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EQUATIONAL LOGIC

C. A. MEREDITH and A. N. PRIOR

§1. Geneval Introduction The present section is by A. N. Prior, while those
which follow are by C. A. Meredith, except where otherwise indicated. The
second section, which is of date 1956, carries further a result which
Eukasiewicz published in 1952,' namely that if F, T and N be intuitionist
implication, conjunction and negation, and Cpg be defined as NTpNg, the
classical axioms CCpqCCqrCpr, CCNppp and CpPpCNpg are provable from
the intuitionist basis, and the rule of C-detachment (to infer +3 from ~Cap,
i.e. FNTaNB, and +a) is provable for formulae in C and N. Meredith’s
improvement on this is that if Cpq be defined as FFFgppg, the C-classical
axioms CCpqCCqrCpr, CCCpgpp, CpCqp are provable from the intuitionist
base, and detachment for this C (which unlike Rukasiewicz’s is stronger
than F) is provable without restriction.

The proof which Meredith sketches in his note is not, however, a
simple substitution-and-detachment deduction, but the derivation of classi-
cal equations for the defined functor (which he writes as G) from intui-
tionist equations for the undefined (which he writes as C).

An early example of an equational axiomatisation of the full proposi-
tional calculus is that given by W. E. Johnson in his articles of 18922
Johnson’s undefined functors are conjunction, represented by juxtaposition,
and negation, represented by a superimposed bar. His axioms are the five
equations

1. xy =yx
2. (xy)z = x(y2)
3. xx =x
4. ¥ =x
5 % =%y %)

It might be argued that these involve not only conjunction and negation but
also equivalence as a primitive, but the ‘‘=’’ sign is to be thought of rather
as on the same level as the assertion sign in ordinary substitution-and-
detachment systems. The sole rules Johnson uses are substitution for
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variables and inter-changeability, in any context, of equated items. Of
proved equations one of the most important is the ‘‘Rule of Constancy’’,
aa =cc, provable thus:

aa =aa (4) = ac ac ac ac (5) =ca ca ca ca (1,2) =cc¢ (5) = cC (4).

This means that ‘‘any conjunction of contradictories has the same proposi-
tional value’’, in the sense that if we have any equation of the form a = 88
we may substitute for variables in a and leave BB quite alone, even if it
happens to contain the variables substituted for in a. Representing this
constant by ¢, which Johnson reads as ‘‘Falsism’’, its negation may be
called ‘“Truism’’ and written 7. For Falsism, Johnson established the
‘“‘Rule of Nonsignificance’’, a¢ = ¢ (for ap = aaa = aa, by 3, = ¢); and for
Truism the ‘‘Rule of Insignificance’’, at =a.

The relation of this type of system to the ordinary substitution-and-
detachment type may be seen more easily with some of Meredith’s systems.
In the note which follows, on the modelling of two-valued implication within
intuitionist, Meredith gives for two-valued C the equations CpCqr = CqCpr,
CCpgp =p, CCpgq = CCqpp. In 1957 he gave the shorter basis

1. CCpgp =9
2. CCpqCrq = CCqpCrp

If we define @ = 8 within an ordinary system as the pair of asserted
implications +CaB, +CBa, we have 1 by Peirce’s law, CCCpgpp, and Simp,
CpCqp, and 2 more remotely. The rule that given ~Cap and +Cpa we may
interchange @ and B in all implicational contexts is easily established in the
common systems, so they plainly contain the equational ones. Conversely
from 1 and 2 we may prove a ‘‘Rule of Constancy’ Cpp =Cqq, define the
True (1) as Caa, -a as a = 1, and prove the Tarski-Bernays axioms
FCCCpgpp, +CpPpCqp, +CCPqCCqrCpr and the rule of detachment *+a,
FCaB — B. In detail, we have

3. Cpq = CCCpgpCpq (1) = CpCpq (1)
4. CCpqq = CCpqCCpqq (3) = CCqpCCpqp (2) = CCqpp (1)
5. CCpqCpq = CCpgCCpqCpq (3) = CCpCpqCCPqCpq (3) =
CCCpgpCCpqp (2) = Cpp (1)
8. CCCpgqCCpqq = CCpqCpq (5) = Cpp (5)
7. Cqq = CCCqppCCqpp (6) = CCCpaqCCpqq (4) = Cpp (6) = 1 (Def.)
8. CpCgp = CCIpCqp (1) () = CCp1Cq1 (2) = CCPCPppCqCqq (T) =
CCppCqq (3) =C11 =1 (1)
9. 1=CCpqCCrqCphq (8) = CCpqCCqrCpr (2)
10. a=1,Ca8=1—-C18=1—8=1(1,7)

+CCCpgpp follows obviously by applying Ax.1 to Cpp = 1.*

In a similar way Johnson’s five equations may be shown to be
equivalent to a sufficient set of detachment-axioms in K and N. Like
Peirce’s and Frege’s earlier postulate-sets for propositional calculus, and
Russell and Whitehead’s later one, Johnson’s set of equations contains one,
namely the third, which is derivable from the rest.’
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For intuitionist implication Meredith’s equational axioms are 1.CpCqr =
CCpqCpr, 2.CCppq = q, 3.CCCCphpqqpp = CCCCqppgq. The third of these is
needed to prove the ‘‘Rule of Constancy’’, thus: Cpp = CCppCpp (2) =
CCCqqCppCpp (2) = CCCCqCppCppgq (3) = CCCCCqpCqpCppqq (1) =
CCCppgqq (2) = Cqq (2). Given this, it is easy to prove +CpCgp and
FCCpCqrCCpqCpr (Lukasiewicz’s axioms for intuitionist implication) from
1 and 2, and detachment from 2. All this, indeed, could be obtained if
instead of the cumbersome 3 we laid down the ‘‘Rule of Constancy”’
axiomatically; but 3 enables us also to represent any asserted two-way
implication as an equation. For given Cap = CBa = 1 (call it 4) and the
above axioms, we have

5. CCapBp=C1B8 =3 (4,2)
6. CCPaa = Cla =a (4,2)
7. a = CCpaa (6) = CCCCappaa (5) = CCCCBaapp (3) = CCapp (6) = B (5).

In the 2-valued equations, where CCpgqq = CCgpp is an axiom or provable,
a = (8 follows from 5 and 6 above more directly.

In his note below, Meredith sketches the derivation of the classical
equations in his G from his intuitionist ones in C, touching on the way upon
other aspects of intuitionist logic which require no explanatory comment
here.

A little more should be said, however, about the relation of Meredith’s
model to tukasiewicz’s. With tukasiewicz’s NTaNB, detachment is only
provable where g itself begins with N (or—this being just a special case of
beginning with N—with Xukasiewicz’s defined implication itself). With
Meredith’s G, detachment follows easily and without restriction from the
fact that G is stronger than the intuitionist C, i.e. CGpqCpq (CCCCqppqCbhq)
is intuitionistically valid. On the other hand, Lukasiewicz obtains a model
of classical implication and negatiorn within intuitionist, simply taking over
intuitionist negation and combining it with his defined implication. Nothing
of this sort is possible with Meredith’s G; not only is GNNpp, for example,
not provable with N for intuitionist negation (if it were, CNNpp, with
intuitionist implication, would immediately follow by CGpgCpq), but we
cannot even introduce a negation N or a constant falsehood O for which all
the classical laws hold with G. We cannot, e.g., introduce a constant 0 with
GOp as a law, as this would expand to CCCp00p (i.e. CNNpp if we define Np
as Cp0), which when subjoined to intuitionist implication gives all classical
implicational laws, e.g. CCCpgpp.® Nor could we introduce an undefined N
with GpGNpg as a law, since from this and Czz we would get GNCzzp, i.e.
CCCpPNCzzNCzzp, from which CCCpqpp is derivable by the same steps as
from CCCp00p. In fact with any characteristic matrix for the intuitionist
implication it will be found that in the derived matrix for G there is no
element % such that GRp has a designated value for all values of p. The
same is true of some matrices which are not quite characteristic for
intuitionist implication but do verify all its laws and falsify many classical
ones, e.g. the well-known ‘‘H3’’,
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cl]1 2 0
*1 11 2 0
2|1 1 0
oj]1 1 1
With this for C, G works out as
G|1 2 0
*1 11 2 0
2|11 1 o0
011 2 1

which verifies all classical implicational laws but not G0p (nor G1p nor
G2p)."

Returning to equational versions of propositional logic, it is easy to set
these in a wider body of abstract algebra; and the same—though this is
perhaps less obvious—may be done with substitution-and-detachment ver-
sions. We get glimpses of this wider mathematical context in sections 3
and 4. The letter which forms section 3 is in part Meredith’s comment on
a conversation with Professor H. G. Forder that I reported to him in 1957.
Forder had suggested that a perfect illustration of ‘‘pure mathematics’’
would be to take an equation of uninterpreted symbol-strings or ‘‘words’’,
e.g. abcab = c, and see what would follow from it. A little more must be
said, of course. Follow by what rules? Interchangeability of equated words,
or some equivalent rule, would be needed (Forder used “If @ =8, Xa =Xg8"?),
and substitutability of ‘“words’’ for single letters, the same substitution
throughout an equation; ‘‘words’’ being those symbol-sequences, and only
those symbol-sequences, given by the following recursion: single letters
are words, and if @ and B are words so is (@B8). The number of brackets
may be lessened by a convention of association to the left, so that the given
formula abcab = ¢, for example, is short for ((((ad)c)a)d) = c¢. Or if one
drops all right-hand brackets and replaces left-hand ones by a letter, one
gets Lukasiewicz-type formulae, Forder’s being CCCCabcab = c¢. Not that
this law holds for any sort of implication; but interpretation can come
afterwards, if at all. In his letter Meredith noted that using the variables
for positive whole numbers, Forder’s (adb) could be read as, @ + b, his
axiom yielding all equations actually holding with this interpretation.®
Meredith also gives in this letter an equivalent detachment-axiom for this
functor, ‘‘theses’’ being formulae which, under this interpretation, = 0 for
all values of their variables. (This is a result of some years earlier, and
we give in section 4 Meredith’s 1950-52 derivation of this single detach-
ment-axiom from two more straightforward ones.) Further, the function,
P + q is used to define the implication of fukasiewicz’s infinite-valued
system® in terms of its alternation.

The 1957 letter also contains postulates for various 2-valued functors,
but none for Johnson’s pair K and N. This gap is filled in the note given as
section 5 (the constant 0 is also used as a primitive here, but is easily
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eliminable). This note also illustrates a method, sketched in the 1957
letter, of setting out equational derivations analogously to the use of D in
setting out detachments.

In the note which forms Section 6, C is used neither for two-valued nor
for intuitionist implication, but for the ‘‘strict’’ implication of Lewis’s S5.
Meredith found in 1956 that CCpgqCCqrCpr, Cpp and CCCCpqrqCpq formed a
sufficient basis for pure S5 strict implication. Lemmon at the same time
conjectured that CCpgqCCqrCpr, CCpCpgqCpq and CCrpCqq formed a suf-
ficient basis for pure S3 strict implication, and the same with CC»pCqq
strengthened to CpCqq for S4, and established that the following common
set of additions in C, N and K:

1. CKpgp 5. CDPNNp

2. CKpqq 6. CNNpp

3. CCpqCCprCpKqr 1. CKpPNKpNqq
4. CCpgCNgNp

yielded full S2, S4 and S5 when combined with the proposed implicational
fragments'®. Hacking later showed certain postulates to suffice for the
strict implicational fragments of S2, S3, S4, S5 and T (the S3 and S4 ones
being equivalent to Lemmon’s) and gave common completions in C, N, K
and A (the C-N additions sufficing for full C-N and the C-K-A ones for full
C-K-A, a stratification not possible with Lemmon’s basis).'! In 1963, using
F for strict implication and C for material, Meredith gave a basis for full
S5 in F, C and a constant impossibility 0 (the F-C and F-0 additions
sufficing for full F-C and F-0). It may be noted that if Np is defined not
as Cp0 but as Fp0 it will assert not merely p’s falsehood but its
impossibility, and gives the N of what Hacking calls the ‘‘Lewy systems’’.
And in Section 6 below, which is of date 1959, Meredith gives an equational
basis for C-K-A-0-1 (C strict).

His immediate problem (originally suggested to him by Professor E.
Furlong) is to introduce a form of negation for which the law of contradic-
tion does not hold. His starting-point is a 4-axiom equational logic with
K, A, 1 and 0 as primitives, and into this is introduced an implication C
defined by the conditions that Cpq = 1 if and only if Kpq = p, and otherwise
Cpgq = 0. This is equivalent to a definition of ‘‘formal’’ implication given in
Johnson’s Logical Calculus articles. Johnson defines material implication
in the ordinary way as xy, but @ ‘“formally’’ implies B, he says, if and only
if it is equivalent to a conjunction in which 8 is a conjunct, i.e. if and only if
we can establish something of the form

a=...8 (1)
Meredith’s variant is
a=ap (2)
It is clear that if we have (2) we have (1), (2) being the case of (1) in which
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the gap is filled by @, and conversely if we have (1) we have (2), for with
xx = x (1) gives

a=.,.88

and replacement of . . . 8 in this by @, in virtue of (1), gives (2). And if we
have ~a for a = 1, the asserted formulae in C which are given by
Meredith’s conditions and his equations for K, A, 0 and 1 are precisely the
formulae of S5 (and the formulae in C, K, A, 0 and 1 are precisely the
C-K-A-0-1 portion - C strict - of S5).

To illustrate rather than prove Meredith’s last point, we may disprove
the C-material thesis CCCpgpp and prove the C-strict CCCCpqrqCpq for
this equational C. To disprove CCpgpp, letp take a value between 0 and 1
(there being nothing in the given basis to prevent this), and ¢ be 0. Then
Kpq = KpO = 0 # p, so Cpg = 0, and CCpgp = COp = 1 (for 0 = KOp); and
KCCpqpp = K1p = p # 1 # CCpqp, i.e. CCCpgpp = 0. For CCCCpqrqCpq
consider the two possibilities Cpqg =1 and Cpg =0. If Cpq =1, CCChpqrq =
KCCCpqrqCpq (p = Kpl), i.e. CCCCpqrqCpq = 1. If, on the other hand,
Cpq =0, then (i) Clg = 0 (for if Clg =1, i.e. 1 = K1q, then q = 1, since K1q =
q; and so Cpg = 1, since Cpl = 1, by 1= Kp1; but Cpq =0, hyp.). Hence:
(ii) Clq = CK1q0 (0 = Kp0), so CCOrg = KCCOvq0 (CO0» = 1), so CCCpqrg =
KCCCpqrqCpq (Cpq = 0, hyp.), i.e. CCCCpqrqCpq = 1.

The apparatus so far used, even though it includes 0, is not sufficient
to give us negation (though Cp0 gives p’s impossibility). And if we
introduce N as a new primitive with the axiom Apq = NKNpNq (de Morgan),
this gives us many characteristic laws, but not ApNp = 1 or KpNp = 0.
These equations hold when p is itself 0 or 1 but are not provable for other
values of p. Meredith does, however, obtain a classical negation by
introducing the notion of a ‘*world’’, in the sense of a proposition w such
that for all p either Kpw = 0 or Kpw = w™. If we define Nyp as the
disjunction of all worlds such that Kpw = 0, all classical laws for N are now
deducible in N,. The definition of ‘‘world’’, it may be noted, strictly
speaking covers 0 itself; we can generally ignore this case, but it is needed
to give a sense to Nyl, and sometimes to other negations.

These conditions for 0, 1, w, N, are met by some curious examples.
Suppose, for instance, we have a finite set of ‘‘atomic’’ propositions a, b, c,
etc., and all non-atomic propositions are constructed out of these by A and
K. All the laws for 0, e.g. the ‘“‘Rule of Non-Significance’’ Kp0 = 0, will
then be met by the logical product of the whole set of atoms, a, b, c, etc.
This is so to speak the most that can be said with this apparatus, so that
anything we conjoin with it will add nothing to the total content. (The
importance of finding ‘‘an expression for HOW MUCH a proposition says’’,
a ‘““measure of amount-that-is-said’’, and the fact that by all the obvious
criteria ‘‘the proposition that says the most’’ turns out to be ‘‘contradic-
tion”’, seem to have impressed Wittgenstein when he was writing the
Tractatus.™ And the interest of the present model is that it takes over
from ordinary contradiction nothing but this ‘‘saying-the-maximum’’,
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making Kp0 = 0 simply a special case of KpKpq = Kpq). The laws for
tautology or 1, e.g. the ‘“Rule of Insignificance’’ Kp1 = p, will similarly be
met by the logical sum of all the atoms. Further, any logical product of all
the atoms but one will have the specified properties of a ‘‘world’’—conjoin
with it the one non-contained atom, or anything implying that, and we obtain
the totality 0, and anything not implying that atom will be implied by the
conjunction of all the others. Every atom will then be contained as a con-
junct in all ‘‘worlds’’ but one, and that one will be its ‘“negation’’, i.e. it
will be the one w (and so the disjunction of ‘‘all’’ the w’s) such that, for that
atom @, Kaw = the totality 0. A logical product of n atoms will have for its
‘negation’’ the logical sum of the z» worlds from which these atoms are
respectively absent. The ordinary A-K equations will suffice to prove
KpNyp for every p constructible in this system; and we have ApNyp = 1 if we
add a postulate equating each atom with the disjuction of its worlds.

§2. A Model of C-Classical in C-Positive
(1) Equational axioms for positive implication:

1. CpCqr = CCpqCpr
2. CCppg =q
3. CCCCpgqpp = CCCCqppqq

(2) For 2-valued:

1. CpCqr = CqCpr
2. CCpgp =p
3. CCpgqq =CCqpp

(3) Adding K to positive logic causes little disturbance, since:

4.1. CKpgr = CpCqr
4.2. CpKqr = KCpqCphr

(4.1 is a sufficient equational axiom, since from it CpCqKpq =1,
CKpgp =1, CKpgq = 1)

(4) (a) CCpgp = KCqpCCpqyq,

for CCCpgpCqp (CCCpgrCqr : T1)
and CCCpqpCCphqq (T2)
and CCqpCCCpqqCCphqp (CCqrCCpqCpr : T3)
(b) CCCpqqp = KCqpCCCpqpp,
for CCCCpqqpCap (by T1)
and CCCCpqqpCCCpqpp  (CCCCpqqrCCCphgpr, by T2 and Syll : T4)
and CCgpCCCCpqppCCCphqqp (CCqrCCCprsCCpgs : T5H)
(¢) CCCCpqqpp = CCPpaCCCChappp
= CCqpCCpgp (Cqp =CCCqppp)
= CCqpCCpqq (CoKpq =Cpq, and (a))
= CCpqCCpgp (CpCqr =CqCpr)

= CCCCqppqq
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(5) We now find 14 meaningfully distinct expressions in p, ¢ in Positive
(implicational) Logic. The addition of K gives only 4 more, so:

There are 18 meaningfully distinct expressions in p, q in Intuitionist
{C-K} 1ogic.

The matrix of these expressions can be expressed as the product
Hs X Hy X H;, where Hs:

K11 2 3
1]1 2 3
212 2 3
313 3 3
and H,:
cCl1 2 L 1 2
111 2 1 (1 2
211 1 2 12 2
The 18 values are:
(1) Cpp = 111 = Cqq
229) p =322 (g1) q =232
(®2) Cgp = 311 (@2) Cpq = 131
(ps) CCqpp =122 (gs) CCpqq =212
(ps) CCpgp = 312 (gs) CCqpq =132

(ps) CCCpgqp = 321
(pe) CCCpgpp = 121

(gs) CCCqppq = 231
(ge) CCCqpqq = 211

(W) CCCCpqqpp = 112 = CCCCqppqq
(K) Kpq = 332
(E) Epq = KCpqCqp = 331
(V) Vpg = KCCpqqCCqpp = 222
() Upq = KCCCpgqppCCCqpqq = 221
With Hg:
p Cqp CCqpp CCpap CCCpgqpp  CCCCpqqpp
1 1 1]/1 1 1|1 1 1|1 1 1|1 1 1|1 1 1
2 2«22 1<«1 |1 2«22 2«11 1=1]| 1 2«1
3 373 |3 371 |1 1733 373|1 171| 1 173
Kpq Epq Vg Upq
1 2 3|1 2 3f{1 1 1]1 1 1
2 243 |2 1«3 |1 2«21 1<2
3 37313 3711 2731 271

(Note by A.N.P.: By saying that these 18 expressions have an Hy XH; X H,
matrix, Meredith means that if we apply C or K to any pair of expressions
drawn from these 18 we obtain an expression equivalent to one of the 18,
and the table showing which it is in each case has the structure indicated.
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The C-table can be so drawn up as to consist of four 9 X 9 parts, three the
same and one different, arranged thus:

a b

a a

and each 9 X 9 part has nine 3 X 3 parts arranged thus:

each 3 X 3 part having the same arrangement. One of the 9 X 9 parts would
be this:

C 1 g P> pe U Pps g2 4qs E
1 1 g6 P2 Ps U ps g 4gqs E
ge |1 1 P> Ps DPe bs 42 g E
p2 |1 1 1 ps Ps Ps 42 42 4:
be | 1 4qs P2 1 4q¢ P> g2 9. E
Uil 1 p: 1 1 P> 92 9. E
ps |1 1 1 1 1 1 9> 42 (2
g: |1 gs P2 1 gs P2 1 gq¢ D2
gs |1 1 p: 1 1 p. 1 1 P2
E |1 1 1 1 1 1 1 1 1

There will be an analogous table for K.)

(6) (a) Gpq = CCCqppq (gives equations for 2-valued)
(b) GGpgq = CCCqGpaGpgq
= CGpygq (CqGpq = 1)
= CCCCqppqq
= CCCCpqqpp
= GGqpp
(c) GGpgp = CCCpGpqGpqp
= CCpqGpqp (CpCCCqppq = Cpq)
= CCCpqCCCqppqp
= CCCCqpqqp (Cq295 = qe)
=p (Cgspyr = py)
(d) GpGgr = CCCCCCrqqrppCCCrqqr
= CCCrppCCCrqqr (CfCpgChr = CfqCphr)
= CCCrqqCCCrhphpr
= GqGpr
(e) FGpp (~CCCpppp)

By contrast with Lukasiewicz’s functor (which was virtually NNCpq) Gpq is
stronger than Cpq.
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§3. Equational Miscellany (Letter of December 13, 1957).

(1) Equational axioms:

{c,0} 1. ccpocgr = CCrpCqp, 2. CCpgp = p, or in place of 2, 2a.
CCppg = q.

{C,N} 1. CpCgp = CCvpCqp, 2. CCpgp = p, or in place of 2, 2b.
CCrCppq = q. Not2a(C = E, N =Verum).

{4,N} 1. ApAqr = CCrpAgp and 2 or 2a as before (C = AN).

{4,K,N,0,1} 1. ApKqr = KAvpAqp, 2. ApKqp = p ({4 - K} complete),
3. ApNp =1, 4. KpNp = 0.

{E} There are many single axioms, e.g. EEEpqvEpr = q (elementary
precaution: the single letter must occur neither first nor last on the other
side, e.g. CCpgp = p is satisfied either by Cpq = p or Cqp = q).

{L} Lpq veing, p + q (Abelian groups). LLLLpgrq = 7 (this is H.G.F.’s
axiom). (With zero designated and L-detachment LLpgqLL Lvgpr is axiom.)

(2) Formalization of equational reasoning in systems not involving variable
functors:

(i) Primitive form: Euclide a@ =8, a =y — 8 =y. If the numberings of
the three equations were #,, ny, ng I will write n; X #n, - »s.

(ii) If n,is @, = B; and n, is @; = B;, Cnyn, denotes the equation Ca, =
CB,B2, the two equations being supposed to have no variables in common
(e.g. for {C-N} above C22 is CCCpgpCCrsr = Cgs). Similarly of course for
any other functors, instead of C, 7 denoting the equation p = p, Cn,i denotes
Ca,x = CBx where x is a new variable.

(iii) Suppose a,, @, are conformed to a with maximum generality and
that Sya; = S,0, = a (Identity = ), then n, X n, is the equation S,8; = S,8,
(Si1, S; denote substitutions). Thus for {C-N} axioms 1, 2:

2 XC2i - 3. CpCpg =Cpgq
1 XCi2 - 4. CCrpCCrgp = CNpr

3 X4 - 5. CCrpp = CNpr

5 X2 - 6. CNpp =p

5 XC6f - T. CNpNp =Cpp

1 X1 - 8. CCrpCqp = CNpCqr

Ci8 X1 - 9. CNsCNpCqr = CCCqpsCCrps
9 X3 - 10. CCCqppCCrpp = CNpCqr

(Note: even if { is not an axiom, nor deducible by the normal mode of
reasoning, we can get it by this formal process, since ¢ X ¢ is z. Thereby
this useless equation is relegated to its proper position as a compound in
the deductive process.) For abbreviated record I use emn instead of
m X n. Thus €3€1Ci2 = 5.

(3) More of {L}: Let p q...Dbe integers (+ 0 -) or indeed real. Extend
designated values to =0. Let Apg = max (pg), Cpq = ApLpg. Then Apq =
CLpqq. {C ,L,p} with C -detachment is easily axiomatisable and is saturated.
{C}-pure is Lxo. Negation is impossible (strictly COp leads to a contradic-
tion). Kpq = min (p,q) = LCLpqLpqq.
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Non-commutative groups can be dealt with in the same way as L but I
haven’t got single axioms—either with L detachment or equationally. We
might of course take Rpq =p - q (here an A leak is impossible. 0 alone is
designated). R-detachment axiom RRpgRRprRqr.

§4. Abelian Groups

1. CCpgCCqrCpr
2. CCCpqqp
D11 = 3. CCCqrCprsCCpqs
D31 =D32= 4. CCpgCCCprsCCqrs
D3D42 = 5. CCsCCpqqCCprCsr
DD452 = 6. CCCCprCsrCCpqqs
D66 = 7. CpCCCCprqqr
D57 = 8. CCCCpqqrCpr
D83 = 9. CCqvCCpqChr

D19 = 10. CCCpqCprsCCqrs
DD10.10.2 = 11. CCpqCCCrqpr

1. CCqrCCpqCpr
2. CCCpqqp
D12 = 3. CCrCCpqqCrp
D13 = 4. CCsCrCCpqqCsCrp
D41 = 5. CCpqCCCrqpr
(5 =DD1D121 = \xDD12D1x = xxAyD2DD1xy = AxayD2x2DxDyz =
DxarbrcDaxdDbDcd2. If a = -CCCpqrCCsqCCpsr, 5 =Da2)

§5. {K-N} Equational

(Note by A.N.P.: In the form given, i.e. with 0 as well as K and N, these
four equations have the same total length—29 letters—as Huntington’s 1933
three, viz. Kpq = Kqp, KKpqr = KpKqr, p = KNKNPNgNKNpq, With 0 in the
last axiom replaced by KgNg, to give pure {K-N}, they are three letters
longer; but Meredith’s first two, unlike Huntington’s, suffice for pure {K}.
His opening deductions in effect show this, since given his ninth equation,
Kqp = Kqp, we can get KKpqr = KpKqr from the second axiom, and so can
put any K-sequence into a standard order and grouping—say the variables
in alphabetical order and all the K’s at the beginning—and eliminate
repetitions by Ax.1. Equations thus standardised will either have exactly
the same variables on both sides, in which case they will be provable as
substitutions in p = p, or not, in which case the standard matrix for K will
refute them, if we put 1 for all variables on one side and 0 for one of the
different variables on the other. The importance of equations of the form
KapB = a, at the end, will become clear in section §6.)

1. Kpp=p

2. KpKqr = KqKrp
3. KpNKpNq = Kpq
4. KpNp =0
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€25
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eKi67
€58 -
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€(10)5
€3(11)
e(12)1
e(12)i -
e(14)1
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? KpNKgNp = p:
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€(24) (23)
eKiN(25)3
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11.
12.
13.
14.
15.
16.
17.
18.

19.
20.
21.
- 22 KqO0 = KpKqNp
23.
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KpKpq = Kqp
KpKqp = Kqp
KpKqKpq = Kpq
KpKpq = Kpq
Kpq = Kqp
KpKpNq = KpNKpq
KpNKpq = KNqp
Kpq = KNNgp
KNNpp =p
KNNqp = Kpq
KNNpp = NNp
NNp =p

Kpp = KpNO
KpNO =p

KpNp =Kp0
Kp0 =0
KpKNpq = Kq0

KpKqNp = 0

(KpNKpNKgNp = KpKgNp = 0)

(p =
KpKpNKqNp = KpNKqNp)
24.
25.
26.
217.
28.

KpNO = KpNKpNKPNKgNp =

Kpq = KpNKpNq
KpNKpNKgNp = 0
KpNQ = KpKpNKqNp
KpKpNKqNp = p
KpNKgNp = p

a=pB ~KaNB =0,KBNa =0
KaNB = 0 —» KaNKaNB = a
— KaB = a

§6. Negation without the Law of Contradiction.

(1) Take {K,A,p} normal, equationally, e.g.:

KpApg = p

Al

KpAqr = AKrpKqp A2

(2) 1 and 0 are easy to add for a finite set of elements. Otherwise I will

add:

Kpl=p
Ap0 =p

A3
A4
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(3) (i) Cpg = 1 if and only if Kpg = p (or equally Apg = g). This gives the
rule:

Cpg=1,Cqr=1,— Cpr =1
Also: CpApq, CAppp, etc.
(ii) Otherwise Cpq = 0 (if Kpq = p, Cpq = 1; if Kpq # p, Cpq = 0):

CCpqCCqvCphr
Cpp
CCCCpgrqCpq
COop

(4) If to Al, A2 we add:
Apg = NKNpNq Bl

we can prove NNp = p, N1 = 0, NO = 1, Further if p = Kpg, then Np = NKpq =
ANpNg. Thus if Cpg =1, CNgNp = 1. By the two-valuedness of Cpq, Cpq =
CNgNp .

But no single- N thesis can be proved. There is nothing contradictory
in assuming an a # 0,1 such that Na = a. a is not a logical necessity but
may be true: Cla =0 =Ca0

(5) Construction of a {K, A, N, p} from two {K, A, p} systems:
p is the ordered pair (p;, p2); Kpq = (Kp1g1, AP2g2). (In this definition of
the new K for pairs I would use a new letter); and N(p,, p2) = (s, P1). Then:

KNpNq = (Kp2q2, AD141)
NKNpNq = (Ap1d.1, Kp2q2)

We may define Apg as NKNpNg; the new 1 as (1, 0); and the new 0 as
(0, 1)~ (If pl = Pz, P = Np) Then:
KpNp = (Kpypa, Apsp-) (This is 0 only if Kpyp, = 0, Apype = 1).

Ifa-= (1) 1), Kpa = (ply 1), Apa = (1; Pz) So: AKpaApa

In a closed {K, A, p} set of propositions a (possible) world w is a p such
that for all g, either Kgp = 0 or Kpq = p. If a set is constructible from its
worlds, i.e. for all p, p is the logical sum of all w such that Kpw = w, and
¢(w) is a function of the w’s on w’'s such that ¢(¢(w)) = w, and we extend the
range of ¢ to all p’s by ¢(p) = logical sum of all ¢(w) such that Kpw =w, we
will have ¢Apq = Appoq, 9Kpq = Kopdq, ¢op = p, 0 = 0, and ¢1 = 1.

If we define an Ngp by N,p = logical sum of all w such that Kpw = 0, we
have ¢Nop = No¢pp, and we have also the standard:

(1) KpNop =0 ApNop =1
(2) NoKNopNog = Apg
Now let Np = ¢Ngp. Then:

NKNpNq = ¢No KONy poNoq
= pNoKNopNogq

= ¢¢pApg
=Apq

so that de Morgan is preserved.
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But KpNp = KpNopp is not, in general, constant. If for any a, ¢a = N,
KaNa = a. For such a to occur ¢ must satisfy:

¢w # w for all w
If there are 27 worlds:
Wy Way o o oy Wyy QW1 . . o 5, GWp

then there are 2” such a’s.
Examples: But say we take just three worlds w, w, w; withw, = ¢ws,

p= 0 ws Wy wy  Aw,ws  Awsw, Aww, 1

b)) (2 () (b4) (®s) (®e)
Np= 1 D4 Pe Ps p1 Ds 22 0
KpNp = 0 0 o ps 0 Ds D2 0

Suppose we have 3 ‘‘atomics’’, without negation. They generate a set
of 18 propositions:

0 = KKpqr

1 = AApqr
w,=Kqr w,;=Krp w;=Kpq
v, = Aw,w, = KpAqr etc. for v, and vs.
= KApqKAqrApry = AKpqAKqvKpr

x
p
q
v

v, = ApKqr etc. for 7, and 7.

w, = Agr etc. for w,and w,.

Now Np=p, Nq = g, Nr =7, gives Nx =x, Nw, =w,, Nv, = v, etc.
(Note A.N.P.: It is instructive to compare Meredith’s logic without NKpNp
with the {K-A} system discussed in C. L. Hamblin’s ‘‘One-valued Logic’’,
Philosophical Quarterly (1967), pp. 38-45).

NOTES
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3. Cf. Wittgenstein, Trvactatus, 4. 461.
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Series A, 63, No. 4, and Indagationes Mathematicae, 22, No. 4, 1960.
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5. This was pointed out by J. A. Kalman in a letter of October 1959. Kalman also
drew my attention to the fact that E. V. Huntington has derived both the third and
the fourth from Johnson’s first two plus the fifth modified to x =xy xy. See his
‘“‘Boolean Algebra: A Correction,’’ Transactions of the Amevican Mathematical
Society, Vol. 35 (1933), pp. 557-8.

6. For this derivation see A. Church, Intvoduction to Mathematical Logic, pp. 84-6,
Exercise 12.6 and references.
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‘‘On Implicational Definitions,’’ Studia Logica VIII (1958), pp. 202-3.

8. For a much more general result of this sort see Graham Higman and B. H. Neu-
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Debrecen, 2 (1952), pp. 215-221.

9. For details of this see Tarski’s Logic, Semantics, Metamathematics, Paper IV.
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14. See his Notebooks 1914-1916, edited and translated by G. E. M. Anscombe (Black-
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