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AXIOMATIC QUASI-NATURAL DEDUCΉON

JOHN R. GREGG

I. Two distinct methods are available for constructing proofs in quantifica-
tion theory: deduction from axioms and "natural" deduction from premises.
The first method has the formal advantage that each line of a proof is valid;
but proofs turn less upon strategy than upon brute ingenuity, and often are
hard to come by. The second method, generally speaking, is the more
convenient and perspicuous, proofs turning more upon strategy and
somewhat less upon insight; but these niceties are paid for, sometimes
dearly, in more or less artificial restrictions upon proof format and upon
the use of rules of inference.

The burden of this paper is to describe a new axiom system G; to show
that adoption of some simple, transparent and purely typographical
conventions yields a method of proof—called axiomatic quasi-natural
deduction—in which are combined all advantages of deduction from axioms
with those of deduction from premises; and to show that the system is both
complete and sound in the sense that all and only valid quantificational
formulae are among its theorems.

II. The primitives of G are the constant (inconsistency) 'f, sentence
letters ('/>', '#', 'r', 's ' and their subscripted variants), w-place predicate
letters (Ψn% 'Gn', Ήn' and their subscripted variants), variables (ζw\ (x',
'y', 'z' and their subscripted variants), parentheses, the conditional sign
' D ' and the universal quantifier sign 'V\

The formulae of G are all and only expressions identified recursively
by these rules: (i) (f is a formula, (ii) a sentence letter is a formula,
(iii) an n-place predicate letter followed by a string of n variables is a
formula, (iv) any result of putting a formula for 'p' and one for ίq> in
'(p D ̂ )' is a formula, (v) any result of putting a variable for (x' and a
formula for ζpy in 'Vxp' is a formula.

Henceforth, T ' , ζQ', 'R* and their subscripted variants will refer
ambiguously to formulae, 'X' and Ύ' to variables. Thus, (P D Q) is the
conditional whose antecedent is P and whose consequent is Q, VXPis the
universal quantification of Pwith respect to X, and so on.
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An occurrence of X in P is free in P if it lies within no part of P of the
form VXQ, else it is bound (not free) in P. X itself is free or bound in P
according as it has free or bound occurrences therein. The formula that is
like P except for having a free occurrence of Y at each place where P has a
free occurrence of X will be called (P: Y/X). If P lacks free occurrences of
X, or if Y is X, (P: Y/X) is P.

An expression of the form (P1 D (P2 D . . . D (Pn => ) . . . )), (n > 0),
will be called a context with antecedents Ph P2, . . . , Pn. Antecedents are
to be distinguished from occurrences thereof; for example, the context
'(pD (q D (p D )))' has two antecedents, one of them occurring twice.
Ambiguous reference to contexts will be made with the help of the letter <C
and its subscripted variants. If Cx and C2 are contexts, not necessarily
distinct, i{C1C2Y will refer indiscriminately to contexts whose antecedents
are just those of CΊ together with those of C2. For example, if Cx is
(Q D {Q ί) )) and C2 is (P D ), (CiC2) may be taken as (P D (Q D )) or
as ( Q D ( P D )) or as (P D (Q Z> (P D ))) or as any of a denumerable

infinity of further instances. The result of putting a formula P for the
blank in a context C will be called CP. Obviously, if C has zero
antecedents, CP is P.

Often a formula may be construed as being of any one of several forms
expressible in contextual notation. Thus, (P D (Q D R)) may be construed
as being of the form CR, taking C as (P D (Q D )); or as being of the form
C(Q D #), taking C as (P D ); or as being of the form C(P D (Q D ft)),
taking C as the context with zero antecedents. In all such cases, one is
free to choose in accord with the matter at hand.

Parentheses sometimes will be dropped or supplanted by dots, the
conventions being those of Quine.1 Furthermore, superscripts on predicate
letters will be omitted when no confusion threatens.

The axioms of G are all formulae of the form

2.1 C{PΊ)P).

There are four rules of inference; together with the axioms, two of them
spell out the truth functional component of G, the others the logic of
quantifiers.

2.2 From C(P D Q. D f) one may infer CP.

2.3 From CλP and C2(P D Q) one may infer (C1C2)Q.
2.4 From CVXP one may infer C{P\Y/X).
2.5 From C(P:Y/X) one may infer CVXP, provided that Y has no free

occurrence in CVXP.

A proof in G is a sequence of m formulae (1), (2), . . . , (m) such that,
for each k < m, (k) is an axiom or (k) is inferred from some prior
formula(e) by one of 2.2—2.5.

A formula P is provable in (is a theorem of) G if and only if there exist
a proof in G whose terminal formula is P.

Familiar truth functional connectives other than ' D ' , and existential
quantifiers, are introduced by the definitions following.
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2.6 ~P for (P Df).

2.7 (P.Q) for (P D. <? Df: D f).

2.8 (P v Q) for (P D f. D ζ>).

2.9 (P = Q)for (PD Q. D: Q D P . Df.: Df).

2.10 3XP /or (VX(P D f) D f).

Definitional abbreviations notwithstanding, all formulae of G are of the

form (Pi D (P2 D . . . D (Pw D Q) . . . ) ) , U - 0). If some such formula is

suspected to be a theorem, there are three major strategies available for

proving it.

The first of these is: set down n axioms (P x D P2), (P 2 D P2), . . . ,

(Pn D Pw); then try to derive the whole. The procedure is exemplified by

the following proof of '(p D :p D #. D #)':

(1) P D ί 2.1

(2) £ Dtf. D .p^q 2.1

(3) pDipziq.^q (1), (2), 2.3

To see that the proof accords with the rules of inference, one may note that

(1) is of the form CλP, with Cx as <(po _)' and P as </>'; that (2) is of the

form C2(P D Q), with C2 as <(ρ D #. 3 _ ) ' and (P 3 ζ>) as <(/> D #)'; and that

(3) is of the form {CtC2)Q, with {CXC2) as ({ρ D :/> D #. D _ ) ' and Q as ^ ' .

The second strategy is: set down n axioms as before, add a further

axiom (Q D f. D .Q D f); then try to derive the whole. The method is

illustrated by a proof of <(/> v#. D r: D ./> D r ) ' .

(1) pvq. Ώr: Z) :pvq. z^r 2.1

(2) />D/> 2.1

(3) r Df. D .r Df 2.1

(4) pvq. ^r: D . r D f . D :/>V^. Df (1), (3), 2.3

(5) p v ί . D r: D ::r D f. D : . fDf. D ̂ : D f (4), 2.8

(6) /> v0. D r : D :r D f. D ./> D f (5), 2.2

(7) />vtf. D r : D :./> D :r D f. D f (2), (6), 2.3

(8) pvq.Dr: D .p Z)T (7), 2.2

The third strategy available to prove a suspected theorem P is this:

set down the axiom (P D f. D JP D f), try to derive (P D f. D f), then apply

2.2 to obtain P. A proof of ((ί D p)' will illustrate.

(1) fΏp.DfiD :f D p i 2.1

(2) f D/>. Df: Df (1), 2.2

(3) f =)/> (2), 2.2

These examples have been deliberately kept simple, but readers who

have grasped them are unlikely to have difficulty constructing some of

greater complexity. Nevertheless, in view of the spare primitive machinery

of G, there is no arguing against a stock of derived rules of inference as a

source of convenient deductive power. Four such, presently to be useful,

will now be established.
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2.11 From CP one may infer CP.

(1) CP Suppose given
(2) C(PΏ P) 2.1
(3) CP (1), (2), 2.3

The reader justifiably may argue that tacit use of 2.11 already has been
made two proofs back in the passage from (4) to (5)—supported merely by
citing 2.8. On another view, adopted here, 2.8 and other definitions
explicitly sanction steps typified by that from (4) to (5).

2.12 From C(P ΏQ. Ώ R) one may infer C(Q D R).
(1) C(P D Q. Dβ) Suppose given
(2) Q Z)R. Df: D :Q D β , Df 2.1
(3) Q D β . Df: D Q (2), 2.2
(4) P D .Q D<? 2.1
(5) QDP.Ώf .Ώ .PΏQ (3), (4), 2.3

(6) C(Q D β . D f D β ) (1), (5), 2.3
(7) Q D .R D β 2.1
(8) C ( $ D β , D f : D , $ D β ) (6), (7), 2.3
(9) C(Q D β . D f Df) (2), (8), 2.3

(10) C(Q D β ) (9), 2.2

2.13 From C(P:Y/X) one may infer C3XP.
(1) C(P:Y/X) Suppose given
(2) 1XP Df. D .HXPDf 2.1
(3) 3XP D f. D :VX(P D f) D f. D f (2), 2.10
(4) 3XP D f. D VX(P D f) (3), 2.2
(5) 1XP D f. D .(P .Y/X) D f (4), 2.4
(6) C(3XP Df. Df) (1), (5), 2.3
(7) C1XP (6), 2.2

2.14 From dlXP and C2((P:Y/X) => Q) oŵ  m«3; m/er (CiC2)Q, provided
that Y has no free occurrence in Q or in any antecedent of C2 or in 3XP.

Assuming that Y meets the proviso on the rule:

(1) Ci3XP Suppose given
(2) C2((P:Y/X) D Q ) Suppose given
(3) Q Df. D .<?Df 2.1
(4) C2(Q D f. D .(P .Y/X) D f) (2), (3), 2.3
(5) C2(Q Df. DVX(P Df) (4), 2.5
(6) CJίVX(PΏt)Ώt) (1), 2.10
(7) (dCa) (Q D f. D f) (5), (6), 2.3
(8) [CXC2)Q (7), 2.2

Note that if Y were not as assumed, the passage from (4) to (5) would
exemplify fallacious usage of 2.5.

Next, it will be shown that G may be worked straightforwardly into
something that verges on being a system of natural deduction. The
conventions required can be stated in full generality, but are as well
conveyed by example.
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First, consider the formula

(i) (pD(q D{r os))).

Nearly enough, it typifies the general form of formulae in G. Suppose that

one agrees to write it in any of the following ways:

(ii) p (q D (r Ώ s))

(ϋi) P,q (r D S)

(iv) p,Q,r s

in which case, one may agree that (i)—(iv) are nothing more than typo-

graphically distinct versions of one and the same formula. In each

instance, a sequence of zero or more formulae (a prefix) is peeled off to the

left, leaving a formula (a. suffix) off to the right. For example, '£,#' is the

prefix and ((r z> s)9 the suffix of (iii). Thus, the first convention may be

stated as follows: one may write any formula in prefix-suffix form.

Second, consider any axiom of G; for example,

(p D (q D (r D r))).

By the convention above, it may be written in the form

P,Q,r r

in which there is an occurrence of the suffix among the formulae of the

prefix. In practice, much writing is saved if one agrees to a second

convention: if an axiom in prefix-suffix form has an occurrence of the

suffix among the formulae of the prefix, one may represent that occurrence

by the numeral of the line in which the axiom is to appear; furthermore, one

may preserve the numerical representation in the prefixes of succeeding

lines. Thus, if the axiom above is to appear as the third line of a proof, one

may write it in the form

p,q,3 r

in which '3 ' represents V .

Two examples will suffice to exemplify use of these conventions. The

first is a proof of ((p D q. z^r: D :S D .q D r)\

(1) 1 pi>q.Z)r 2.1

(2) 2 S D . p r : D f 2.1

(3) 1 q^r (1), 2.12

(4) 2 qor.Dί (2), 2.12

(5) 1,2 f (3), (4), 2.3

(6) 1 s D .q or: D f.: D ί (5), 2.11

(7) 1 s D 4 or (6), 2.2

The proof is now complete: (7) is just a way of writing the theorem. Of

course, another application of 2.11 would yield an eighth line displaying the

theorem explicitly; but nothing further would be gained. The second

example is a proof of '(Ξ yV r.Fjry D VxΊyFxy)'.
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(1) 1 lyVxFxy 2.1
(2) 2 VxFxy 2.1
(3) 2 Fxy (2), 2.4
(4) 2 lyFxy (3), 2.13
(5) VxFxyΏlyFxy (4), 2.11
(6) 1 lyFxy (1), (5), 2.14
(7) 1 VxlyFxy (6), 2.5

Without instruction to the contrary, one viewing these proofs might
well suppose them to be proofs by natural deduction; that 2.1 is a rule for
introducing premises; that 2.11 is a rule of conditionalization; that the
prefix of each line is a device for keeping track of the premises upon which
the suffix depends; that but one of the fourteen lines is valid. The reader
knows better. But some substance now attaches to the claim that axiomatic
quasi-natural deduction combines the advantages of deduction from axioms
with the advantages of deduction from premises.

III. Church's system F 1 is known to be complete in the sense that all valid
quantificational formulae are among its theorems.2 Therefore, to show that
G is complete, it is sufficient to show that all theorems of F 1 are theorems
of G.

The axioms of F 1 are given by the schemata following:

(i) P D . Q D P

(ii) P Ώ JQ Ώ R: Ώ :P D Q. Ώ .P Ώ R
(iii) ~P D ~ Q . D .Q D P
(iv) VX(P D Q) D .P D VXQ, ifX is not free in P.
(v) V X P D ( P : Γ / X )

The rules of inference are:

(vi) From P and ( P D Q ) one may infer Q.
(vii) From P one may infer VXP.

A proof in F 1 is a sequence of m formulae (1), (2), . . . , (m) such that, for
each k < m, (k) is an axiom or (k) is inferred from some prior formula(e)
by (vi) or by (vii). A formula P is provable in (is a theorem of) F 1 if and
only if there exists a proof in F 1 whose terminal formula is P.

Suppose of a proof in F 1 that all lines prior to some arbitrarily
chosen line (k) are provable in G. What is to be shown is that (k) is
provable in G. There are seven cases to consider.

Case (i): {k) is an axiom (P D .Q D P). Then (k) is provable in G (using the
shorthand introduced in the last section) as follows:

(1) 1 P 2.1
(2) Q P ΏP 2.1
(3) 1,Q P (1), (2), 2.3

Case (ii): (k) is an axiom (P D .Q D R: D :P D Q. D .P D R). Then (k) is
provable in G, as follows:
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(1) 1 PD .Q D R 2.1
(2) 2 P D Q 2.1
(3) 1,2 PDR (1), (2), 2.4

Case (Hi): (k) is an axiom (~P D ~Q. D .Q D P). Then (&) is provable in G,
as follows:

(1) 1 ~PD-« 2.1
(2) 1 P Df. D .Q Df (1), 2.6
(3) 3 <? 2 . 1
(4) 1,3 P D f . Df (2), (3), 2.3
(5) 1,3 P (4), 2.2

Case (iv): (k) is an axiom (VX(P D Q) D .P D VXQ). By the proviso on (iv),
X is not free in P. Then (&) is provable in G, as follows:

(1) 1 V X ( P D Q ) 2.1

(2) 1 P D (Q:X/X) (1), 2.4
(3) 1 P D VXQ (2), 2.5

Case (v): (k) is an axiom ( V X P D (P .F/X)). Then (&) is provable in G, as
follows:

(1) 1 VXP 2.1
(2) 1 (P:Y/X) (1), 4.2

Case (vi): (k) is Q and is inferred from prior lines P and (P D Q). By
hypothesis, both P and (P D Q) are provable in G. Hence there exists a
proof in G (a proof of P continued by a proof of (P D Q), say) in which both
P and (P D Q) are lines; whence one may infer Q as a further line by 2.3.
So {k) is provable in G.

Case (vii): {k) is VXP and is inferred from a prior line P. By hypothesis,
P i s provable in G. Hence there exists a proof in G whose terminal line is
P—that is, whose terminal line is (P-.X/X)—whence one may infer VXP as a
further line by 2.5 So (&) is provable in G.

Thus, in all cases, (k) is provable in G. But (k) was any line of a proof
in F1. That all formulae provable in F 1 are provable in G follows by course
of values induction.

What has been shown is that all theorems of F1 are theorems of G. But
all valid quantificational formulae are theorems of F1, hence all valid
quantificational formulae are theorems of G. That is, G is complete.

IV. In showing that all formulae provable in G are valid, free use will be
made of well known laws of validity, implication and equivalence.3 An
auxiliary notation will be useful: if C is a context with more than zero
antecedents, '*C will refer ambiguously to conjunctions of all and only
antecedents of C; otherwise, f*C' will refer to ((pD p)\ Thus, by laws
alluded to above, CP is equivalent to (*C D P) and *(C1C2) is equivalent to
(*Cle*C2).

Suppose of a proof in G that all lines prior to some arbitrarily chosen
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line (k) are valid. What is to be shown is that (k) is valid. There are five
cases to consider.

Case (i): (k) is an axiom C(P D P) . But (P D P) is valid, so is implied by
any formula; in particular, by *C. That is, (*C D (P D P ) ) is valid; hence
so is its equivalent C(P D P ) . That is, (&) is valid.
Case (ii): (k) is CP and is inferred from a prior line C(P D Q . Df). By
hypothesis, C(P D Q . D f) is valid, hence so is its equivalent (*C 3 :P z>
Q. D f). That is, *C implies (P D Q. D f). But (P D Q. D f) implies P, so
*C implies P . That is, (*C D P) is valid. Hence so is its equivalent CP.
That is, (k) is valid. Case (iii): (k) is ( C ^ Q and is inferred from prior
lines C xPand C2(P 3 Q). By hypothesis, d P and C2(P D Q) are both valid;
hence their respective equivalents (*Ci D P) and (*C2 z> .P D Q) are both
valid. That is, *Cχ implies P and *C2 implies (P z> Q). Hence (*Ci *C2),
also its equivalent *(C!C2), implies (P. (P D Q)). But (P. (P D Q)) implies
Q, so *(CiC2) implies Q. That is, (*(C!C2) D Q) is valid. Hence so is its
equivalent {C1C2)Q That is, (k) is valid.

Case (iv): (k) is C(P:F/ΛΓ) and is inferred from a prior line CVXP. By
hypothesis, CVXP is valid, hence so is its equivalent ( * C D V I P ) ) . That
is, *C implies VXP. But VXP implies (P:Y/X), so *C implies (P:Y/X).
That is, (*C D (P:Y/X)) is valid, hence so is its equivalent C(P:Y/X). That
is, (k) is valid.
Case (v): (k) is CVXP and is inferred from a prior line C(P:Y/X) by 2.5.
By the proviso on 2.5, Y has no free occurrence in CVXP, hence none in P
nor in any antecedent of C nor in any conjunct of *C. By hypothesis,
C(P:Y/X) is valid; hence so is its equivalent (*C Ώ(P:Y/X)), hence so is
VF(*C D (P:7/X)). But the latter implies (*C 3 VF(P:F/X)), which is equiv-
lent to (*C ^ VXP); so (*C DVXP), also its equivalent CVXP, is valid. That
is, (k) is valid.

Thus, in all cases, (k) is valid. But (k) was any line of a proof in G.
That all formulae provable in G are valid follows by course of values
induction. That is, G is sound.
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