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MODAL SYSTEMS IN WHICH NECESSITY IS ‘“FACTORABLE”’

J. JAY ZEMAN

We will say that necessity is ‘‘factorable’’ in a modal system S if there
are modal functions X;p, ..., X,p— L itself being none of the X; — such
that in S the conjunction KX;pKX,p . .. X,p is equivalent to Lp. For the
systems discussed in this paper, » in the above formulas will be 2 and X;p
will be simply p. An obvious example of a system in which necessity is
factorable is the system S4.4, which contains as a thesis

(1) EKpMLpLp.
We shall redirect our attention to S4.4 later on in this paper.

1. S images in the S ° systems. We shall now show that by considering the
operator usually read as ‘‘necessity’’ in the systems S1°-S4° to be a factor
of necessity rather than necessity itself, we may find in each of these
systems an image of its respective (without the ‘°’) ordinary Lewis-modal
system. As bases for S1°-S4°, we may use the C-N-L formulations of [1];
for our present purposes, however, let us employ for these systems the
letter @ in place of L, and reserve L for the necessity operator in the
“‘images’’ we will discover in S1°-S4°. In all of these systems, then, we
will define L and M as follows:

Df. L: Lg for Ko Qg
Di. M: Mgpfor ANQNogp

Axioms and rules for the systems will be drawn from the following stock,
as in [1], with @ read for L:

Jla. CQCPCqrQCRPCRIQY

J1b. CQCPpgCRPAq

J2. CKQCpqQCqrQCphr

Ja. If ¢, then FQo.

Jb. If ¢ is an axiom ov PC theovem, FQq.
Je. IfHQCoY, then FQCQo QY.

Jd. If QCoV and -QCoV, then FQCQpQY
Je. IfFQo, then .
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With <“PC’’ as the full classical propositional calculus with detachment
and substitution for variables, the bases are:

S1°=PC +J2 + Jb + Jd + Je
S2° = PC +J1b + Jb + Jc + Je
S3°=PC +JIa + Jb + Je
T° =PC +J1b + Ja + Je
S4° = PC + J1a + Ja + Je.

We first note that in the systems under study, with Df. L and M as
above,

(2) EMpNLNp

will clearly be a theorem; thus the standard definition of A/ in an
L-primitive system holds in these systems. Now let ¢ be a theorem of one
of the systems at hand; in particular, if the system in question is S3° or
weaker, let ¢ be an axiom or PC theorem; if the system is T° or stronger,
¢ may be any theorem. We then have in each of these systems

(3) FQo @, Ja or Jb
(4) FLo (3), ¢, PC, Df. L

Rules—call them Ja; and Jb; —like Ja and Jb except for having L for @ then
are derived rules within these systems, with Ja, in T° and S4°, and Jb; in
the others. Further, in all these systems we have

(5) CLpp PC, Df. L
(6) LCLpp S1°, Df. L, Jb.

We may note also that whenever L¢is a theorem, so too will be Qg;
(7 CLpQp PC, Df. L

is in fact a theorem of S1°. Thus, if we have an S1° theorem of form LE ¢y,
we will also have

(8) FQE oy Hyp., (7).

Whenever, then, we have an ‘‘L-strict’® equivalence in S1°, we will also
have the same equivalence ‘‘@-strict’’; by rule Jd we will have in S1° the
rule—call it Jd; —of substitutivity of L-strict equivalents.

Easily recognizable as an S1° theorem is

9) CQCpqgCQCrsQCKprKqs S1°
(10) QCKKCpqCqrKQCpqQCqrKCprQCpr (9), s1°
(11) LCKLCpqLCqvLChpr =J2; (10), S1°, Df. L.

With (6), (11), PC, and derived rules Jb, and Jd;, it is evident that there is
an S1 image in S1° when we employ the earlier stated definitions of L
and M.
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We now assume S2°, and further assume
b

(12) FLCoy Hyp.
(13) FRCQe QY (12), (7), Jec
(14) FRCKp Qo Ky QY (13), (9)
(15) FLCLoLY (14), PC, Df. L.

Steps (12)-(15) show that there is in S2°a derived rule—Jc; —which is
like rule Jc except for having L where the latter rule has Q.
We continue:

(16) QCCpqCpq S1°
(17) QCKCpqQCpgKCQpRHPChG J1b, (16), (9)
(18) LCLCpqCLpLq (17), s1°, Df. L

$2° is now seen to contain (6), (18), PC, and rules Jb, and Jc;; it therefore
contains an image of S2 with L defined as earlier.
We now assume S3°

(19) CQCqrQCQCHgQChHr S3°
(20) QCQCPeQCQRPQq $3°
(21) QCQCpgQCpq s1°
(22) QCKQCpqQCrsQCKprKqs S2°
(23) QCLCpqQChq (7, s1°
(24) QCLCpgRCQPRq (19), (23), (20)
(25) QCQCIKQCpqQCrsQCtQCKprKps (19), (22)
(26) CQCHpqCRCHrQCHKqr S1°
(27) QCLCpgKQCpqRCRPRQq (26), (23), (24)
(28) QCLCpqQCKpQpPKqQq (25) t/LCpq, v /p, s /Lp, (27)
(29) QCLCHqLCLPLq (28),718, S1°, (26), Df. L

It should be clear that even without an application of Jc the formula
(30) CLCpqLCLpLq

may be shown to be an S3° thesis by deductions paralleling those leading to
(29); we thus have

(31) LCLCpgLCLpLg (29), (30), PC, Df. L

as an S3° thesis; with (31), (6), PC, and rule Jc;, then, we have an S3 image
in 83°. That S4° contains an analogous image of S4 follows immediately, for
S84°will have the same S3 image contained in S3° plus the unrestricted rule
Jar. In like manner, strengthening S2° to T° will strengthen the S2 image in
S2°to a T image.

2. Systems in which @ is definable. We now consider a number of
systems in which @¢, although a factor of Ly, might be defined in terms
of L. Noting the following stock of axioms:

G1: CMLpLMp
K1. CpCMLpLp
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K2: CpCLMLpLp
K3: CLpLMLp

and definitions:

Df, @: @ for ML
Df, @: @ for LML

we may formulate the following C-N-L calculi based on standard axiomati-
zations of the Lewis-modal systems:

S44 =S3+KI +Df, @
S4.04 =S4 + K2 + Df, @

T4 =8S2+KI1+Df; @
T.04 =T +K2 +K3 +Df, Q
T.2 =82+@Gl1.

We observe first that in the field of S1°, with KI as an added axiom we
have:

(32) LCNpCMpLMp

(33) LCNpCMLpLMp (32), s1
(34) LCpCMLpLMp K1, S1
(35) LCMLpLMp = LG1 (33), (34), S1°
(36) LLCLpMp (35), 52°

In the field of S2, then, K1 yields GI and so (36), and so—as is
wellknown—the rule to infer L¢ from any theorem ¢. Therefore, S3 + K1
contains S4 and so is S4.4 [2], and T.4 and T.2 contain T. Clearly, S4.4
contains all the above-mentioned systems; S4.0.4 contains T.0.4 and S4; T.4
contains T.2. That S4.4 contains S4.0.4 properly and that T.4 is not
contained in T.0.4 is shown by Matrix I (due to Parry [3]):

p=1* 2 3 4 5 6 T 8
Lp =1 6 7 8 5 6 17 8
Mp =1 2 3 4 1 2 3 8

(Matrices referred to in this paper are assumed to include the standard 2
tables.for C and N; designated value is 1.) Matrix I validates S4 and K2
but fails to validate GI (and so, of course, KI). T.4 by the same considera-
tions is seen not to be contained in T.0.4.

T.4 is clearly not a subsystem of S4; that it is independent of S4 is
shown by Matrix II:

Matrix II validates T and KI, but fails to do so for S4. This matrix also
shows that T.0.4 is not contained in T.4, and so that these systems are
independent, for it fails to validate K3. We may point out, by the way, that
the addition of the Brouwerian formula
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Ci12. CpLMp
or its dual
(37) CMLpp

to T.4 yields S5. The addition of C12 (or (37)) to T, of course, gives the
system T+, which is independent of S4; in T+ we have:

(38) CLMLpLD 37), T
(39) CpCLMLpLYp = K2 (38), PC
(40) CLpLMLp =K3 C12; p/Lp;
T* thus includes T.0.4.

(41) CMLpLMp = G1 C12, (38), PC;

T+ then also includes T.2, which as a subsystem of T.4 not contained in
T.0.4 is independent of T.0.4; T itself is, of course, independent of T.4.
We note here, by the way, that S4.0.4 contains S4 properly, for if it did not,
S4 and so S4.2 would contain K2, which in the field of S4.2 is deductively
equivalent to KI1I. The relationships between the systems we have been
discussing are illustrated in the following diagram; the arrows point from
properly containing to properly contained systems.

3. The above systems with @ primitive. We shall now present bases
for the systems of factorable necessity of section 2 having as primitive
modal operator not L or M as is usual, but @, which might be read as the
sign of ‘‘possible necessity’’ or of ‘‘necessarily possible necessity’’
depending on the system involved. In all cases, L and M will be defined as
they were in section 1 of this paper, and we will draw from the following
stock of axioms, as well as from the axioms and rules of section 1, for our
formulations.

JIc. CQpRQP

J3. CCpgCQRCPaCHCRPRQ
J4. CQpp

J5. CQpPNQNp

J6. CQCQPNpCQpp

J7. CQPLMLp

J8. CNQNQpQp

J9. CNQNQPQp
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J10. CNQNLpQp
J11, CLMLpQp
J12. CNQNQpp

Following will be our @-primitive bases; each system will include the
PC and rule Ja, and in addition, the indicated axioms.

QS5 :JI1b +J4 +J8
QS4.4 :JIb +JIc +J5 +J8
QS4.04: JI1b + JIc +J5 +J9
QT.4 :J3 +J6 +J10
QT+ 1 J3 +J7 +J11 + J12
QT.0.4 : J3 +J7 +J11.

We shall show in this section that the above @-systems are equivalent
to their respective L-primitive systems described in the previous section.
We have here included S5 and T as systems in which necessity is
factorable; they do include, respectively, the theses ELpKpMLp and
ELpKpLMLp, but they contain them in a manner different from that in
which the other above systems contain them. S5 contains the law ELpMLp
and T+ has ELpLMLp; from these theorems follows trivially the factor-
ability of necessity in these systems. The p in the conjunctions KpMLp and
KpLMLp contributes nothing whatsoever to the interpretation of these
conjunctions as Lp in S5 and T respectively. This is not the case for the
other systems discussed above; for them, both of the conjuncts as factors
of necessity are needed for the interpretation of the formula as Lp. We
may accordingly say that in systems like S5 and T necessity is ‘‘im-
properly factorable,’’ while in systems like S4.4 and the others, it is
‘‘properly factorable.’’

It should be clear that PC + Ja + JIb + JIc is a subsystem of QS5 as
well as of QS4.4 and QS4.0.4. Many formulas will be easily recognizable as
provable within this subsystem; such formulas we will justify simply by the
words ‘‘JI base’’; processes of deduction clearly permitted by this
subsystem will also be so designated. We observe now that in all the above
systems, rule Ja and PC permit us to state ‘‘If o, then FK¢ Q ¢,”’ which
with Df. L is

Jap: If o, then =Lo.”’

Also, in all of these systems, by PC and Df. L we have the following two
theses:

(42) CLpp

(43) CpCQpLp .

In the systems containing the JI base, we will have, by methods paralleling
those of section 1, formula (31)—LCLCpgqLCLpLg—as a thesis. By (31),

(42), and Ja;, then, systems QS5, QS4.4, and QS4.0.4 contain S4. So far as
the other systems—containing the weaker J3—are concerned:
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(44) CCpqCQCPqCHCRPq PC
(45) CCpqCQRCPqCHPCRPKqQq (44), J3, PC
(46) CLCpqCLpLq (45), PC, Df. L

By (46), (42), and Ja; the systems QT.4, QT*, and QT.0.4 then contain T.
We now go on to show that the definitions of @ in the L-primitive systems
hold in the respective @-primitive systems. Working in QS4.4, we have:

(47) QCQPCHEDPQP J1 base
(48) CQRPQCPKPQD (47),J1 base
(49) CQpCNQNPNQNEKpQp (48), JI base
(50) CQpNQNLp (49), J5, Df. L, PC
(51) CQpMLp (50), Df. M, PC
(52) CNQNLpPNQNQp Df. L, JI base
(53) CNQNLpQp (52), J8, PC
(54) CANQNLpLpQp (53), Df. L, PC
(55) CMLpQp (54), Df. M.

Since the interchangeability of even material equivalents holds in the
JI base (actually, in all of our systems) by (51) and (55) Df; @ holds in
QS4.4. We also have
(56) CPCMLpLY = K1 (43), (55), PC;

S4.4 is therefore contained in QS4.4.
Working in the other direction, we have (assuming $4.4)

(57) CMLCpgMLCpq PC
(58) CMLCpgMCMLpMLq (57), S4°
(59) CMLCpqCLMLpMMLq (58), S1°
(60) CMLCpqCMLpMLq (59), S4.2.

But with Df; @, (60) is axiom JIb. This points up an interesting and indeed
characteristic feature of S4.2, by the way—in this system, ML distributes
over implication. Easily recognizable as S4 theses are

(61) CMLpMLMLp
(62) CNMLNMLpMLp (CLMMLpMLpD)

which with the application of Df; @ become axioms JIc and J8, respectively.
An obvious S4.2 thesis is

(63) CMLpNMLNp

All the axioms of QS4.4, then, are S4.2 theses. Equivalences corresponding
to the definitions of L and M in the @-primitive systems are—in the
presence of Df; @—theorems of S4.4; QS4.4 and S4.4 are then equivalent
systems.

If L were written for @ in the axioms and rule of QS5, we would have a
basis for L-primitive S5. It is then obvious that the system QS4.4 is
contained in QS5; so too then is S4.4 a subsystem of QS5. But by J4 and
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(55) we then have (37), CMLpp, as a thesis of QS5; (37) in the field of S4
yields S5, which is then contained in QS5. S5, containing S4.4, also contains
QS4.4; by Df, Q, it also contains J4. S5 and QS5 are then equivalent.

We now assume system QS4.0.4; note that the steps leading to the
proof of formula (51) may be performed in this system as in S4.4; we have:

(64) CQPQMLp (51), J1 base
(65) CQpLMLD (51), (64), PC, Df. L
(66) CQPNQNQp J5, J1 base
(67) QCANQNQpPpQPNQNQp (66), JI base
(68) CQMQpQNQNQp (67), J1 base Df. M
(69) CQMQpQp (68), J9, PC
(70) CLMLpQp (69), Df. L, PC
By (65) and (70), the equivalence corresponding to Df, @ holds in QS4.0.4.

(71) CPCLMLpLp = K2 (43), (70), PC

As noted previously, QS4.0.4 contains S4; containing K2, then, it also
contains S4.0.4. Working in the other direction:

(72) CLMLCpqLMCLpLq s2°
(73) CLMLCpqLCLpMLq s4°, (72)
(74) CLMLCpqLCMLpMLq (73), S4°
(75) CLMLCpqCLMLpLMLq (74), S1°.

LML then distributes over C in S4; with Df, @, (75) is axiom J1b. We also
have

(76) CLMLPLMLLMLp S4
(77) CLMLPNLMLNp (CLMLpMLMp) \ S4
(78) CLMLNLMLNLMLpLMLp (CLMLMLMLMLpLMLp) S4.

With Df, @, the above three formulas are respectively axioms JIc, J5, and
J9, All the axioms of QS4.0.4 are, then, S4 theses. By K2, the proper
axiom of S4.0.4 and Df; @, the equivalences corresponding to the @-
primitive definitions of L and M will be S4.0.4 theses. QS4.0.4 is then
contained in S4.0.4, and the two systems are equivalent.

We now assume the system QT.4; we then have:

(79) CANQNLpLpQp J10, PC, Df. L
(80) CMLpQp (79), Df. M
(81) CpCMLPLDY =K1 (43), (80), PC
(82) CQpCQONKDPQpp J6, PC
(83) CQPQNQNLpp (82), PC, Df. L
(84) CQPANQNLPQD PC
(85) CQpPMLp (83), (84), PC,Df. L, M

Formulas (80) and (85) show that Df; @ holds in QT.4; with (81) and the
previously established fact that QT.4 contains T, we have T.4 as a
subsystem of QT .4.
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In the system T.4, on the other hand, we have

(86) CLCpqCLpMLq S1
(87 CKCpqMLCpqCKpMLpMLq (86), T.4
(88) CCPqCRCHPCPCRPRq =J3 (87), PC, Df; @
(89) CLMLpMLp S1
(90) CNQNLpQp =J10 (89), S1, Df; Q.
(91) CLMpLMp PC
(92) CKMpMLMpLMp (91), T.4
(93) CMLNLpCNLpLMNp (92) p/Np, PC, Df. M
(94) CMLNLHpCMLpLp (93), s1°
(95) CQNEpQpCRPLp (94), Df, @, T .4
(96) CQCQPNPCQpp =J6 (95), S1.

By (88), (90), and (96), all the axioms of QT.4 are theorems of T.4; the
equivalences for the @-primitive definitions of L and M in QT.4 are
characteristic T.4 theses, in the presence of Df; . QT.4 and T.4 are thus
equivalent systems.

We now assume system QT.0.4; here we have immediately with axioms
J7 and J11 the formulas needed to prove Df, @; by (43), then, K2 will be a
QT.0.4 theorem, and

(97) CLpLMLp =K3

follows immediately by Df. L and axiom J7. T.0.4 is thus contained in
QT.0.4.
Assuming T.0.4, we have

(98) CLCpqCLpLMLD S1°, K3
(99) CKCpqLMLCpqCKpLMLpLMLq (98), T.0.4
(100) CCPpaCRCHaCHCQRPRq =J3 (99), Df, @, PC

Clearly, J7 and J11 are T.0.4 theorems immediately by Df; @; the
definitions of L and M in QT.0.4 are, again, characteristic T.0.4 theses,
since T.0.4 employs Df; Q. T.0.4 and QT.0.4 are then equivalent.

The addition of J12to QT.0.4 gives us QT™; in the field of QT.0.4, J12
yields:

(101) CMLMLMLpp
(102) CMLpMLMLMLp T.0.4 (CLPLMLp, CMpMLMP)
(103) CMLpp (101), (102), PC.

But (103) in the field of T yields T+, T is thus included in QT+, In
T+, we have—by CLMLpLp and CMLpp:

(104) CMLMLMLpp
(105) CNLMLNLMLpp (104), S1
(106) CNQNQpp = JI12 (105), Df; Q.

T+ thus contains JI1I2 and so—since it also contains T.0.4—it is
equivalent to QT
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