent by F50.1.

Results on Contingency-oriented and Conventionalist Extensions.

Theorem 16. The systems Q0.5*, Q2*, Q2.5* and Q3* are consistent.

Proof: The following matrices satisfy SO.5, S2, S2.5, S3 and the axiom All.

& I 1 2 3 4 5 6 7 8 I ~ D V

* 1 1 2 3 4 5 6 7 8 8 2 7
* 2 2 2 4 4 6 6 8 8 7 6 3
* 3 3 4 3 4 7 8 7 8 6 8 3
* 4 4 4 4 4 8 8 8 8 5 8 3

5 5 6 7 8 5 6 7 8 4 6 3
6 6 6 8 8 6 6 8 8 3 6 3
7 7 8 7 8 7 8 7 8 2 8 3
8 8 8 8 8 8 8 8 8 1 8 7

Theorem 17. Where, e.g. Q2* is the Q2 system corresponding to the S6
system; e.g. Q2e corresponds to S6e,

S6*' c Q2'
S6.5' c Q2.5*
S7* c Q3*

Proof: (1) OOP is provable in Q21', Q2.5*' and Q3*.

1. VV/> All.
2. O(OP&O~P) &O~(<0/>&<0~/>) 1,2)/V.
3. O(OP&O~P) 2, SL.
4. OOp F35.32,3,

F35.ll.

OOP is similarly derivable in Q0.5° (using A4 etc. for Line 4).
(2) All is independent of S6, S6.5 and S7, since S6 and S7 satisfy the

matrices F56.1 (Lewis and Langford, Group I), but All does not.

Theorem 18. (S2 + As9 + All), (S2.5 + As9 + All) and (S3 +As9 +A11) are
inconsistent.

Proof: It suffices to prove inconsistence for (S2 + As9 + All).
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1. VV/> All.
2. OV0 &~DV0 1,D/V, F33.211, SSE.
3. ~D(O0&O~0) 2,Z>/V,SL.
4. -(DO? & DO~0) 3, F44 i, 5S£.
5. DO0=> ~DO~0 4, SL.
6. DO/) => <>•/) 5, Z)/O, F33.21, SSE.
7. DOO0=> ODO0 6.
8. D H D O D p F3£.£.
9. OD Op-$0p F31.34, 8, SD, F33.211.

F33.22, F33.23, SSE.
10. DOO0 => O/> F37Λ2, 9, Si), 7, SL.
11. 00 10, DOO0, MD.

Inconsistency follows immediately as in F91.0.

Theorem 19. (Q2 + O0 ̂  DO0) is inconsistent; hence too (S3.5 + All) is
inconsistent.

Proof:

1. 00=) DO0 A4.
2. OO0=> DOO0 1.
3. DOO0 2, F91.10, MD.

Inconsistency follows as in theorem 18.

The following are theorems of Q2; the proofs present no difficulties:

D03VD0 D~03V(D~0)
0&V0^V(0&V0) -0 & V0D V(~0& V0)

It is clear from the first two theorems that Q2 would be a radical conven-
tionalist system if it were also provable that V0 D V G0. But such a result
is not provable: in fact it is not even consistently adjoinable to Q2. We
show then that S6, Q2 and extensions of these systems are not properly
conventionalistic.

Theorem 20. (SI + A12) is inconsistent.

Proof:

1. V0 Ξ V - 0 DfS7, SL.

2. VΠ0 3 V~D0 1, SL.
3. VO0 2,A12,MD,DfO.
4. 0^00 F36.0.
5. D0 3 D O 0 F33.311,4,SD.
6. -DO0 3 -Π0 5, SL.
7. VO0 ^ OO0 & ~DO0 SL, D/V, F33.211, SSE.
8. ~D0 7, 3, 6, SL.
9. 00 8,Z)/O.

Inconsistency follows as in theorem 3.
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However by weakening the SI axiom p-^Op to p D Op this sort of
derivation can be avoided.

Theorem 21. QR3e and its subsystems are consistent.

Proof: The matrices used in theorem 8 can be used to prove this result.

Theorem 22. QR0.5 is a proper extension of SO.5, o/Q0.5 and of R0.5.

Proof: All and A12 are each independent of SO.5 by the Lewis Group III
matrices {F56.3). A12 is independent of Q0.5 by the Lewis Group V
matrices (F30.5). All is independent of R0.5 by the Parry matrices (F50.1)
for ' ~ ' and '&', with 1, 2, 3, 4, designated and the following matrix for (Π':

£ 1 2 3 4 5 6 7 8

Up I 2 5 5 5 5 5 5 5~

Theorem 23. The pairs of systems QR2°, R2°; QR2e, R2e; QR2.5°, R2.5°;
QR2.5e, R2.5e; QR3°, R3°; QR3e, R3e are deductively equivalent.

Proof: It is sufficient to prove All is a theorem of R2°.

1. VΏp A12.

2. OΠp&O~Πp 1, DfV.
3. OO(/>& ~p) 2, SL, DfO.
4. <>•(/>& ~p) 2, SL.
5. p & ~ psq SL, F34.1, F43.2, SD.
6. O(P & ~/>) ̂ O<7 F46.2, 5.
7. O(/> & ~p)-lθ~q 5, F40.2.
8. O(/> & ~p)-$Vq 6, 7, SL, F42.21, SD, DfV.
9. OO(£ & ~p) -3 OV(? 8, F46.2.

10. OV? 9, 3, SD.
11. D(/)& -/)) ̂ D # 5, F46.1.
12. D^D^vD-ί SL, F34.1.
13. D#-3~V<7 12, SL, F33.2, SSE, DfV.
14. Ώ(p & -/>) -8 -V^ 11, 13, F31.021.

15. OD(f&~/>)-3O~V(f 14, F46.2.
16. O~V# 15, 4, SZ>.
17. VV^ 10, 16, SL, DfV.

Theorem 24. The systems Q2°, Q2e, Q2.5°, Q2.5e, Q3° and Q3e are proper
subsystems of the corresponding QR systems.

Proof: The inclusions are immediate, and since the matrices of the proof
of theorem 16 satisfy the Q systems and reject A12, it follows the inclu-
sions are proper.

Corollary. The systems Q2e, Q2.5e and Q3e are proper subsystems of R2e,

R2.5e and R36respectively.
The proof is by theorems 23 and 24.
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The system S2e is Feys system S2° augmented by A 7, and we give the
system (S2° - F30.23 +A7 +R2) the label S2j.

Theorem 25. The system S2* is deductively equivalent to the systems S2e

and S2g.

Proof: The deduction equivalence of S2e and S2\ is immediate from theorem
5. It is therefore sufficient to show that S2* is deductively equivalent to S2e.
This result follows since F30.23 is derivable in S2* by A 7 and R2, R2 is &
derived rule of S2e (F32.21Ϊ) and A7is a postulate of S2e.

Theorem 26. hR 2eA if and only if hS2
eOO(/>& ~ p) &<>•(/>& ~p) =>. A

(where ζp' is some variable not occurring in A).

Proof: The proof considers the formulations B2% and S2£ of R2e and S2e.

(1) If HS2e OO(/) & ~p) & OB(p & ~p)^>. A then HR2e A.
The proof follows the first four lines of the proof of theorem 23 thence

by Adjunction and MD.
(2) If hR2eA then f-S2e OO(p & ~p) & OD(£& ~/>) D . A .
The proof is by induction over the length of the proof of A in R2e. For

the initial clause, if A is an axiom of S2e then the result follows by
pi), q^>p, and if A is AL2then:

1. pk~p*q SL, F34.1, F43.2, SD.
2. D(/>& ~/>HD<7 1, F46.1.
3. OΠ(p&~p)-*OΠq 2, F46.2.
4. O(p& ~p)Ίθ~q 1, F46.2.
5. OO(/> & -/>) -βO~D# 4, JP55.^, SS^, F45.^.
6. OO(/>& ~p) &OΠ(ί>& - ί ) ^ O Π g & O - α g 5, 3, SL, F42.31, SD.
1. OO(H~ί)&OD(p&-?)DVDί 6,DfS7, F34.2.

For the inductive clause, the result is immediate for US (F30.2Ϊ) and
SSE (F30.24), and almost immediate by SL for Adjunction (F30.22) and
MD {R%.

Theorem 27. HR2#5e A if and only ^7 -̂s2.5e OO(/> & ~/>) & OD(/> & ~/>) 3 . A
αrcd t-R 3ei z/αrcd onZ^ f/ hS3e OO(/> &-/>)& OD(/> &-/>)=>. A.

Proof: Since these are rule-simplified systems containing R2e and S2e

respectively, the proof is as in the proof of theorem 26 with a simplified
induction step.

Theorem 28. The system R2e is decidάble.

Proof: S2e is decidable (for proof see Routley [19]). Hence by theorem 26,
R2e is decidable.

NOTES

1. P. F. Strawson, "Necessary propositions and entailment-statements," Mind,
vol. 57 (1948), pp. 184-200, p. 185. That Strawson's thesis is tantamount to (R)
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in the systems we consider is evident from footnote 2, p. 184. J. Bennett in
"Iterated modalities," Philosophical Quarterly, vol. 5 (1955), pp. 45-56, p. 49,
mistakenly attributes the S8 thesis O~Π\Ώp to Strawson; he appears to think
this thesis is a consequence of Strawson's convention. It is not: indeed the S8
thesis is inconsistent with radical conventionalism.

2. See, for example, A System of Logic, Book I, Chapter VI.

3. Kneale's claim (in [8], p. 644) that conventionalism involves nominalism is
nowhere substantiated in his book.

4. An argument which will show that the radical conventionalist is in serious
difficulties elaborating his position satisfactorily is given in [21]. What can be
shown is that there is no feasible way of elaborating the conventionalist case as
sketched in the text here.

5. Mackie's linguistic interpretation is not to be confused with the linguistic theory
of logical necessity explained earlier. We have replaced Mackie's single quote
marks by the quotation function notation of [ 6 ].
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