
35
Notre Dame Journal of Formal Logic
Volume IX, Number 1, January 1968

CREATIVE SEQUENCES AND DOUBLE SEQUENCES

Sr. M. ADRIAN CARPENTIER, O.S.U.

Introduction.* Creative sets, creative pairs of sets, creative &-tuples
for any finite k, and creative sequences of sets have been treated already
by J. Myhill [8], R. M. Smullyan [11], A. H. Lachlan [4, 5], V. Vίίckovic
[12, 13], and J. P. Cleave [1], among others. This paper presents first of
all a complete mathematical theory for sequences using the methodology of
Smullyan and Vύckovic. Definitions of effective inseparability, creativity,
and universality are given, and for disjoint recursively enumerable
sequences these concepts are shown to be equivalent. Isomorphism of
creative sequences follows immediately from universality as in previous
literature.

The second part of this paper is a development of analogous theories
for double sequences. Four cases arise from considering a double
sequence as a square array:

^ X Q JΓXj •̂ ••2 ^ ^ 3 "^^4 •**•{

Ao A\ Al AI A\ . . . A) . . .

./T.Q ** \ * * 2 "^^3 ^^4 •̂••t

and viewing it from different aspects. This is best explained by considering
the property of disjointness. A double sequence is: (1) h-disjoint or
pairwise disjoint within each row if for each nεN, A* Π A" = φ whenever
i Φ j , (2) v-disjoint or pairwise disjoint within each column if for each iεN,
AniΓ)A™ = φ for n Φ m, (3) t-disjoint or totally pairwise disjoint if A" Π A™ = φ
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of the topic and his direction of this research.
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whenever {n>i\ Φ (m,jl, (4) v-\\-dίsjoίnt or pairwise disjoint within each
column and each row if Ay Π Af = φ whenever (n = m and i Φ j) or (n Φ m and
i =j). The first or h-case, where all conditions are stated for sets in the
same row, gives uniform notions for a sequence of sequences. The v-case
easily reduces to the h-case, and the t-case to that of a single sequence.
Separate considerations for the v-h-case are given with some questions left
open. Finally, that these cases are distinct is shown by theorem 2.7.1.

This exposition is given in the theory of general recursive functions.
Throughout this paper N is the set of natural numbers with zero, and all
sets are subsets of N unless otherwise specified. A sequence of sets,
denoted {A^)iEN9 will often be written (Aί)i with the index set N understood;
likewise ((^/)/εN)wεN> meaning the sequence of sequences whose nth sequence
is (A*), , will be written (A*)ίfΛ. For the enumeration of all recursively
enumerable (abbreviated r.e.) sets we use wQ, wh w2, . . . , where xεwi<r->
3 Tι(i,x,y). A sequence (A^ of subsets of N is said to be r.e. if there is a
recursive function h such that Ai - Wh(i) for every iεN. This is equivalent
to saying that the binary predicate "xεAi" is r.e. An enumeration of all
r.e. sequences is obtained as follows: choose a recursive function γ by the
iteration theorem such that

(0.1) 3 T2(u,υ,x,y) <-^ 3 TMv,u),x,y);

then for each eεN set Wf = wγate), giving:

xεW4

β*->3 TMi,e),x,y) <-* 3 T2(e,i,x,y);

then (W°)i, (Wj)i9 (Wf)i9 . . . is an enumeration of all r .e. sequences.
Similarly, a double sequence, (A^\ > n, is r.e. if there is a recursive function
h such that for each nzN, (A% = (wfn))if and this is true if and only if the
predicate " # ε A * " is r.e. Let φ be a recursive function satisfying

(0.2) 3 T3(u,υ,w,x,y) *-> 3 T2{φ{u,υ),w,x,y)

and write Wfn for W$(e'n] Then {W^\n9 (Wf'n)itn, (Wf'\n} . . . is an enu-
meration of all r.e. double sequences.

A set A is reducible to a set B if there is a recursive function/ such
that xεA<—> f(x)εB, or equivalently, A -f~\β). A function, /, reduces a
sequence (A^ to a sequence {B{\ if for each iεN, f reduces Ai toB{9 and
similarly for double sequences. A reduction is said to be 1-1 if the
reduction function is 1-1.

Certain Greek letters will be used only for the following operators and
functions: μ is the standard minimalization operator, μz(P(z)) - the
minimal z such that P(z); γ and φ will be used only for the functions defined
in (0.1) and (0.2); ψ and X are defined in lemma 1.1.1 and lemma 2.6.1,
respectively, and give indices of disjoint sequences or double sequences
with certain properties. It is well-known that there exist bijective
primitive recursive correspondences between N and Ns for any 0 Φ sεN
(Ouspenski [9], thm. 19, p. 103). We will use the following notation for such
a correspondence: τs:Ns^> N, and rj:N —> N for i = 1, 2, . . . , s, with
τs(τl(ί), . . . , τs

s(t)) = t and r?(rs(xh . . . , xs)) = x{ for i = 1, . . . , s.
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Finally, we conclude these preliminary remarks by quoting two
theorems from the theory of recursive functions, which we shall use
frequently.

Iteration Theorem, Given any recursively enumerable predicate Q, there
is a primitive recursive 1-1 function h such that

Q(yu , ym>χu > XP) <-> 3 Tp(h(yl9 . . . , ym), xu . . . , xp, y).

(Kleene [3], thm. XXIII, p. 342.)

My hill fs Fixed Point Theorem. For any r.e. predicate Q of p + 2 arguments
there is a 1-1 primitive recursive function f such that

Q{z, xu . . . ,Xp9f(z))*->lTp(f(z),xl9 . . . ,xp9y).

(Smullyan [11], p. 72.)

Part 1. Sequences of Sets.

1.1 Effective Inseparability.

Definition 1.1.1 A sequence (Af ), of sets is effectively inseparable (ab-
oθ

breviated E.I.) if there is a recursive function / such that/(#) fί IJ Wf,

whenever the r.e. sequence(Wf)i satisfies:

E.I. 1) W ΠAi =ψ, alHεiSΓ;

E.I. 2) Wl nwfd U Ai, for k Φ j , k, jεN;

and

E.I. 3) W?ΏAJ, for iΦj, i, jεN.

Theorem 1.1.1 If a recursive function f reduces the disjoint sequence
(Aiϊt to (Bύi and if (A^ is E.I., then (B^ is also E.I.

Proof. Let (A{). be E.I. under g and let H e a recursive function such that
for each ezN, <W?β)>, = (f'ι(Wf))i. Then it is easily verified that (Bt){ is
E.I. under A?(AT) =f{g(h(x))).

Since effective inseparability for pairs of sets was classically con-
sidered in relation to recursive inseparability, we give the following
definition and theorem.

Definition 1.1.2 A sequence (A,-),- is recursively separable if there exists a
r.e. sequence (B^ of recursive sets, pairwise disjoint, such that Ai e f t

for each iεN and U ft = N. (A), is recursively inseparable (R.I.) if it is
ί=0

not recursively separable.

Theorem 1.1.2 If a r.e. sequence (Af )f is E.I., then it is also R.I.

Proof. Let (A^ be E.I. under the recursive function/, and suppose
(βt)i recursively separates (At)i% Construct a sequence (Ct)i with:
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C2n =ΛQ U . . . U A2n.1 U B2n+1U A2n+2 U 4 + 3 U . . .

C2n+i =Λ0 U . . .UA2n_x U B2n U A2n+2 U A2n+3 U. . .

that is, if r and s are indices of (A>){ and (^X , respectively, then

xεQ <̂ -> 3[f = 2«Λ{3(m=5έ 2n Λ m Φ In + 1 Λ xεW^)vxεW2n+1}] A

3[ί = 2n+ 1 A {3(m* In Λ m Φ In + 1 Λ xεtt^) v ^ε^}]

for some recursive function g. Then by the construction of (C, X and the

disjointness of (jfyX , g(r,s) satisfies E.I. l)-3) w.r.t. ( A ^ ; hence
00 OO

f(g(r,s)) t U Wf{r's)= U A =N, a contradiction.

Lemma 1.1.1 There exists a primitive recursive function, ψ which has the
following three properties:

a) (wf \is pairwise disjoint for any eεN;
OO oo

b) U Wf(e)= \J_ Wfjor any eεN;

and

C) Wf- U WyβC ^ ( e ) C ^ e .

Proof. Consider the predicate:

[ max(ί,y)-l max(/,y)-l

T*(e9i,x,y)λ VQ ^ ~T2{ej,x,z)*

{!£ ~ T2(ej,x, max(i,y)) v i = θ}J.

Choose *// by the iteration theorem such that

Q(e,i,x) <-> 3 T2(ψ(e),i,x,y) ^-> Λ ε ^ ( e ) .

Examination of the predicate Q shows that it gives specific meaning to:
"xε Wf before being in W* for j Φ i^y namely, for a sequence with index e
and a particular xεN, we have Q{e,iyx) if and only if xε Wf and among pairs
(z',3>) satisfying T^e.i.x.y) one is chosen such that max(e,3;) i s minimal; if
more than one such minimal pair exists, the one with smallest i is
chosen. Verification of a), b), and c) is straightforward.

Theorem 1.1.3 There exists a r.e, sequence (Bι)i of disjoint sets which is
effectively inseparable.

Proof. Consider the sequence (A^ defined by: xε*A{ <r^>χεW*. Since
this predicate, and hence the sequence, is r.e., there is an nεN such that
(A.χ. = <Ψ*χ. Define (B.\ by B{ = W?{n) for ϊέN, where ψ is the function of
lemma 1.1.1. Now suppose eεN satisfies E.I. l)-3) w.r.t. (Bt){ and suppose
eε Wf for some iεN. There are two cases:

a) eεWf - U Wj <-> eεAi - U A / -> eεBi. Then eεWfnBif contradicting

E.I.I).
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b) etWi - U W* implies by E.I. 2) that eεBk for some k. But then

Bk c Ak —> eεAk -* efiWfa whereas E.I. 1) implies eεWξ. Hence, if e

satisfies E.I. l)-3) w.r.t. <£,-),-, then ejί U WL which proves that (B^ is
ί —0

E.I. under the identity.

1.2 Creative Sequences. In the classical theory, creative sets are defined
as r.e. sets with productive complements; the complement of any produc-
tive set is called coproductive. To avoid repeated use of notation for
complements, we phrase the definition for coproductive sequences.

Definition 1.2.1 The sequence (Ai)i of sets is coproductive under the
recursive function / if for any pairwise disjoint r.e. sequence (Wf)i with

W ΠAi = φ for all iεN, we have/(e)^ U (A4 UWf).
ί'=0

Definition 1.2.2 A sequence of sets is called creative if it is r.e. and
coproductive.

Theorem 1.2.1 A necessary and sufficient condition for a disjoint r.e.
sequence to be E.I. is that it be creative.

Proof, a) Assume (Ai)i is creative under the recursive function/; let
eεN satisfy E.I. l)-3) w.r.t. <A,.\ . Consider the disjoint sequence (wf-e)\,
where ψ is as in lemma 1.1.1. By E.I. 1) and lemma 1.1.l.c, we have

wf(e)ΠAi =φ for all iεN; hence by creativity of (A^.AψieWJJ (A{ U W?{e)).

Then property b) of lemma 1.1.1 gives f(ψ{e))ft \J Wf, and this proves that
i—0

(A.)f is E.I. under g =f°ψ. b) Assume now that (Ai)i is E.I. under a recur-
sive function /. Let n be an index of (At)i9 and consider the predicate:

Q(w,e,ι»<-»*ε (wf U U wλ.

By the iteration theorem there is a recursive function g such that

Q(n,e,i,x) ^-> lT2{g(n,e)9i,x,y) ^ xε wfn'e\

Now for any r.e. sequence (W*\ which is disjoint and satisfies:

W- ΠAi=φ for all iεN,

we will show that g(n,e) satisfies E.I. l)-3) w.r.t. (Af )f , from which it

follows by the assumption that (Afo is E.I. under/ that f(g(n,e))ί U Wf(n'e\
OO oo oo

then since U Wf(n>e)= U (Wf U A4), we haveJ\g(n,e))έ U (A{ U W-), which
i—Q ι i=0 ί=Q

proves that the sequence (A, )f is creative under the function h defined by
h(x) =f(g(n,x)).
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The verification of E.I. l)-3) follows:

E.I. 1) Wfin'e) ΠAi = φ for all iεN because W* Π A{ = φ and A{ Π A] = φ
tovίΦj.

E.I. 2) Wf{n>e) Π wfn'e)<z U Ai9 for i Φ j , because W? Π W* = φ implies
00

(wfuyΛk)n(wίu[)φAhyUΛi.
E.I. 3) Wf(n'e)z> Aj for iΦj by construction.

Observe that part a) of this proof demonstrates, in fact, the stronger
statement: A coproductive sequence is strongly effectively inseparable,
where we use:

Definition 1.2.3 A sequence (Ai)i is strongly effectively inseparable if
OO

there is a recursive function / such that/(e) £ (J W* whenever the r.e.
ί = 0

sequence (wf>i satisfies E.I. 1) and E.I. 2).

We see that a disjoint r.e. sequence is E.I. if and only if it is strongly E.I.
In later sections we shall use only conditions E.I. 1) and 2).

Corollary 1.2.1.1 There exists a creative sequence.

Proof. The E.I. sequence of theorem 1.1.3 is disjoint and r.e.; hence
by theorem 1.2.1 it is creative.

Theorem 1.2.2 If (A^ is reducible to (B^ and if (A^ is coproductive,
then(Bt) is also coproductive.

Proof. Entirely similar to theorem 1.1.1.

Theorem 1.2.3 If a sequence (A^ is coproductive under a recursive
function f, then it is coproductive under a monotone increasing function /*.

Proof. There is a recursive function g* such that for every eεN

g(β)_ jWl U{/(e)}, if ί = 0
1 ~ \Wf,\ϊiΦ 0.

(g can be obtained by applying the iteration theorem to:

Q(e,i,x) <-* (i = 0 Λ X =f(e)) v xε W*.)

Let h be the recursive function obtained by iteration of g: h(0,x) -x and
hiy + l,x) = g{h(yjc)). Denote by A the set of all eεN such that (W^\ is
disjoint and W* n A{ = φ for all iεN. Then for eεA:

oo

a) Ae)ί U (At u W%
b) h(y,e)εA for all yεN; and

c) the sequence: f(h{Q,e)), f(h(l,e)), f(h(2,e)), . . . is a non-repeat ing
oό

sequence of numbers all of which are outside of U (A, U Wf).
ί=0
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Proof of a) is immediate from the definition of coproductive. Proof of b) is
by induction: h{0,e) = eεA; suppose r = h(y,e)εA and let s = h(y + l,e); then
s = g(r) and both conditions of A follow for s because they are true for r,
and the only element added to any set of the sequence, namely/(r), satisfies

f(r)fί JJ (Ai U Wl). Proof of c) follows from a) and b), for if u < υ, then
OO

f(fr(u,e))ε Wkkv'e] b\itfQι(v,e))t U W^v>e) Now define the partial recursive

functions s and t by:

s(x,0) =/(0) and s(x,y + 1) = μz{P(x,y + l,z)}

where P{x,y,z)<^f{h{z,y))>XA^Q^Q [u Φ υ '-f (fι(uxy)) Φ f(h(v,y))];

t(x,0) is undefined and t(x,y + 1) = μz{Q(x,y + 1, *)}
z-l z

where Q(x, y, z) <-> 3 f(h(z,y)) = f(h(v,y)) A z Φ OA V f(h(v,y)) < Λ: .
f=0 t;=0

By inspecting the defining equations for s and ίwe see for every (Λτ,j;)εiv"2

exactly one of s(x,y) and t(x,y) is defined. (For a given pair (x,y), s or t is
defined depending on whether in generating the values of f(h(z,y)) for
2 = 0,1,2, . . . we first obtain a value greater than x or a repetition of
values.) Finally, define / * by

/*(0)= /(0)

(/(ft(s(/*O0,y+ 1), J> + D), if s{f*(y), y + 1) is defined;

(./*(y) + 1, if ^/*(y), y + 1) is defined.

/* is monotone increasing, for if s(f*(y), y + 1) = z, then f*(y + 1) =
f(h(z,y + l))and this is greater than/*(;y) by definition of the function s, and
in the other case the monotonicity is obvious. / * is recursive since it is
partial recursive and total. The implication:

OO

(1.2.1) eεA ->/*(e) f. U (A{ U ψf)
ί=0

must now be proved to show that /* is a coproductive function for (Ai)i.
If e = 0, then /*(0) =/(0), and (1.2.1) follows by hypothesis. If e = y + 1 and
s(jf*(y), y + 1) is defined, then f*(e) = f(h(s(f*(y), y + 1), y + 1)) and by
property b) of the set A, h(s(f*{y), y + 1), y + ί)εA whenever y + lεA;
(1.2.1) then follows by property c) of the set A. If e = y+ 1 and t(f*(y), y+ϊ)
is defined then the sequence f(h(0,e)), f(h(l,e)), . . . has at least one
repetition and hence by property c) efίA.

We give here two definitions and two theorems to show that &-tuples of
sets may be treated as a special case of our theory for sequences.

Definition 1.2.4 A &-tuple of sets (Ah . . . , Ak) is coproductive under the
recursive function /of k arguments if for any disjoint k-tuple (wXv . . . , wx^
satisfying
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wx{ Π A{ = φ for 1 < £ < &,

we have

f(xi, , xύ f> U (A, U M/X.).

Definition 1.2.5 A sequence (A,.)f is said to be coproductive w.r.t. disjoint
sequences (W"){ having W" - φ if i = 0 or i > k, if there is a recursive
function/ such that for such sequences

U (W?nAi) = φ -/(n) f. U (A, U Ψfl.
ί'εN ίεN

Theorem 1.2.4 /fα sequence {At){ is coproductive, then (Anv . . . , A**) £s α
coproductive k-tuple for any k > 1 αwd αw y n1? . . . , n^ with ft* =£ n ; for i Φ j .

Proof. Without loss of generality we can assume that (nu . . . , nk) =
(1, . . . , k) since we can define a recursive permutation rearranging the
sequence (A^ thus. Define a r.e. predicate R by: R{r,k,i,x) <-> 1 < i < ̂
Λ #εw;Γ£(f), with τ^as defined in the introduction. By the iteration theorem
there exists a recursive function h satisfying: R(r,k,i}x)^-^ 3Γ2(/ί(r,^),f,Λr,3;).
Thus, for a &-tuple, (wiv . . . , Wij) and r = rV'i, . , 4)> w e n a v e a n index
of a sequence {wfr'k\, where

wh{τ,k)) τί{r)

(φ if i = 0 or i > ̂ .

Now let / be a coproductive function for (A, )f and let (M;^, . . . , M/̂ Vbe any
disjoint &-tuple satisfying Win Ci An = φ for n = 1,2, . . . , &. Then, again
taking r = τ*(ii, . . . , ik), the sequence <wj(r'k))i is disjoint and p^Λ<r'*> n A{ =

φ for all zεiV; hence, f(h(r,k))ϊ Jϋ (A, U wf r 'A )). Then for the recursive

function g defined by g{#i, . . . , χk) = f(h(τk(xi, . . . , Xk),k)), we have

gii!, . . . , 4)^ U (A» U w{ ), which proves that (Ai, . . . , 4fe) is coproduc-

tive under g.

Theorem 1.2.5 (A1? . . . , Af) is a coproductive k-tuple if and only if the
infinite sequence (Bi)i where

(Ai if 1 ^ i 2S k

B i = )

{φ if i = 0 or ί > ŷ ,

is coproductive w.r.t. sequences (Wfy for which Wj1 = φ if i = 0 or i> k.

Proof. Given a coproductive function/for (Au . . . , i4Λ) and using the
function γ of (0.1), define g(χ) - fly(l,n), . . . , y(£,ft)). Then g is coproduc-
tive for 03f )f . In the other direction, the proof is similar to that for
theorem 1.2.4.
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1.3 Universal Sequences. In this section we define what is meant by a
universal sequence and show that for disjoint r.e. sequences universality is
equivalent to creativity. We also use the property of universality to prove
that any two disjoint r.e. creative sequences are isomorphic in the usual
sense (definition 1.3.3).

Definition 1.3.1 A sequence (Ai)i is many-one universal if every disjoint
r.e. sequence is reducible to it; the sequence is 1-1 universal, or simply
universal, if the reduction function can always be chosen 1-1.

Lemma 1.3.1 Every many-one universal sequence is coproductive.

Proof, By corollary 1.2.1.1 there exists a disjoint r.e. creative
sequence; hence by theorem 1.2.2 a many-one universal sequence is
coproductive.

Lemma 1.3.2 Every disjoint coproductive sequence is 1-1 universal.

Proof, Given by Vuckovic in [13], theorem 3.1.

Theorem 1.3.1 A disjoint sequence is coproductive if and only if it is
universal.

Proof Lemmas 1.3.1 and 1.3.2.

Corollary 1.3.1.1 A disjoint sequence is 1-1 universal if and only if it is
many-one universal.

Corollary 1.3.1.2 There exists a disjoint r.e. sequence which is universal.

Proof. Theorem 1.3.1 and corollary 1.2.1.1.

Theorem 1.3.2 Let{A^{ be a disjoint r.e. sequence. Then the following are
equivalent'.

a) (Ai)i is creative;
b) (A,), is E.I.;
c) (Ai)i is universal.

Proof. Theorems 1.2.1 and 1.3.1.
The following definitions are analogous to those of Myhill for sets

in [8].

Definition 1.3.2 Two sequences are equivalent to each other if each is 1-1
reducible to the other.

Definition 1.3.3 Two sequences (Ai)i and (Bt)i are isomorphic if there is a
recursive permutation, p, such that p(Ai) = Bi for each izN.

Lemma 1.3.3 Let f and g be 1-1 (primitive) recursive functions. Then
there exists a 1-1 (primitive) recursive function h, having the following
property: For any two sets D cN and E <zN,if D =f~ι(E)and E =g~ι(D)
thenh(D) =E and h'\E) =D.

Proof. Myhill, theorem 17 in [8].



44 Sr. M. ADRIAN CARPENTIER, O.S.U.

Theorem 1.3.3 Up to isomorphism there is only one disjoint r.e. sequence
which is universal, hence also creative and E.I.

Proof. By definition of universal, two disjoint r.e. sequences which
are universal are equivalent. Applying lemma 1.3.3 to the reduction
functions /and g, we obtain the desired isomorphism.

Part 2. Double Sequences of Sets

The first three sections of part 2 constitute a complete exposition of
h-creative double sequences. It will be recalled from the introduction that
this is a study of uniform notions for a sequence of sequences.

2.1 Uniformly Effectively Inseparable Double Sequences.

Definition 2.1.1 A double sequence {A")in is uniformly effectively in-
separable (abbr. U.E.I.) if there is a recursive function / such that

ήe)ί U W 'nίoτ each e,nεN satisfying:
ί=0

U.E.1.1) W?'n ΠAni=φ for all iεN,

and
oo

U.E.I.2) We

k'
n ΠWf'n c U A", iork Φj,k,jεN.

i=0

Observe that we have omitted a third condition analogous to E.I.3) of
part 1. This definition corresponds to that of strongly effectively in-
separable (def. 1.2.3); as in the case of a single sequence we shall prove
that uniformly creative implies U.E.I, as defined here and that a weaker
U.E.I, with the third condition on e and n is sufficient for uniformly
creative. This differs from the literature (Smullyan [11] and Lachlan [4]
and [5]); it is preferable for its simplicity.

Theorem 2.1.1 There exists an h-disjoint r.e. double sequence which is

U.E.I.

Proof. Define a double sequence <-4!J)f> by: x'z/ίί <-> xεW?'n. Since
this predicate is r.e., (A"), fΛ is an r.e. double sequence; hence there is an
rεN such that (J$)i,n = W'n)i,n . Let CE*X> be the h-disjoint r.e. double
sequence defined by xεB" <e-> xε W?(φ(r'n)) Claim: <£?>;,„ is U.E.I, under
/ = indentity. Assume e,nεN satisfy U.E.I. l)-2), and suppose eε Wj'nfor
some jεN. There are two cases:

a) eεW?'n-Uwtn^eεAn

f - \J A^eεBj;

this contradicts U.E.I.I).

b) eφW*'n - U Wei'n-+ eεBlίoτ s o m e k ε N b y U . E . I . 2 ) ; t h e n J3f c A n

k - ^

eεAn

k «-> eεWl'n and U.E.I.l) -• et>W%'n; again we arrive at a contradic-
tion; hence the supposition is false and the claim is established.
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Theorem 2.1.2 If a double sequence (^ζ)iιtι is U.E.I., then for each nεN the
sequence (A*)̂  is E.I,

Proof. Define a predicate R by: R(n,k,m,i,x) <—> m - n N xε wγ(ifk) and
choose by the iteration theorem a rec. function, h, such that

R{n,k,m,i,x) «-> ^Ts(h{n,k),m,i,x,y)<^>xzwγ(i,φ{h{n,k),m)y

Thus for a given r.e. sequence with index &, (W,-)*, (we use again our
convention of suppressing γ and φ), h{n,k) is an index of the double
sequence, (W^n'k)lTn)itm, in which the 72th sequence is (H )̂,- and all other sets
are empty. Now let (JUϊ)i,n be U.E.I, under /, and for a given n let g be the
rec. function given by: g(x) =f(h(n,x)). Claim: (A"), is E.I. under g. For,
suppose & satisfies jϊ.1. l)-2) w.r.t <-A*), ; then /z(n,&) satisfies U.E.I. l)-2)

w.r.t. (A-);,*; it follows that
7 OO oθ

g(k)=fVι<n,k))ί U wf "•*>•"= y wf.
ί —0 i — 0

Definition 2.1.2 A double sequence (A"), fn is recursively separable if there
exists an r.e. h-disjoint double sequence (BT)i,n of recursive sets such that
for each nεN the sequence (B"), recursively separates (A")f-. A double
sequence is recursively inseparable (R.I.) if it is not recursively separable.

Theorem 2.1.3 If a r.e. double sequence (A"\ >w is U.E.I., then it is also R.I.

Proof. By theorem 2.1.2, for each nεN, (A"); is E.I., hence also R.I.
by theorem 1.1.2. Clearly, then, (/ζ)ittt is R.I.

2.2 Uniformly Creative Double Sequences.

Definition 2.2.1 The double sequence (A")^n is uniformly coproductive if

there is a recursive function, /, such that/(β) jί U {A* U We

{'
n) whenever e

and n satisfy:

U.C.I) Wei'n nwf'n = </> for i Φ j , i,jεN

and

U.C.2) W?'n ΠAni=(j) for all iεN

A double sequence is uniformly productive if the double sequence of
complements is uniformly coproductive.

Definition 2.2.2 A double sequence is uniformly creative if it is recursively
enumerable and uniformly coproductive.

Theorem 2.2.1 A necessary and sufficient condition for an h-disjoint r.e.
double sequence to be U.E.I, is that it be uniformly creative.

Proof, a) Assume ($ϊ)i,n is uniformly creative under the rec. function
/, and let (Wϊ'n)in be any r.e. double sequence. Consider the predicate:

Q(e,n,z» <-* xεWγ{iMφ(e.n)))



46 Sr. M. ADRIAN CARPENTIER, O.S.U.

By the iteration theorem there exists a rec. function^ such that

Q(e,n,i,x) +-* 3T3(g(e),n,i,x,y)^xεWf(eU.
y

Thus, g(e) is an index of an h-disjoint r .e. double sequence such that for
each nε N:

(2.2.1) U Wf(eU= U W*'\ and
iεN i£N

(2.2.2) Wf'n - y W*'n c Wf(eU c W 'n.

(cf. lemma 1.1.1 where the function ψ was introduced.)
Now, for any e,nεN satisfying U.E.I. l)-2):

wfe)'n{\Ani = φforalHεiV,
OO

by U.E.I. 1) and (2.2.2). Hence by uniform creativity,f(g(e))t U (A* UWf("U).
CO

Then by (2.2.1) we have f{g(e))& U W*'n, which concludes the proof that
/—o

(A§i>n is U.E.I, under the rec. function /z defined by h(x) =f(g(x)).
b) Assume, now, (A^ n is U.E.I, under the rec. function / . Define a r.e.

predicate Q as follows:

Q{u,vfn,i,x) ^-> xε Wf'n v 3(j Φ ί Λ xεWj'n).

By the iteration theorem there is a rec. function ^ s u c h that

Q{u,v,n,i,x) <-» 3 Γ 3 ( ^ M , Z ; ) , ^ ^ J ) ,

so that for any indices u,υεN: wfM>n = W?'n u U Wj'n.
jφi

Let r be an index of (A") ί W. Then for any e,nε N satisfying U.C.I)- 2), we
will show that g(e,r),n satisfy U.E.I. l)-2) w.r.t. (A*)i,n -

1) wfe'rU Π A" = φ for all iεN since (A"\n is h-disjoint and W-^ΠA^ = φ
for all iεN;

2) Wf(e'rU nwfe'rU c U A", for i Φ j since W*'n Π Wt

e'n = φ and the con-

struction shows that

Wfe,r).n R ^(e.r). . c [ ( ^ , « R ^ β , W ) y JJ ^ ^

As <i4").iΛ is U.E.I, under/,

fWefr))ί U ^f(e'r)'w= U Uni VWr);
i£N iBN

thus (An

i)ittl is uniformly creative under the recursive function h defined by
h(x) = f(g(x,r))\
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Corollary 2.2.1.1 There exists an h-disjoint creative double sequence.

Proof, The h-disjoint U.E.I, double sequence of theorem 2.1.1 is
uniformly creative.

Notice that in this proof the double sequence with index g(e,r) used in
part b) satisfies also what we would define as U.E.I. 3), namely:

U.E.1.3) Wf(e'rUDAn

hίoriΦj.

Thus as stated at the beginning of section 2.1, a weaker form of uniform
effective inseparability with U.E.I. l)-3) is sufficient to imply uniform
creativity and, hence, is equivalent to the definition we have given.

Theorem 2.2.2 If a double sequence (A*)^ is reducible to (B")i>n and the
former is uniformly coproductive, then the latter is also.

Proof. Let / reduce (A")/w to (B\n, and let (An^n be uniformly
coproductive under g. By the iteration theorem applied to: Q{e1n,i,x)<r-^>
f(x)ε We

{'
n we can find a rec. function k such that W^eU = f~1(W?'n).

Define the rec. function h by: h(x) = f(g(k(x))). Claim: (EΊ)iιn is uniformly
coproductive under h. To prove this, let e,nεN satisfy U.C. l)-2) w.r.t.
(Jθitn Since for any function /: A ί) B = φ ->f~\A) n f"\B) = φ, we have
Wk(e\n η wk{e).n = ^ f Q r { φj a n d ψk(e).n f) A* = (j> fθT all IZN.

Then by the hypothesis that (A*)ί>w is uniformly coproductive:
OO

g(He)) ^ U ( A l u Wf(e)-n),

and hence
oθ

He) = f(g(k(e))) ίί U (BfuWf).

Theorem 2.2.3 If a double sequence (A")i>n is uniformly coproductive under
a recursive function f, then it is uniformly coproductive under a monotone
inc re as ing func tion f *.

Proof. The reasoning is the same as in part 1, theorem 1.2.3. We will
give only the technical and notational changes necessary. Obtain the rec.
function g by applying the iteration theorem to:

Q(u,n,i,x) o ( i = 0 Λ i = f(u)) v xε Wf'n

so that

(Weonu{f(e)}, if i =0;
W?{e)>n = I

\w-'n, otherwise.

The functions h,s,t, and/* are defined exactly as before. For each nεN
define a set An by:

An = {eεN\ e,n satisfy U.C. l)-2) w.r.t. ($)itn }.
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Properties a), b), and c) are essentially the same as in theorem 1.2.3 and
the proofs are the same; however, there are notational differences. For
any eεAn:

a) Mt U \A u wr\
iBN

b) h(y,e)εAn for all yεiNΓ;

c) the sequence: f(h(0,e)), f(h(l,e)), . . . is a non-repeating sequence of

numbers all of which are outside of U (Al U WΪ'n).
iEN

We must show:

(2.2.3) eεAn - f*(e)ί U (A? U w!'").
iεN

If e = 0, f*(e) = f(e), and (2.2.3) follows from a). If e = y + 1 and
s{f*(y), y + 1) is defined, then /*(e) =f(h(s(f*(y), y + l),y + 1)); by property
b), eεAw->/*(s(/*(:y), ;y+ l),e)εΛ; (2.2.3) follows then from a). If e = y + 1
and t(f*(y)9 y+ 1) is defined, then the sequence f(h(0,e)),f(h(l,e))9. . . has
at least one repetition and hence by c), e$An. This completes the proof.

2.3 Uniformly Universal Double Sequences.

Definition 2.3.1 A double sequence (A")itn is said to be uniformly universal
if every h-disjoint r.e. double sequence is 1-1 reducible to it.

Lemma 2.3.1 Every h-disjoint uniformly coproductive double sequence is
uniformly universal.

Proof. Let (A")/#w be uniformly coproductive under the 1-1 rec.
function / . (By theorem 2.2.3 we know such a 1-1 coproductive function
exists.) Let (£φ ί#w be an h-disjoint r.e. double sequence. Applying MyhilΓs
fixed point theorem to the predicate: Qip^n^x^u) <—> vεB" Λ X = f(u), we
obtain a 1-1 recursive functiong such that:

Q{eyn,i,x,g{e)) <-> lTs(g(e),n,i,x,y).

Thus,

eεBΪ ΛX=f(g(e))*->xεWf{eU.

Then for any xεN, g(x) is an index of a r.e. double sequence which is
h-disjoint, in fact, wfx)'n = φ unless xεBn

u in which case Wf(xU = {f(g(x))}.
We shall prove that the rec. function h = fig reduces (B^)itn to (A*)/fW:

xεB?^>h(x)=f(g(x))εAl

1) Suppose xεBj, for some nJεN. Then Wf{xU = {f(g(x))}, and Wf(xU= φ
for i Φ j. Thus

OO

U \wfxU n A",) = ̂ /(Λr)>" n A",.
*=0
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As the double sequence is uniformly coproductive,

U (wfx)'n ΠAΊ) = φ - Mx)) t U <A' u w?(x)'*).

From these two facts follows:

{f(g(x))} ΠA",=φ^ f{g(x))ίt wfxU,

which would contradict the supposition. We have shown: xεBf —> f(g(x))ε A".

2) Now s u p p o s e / ^ ) ) ε i for some n,jεN. lϊxjl U B", then Wf(x)'n = φ for
iEN

all iεN, so that wfx)>n ΠA- = φ, all iεN and hence by the uniform coprod-
uctivityof (Ani)i,n,

oo

/(§•(*)¥ U i«;

in particular, f(g(x))fiAnj, contrary to the supposition. Hence, there is an
sεN such that xzB"\ but by the previous part this implies f(g(x))εAns from
which it follows that s =j, since Ay Π A" * </> implies.; = s.
Thus f(g{x))ε A" ->xε B*.

Theorem 2.3.1 An h-dίsjoint double sequence is uniformly coproductive if
and only if it is uniformly universal.

Proof "if" by corollary 2.2.1.1 and theorem 2.2.2. "only if" by
lemma 2.3.1.

Corollary 2.3.1.1 There exists an h-disjoint r.e. double sequence which is
uniformly universal.

Definition 2.3.2 Two double sequences are equivalent to each other if each
is 1-1 reducible to the other.

Definition 2.3.3 Two double sequences, (A")ί>w and (B*j)itn are isomorphic if
there is a recursive permutation, />, such that/>(Λ") = B", for all i,nεN.

Theorem 2.3.2 Up to isomorphism there is only one h-disjoint r.e. double
sequence which is uniformly universal, hence also U.E.I, and uniformly
creative.

Proof. By lemma 1.3.3 as for theorem 1.3.3.

2.4 v-Creative Double Sequences.

Definition 2.4.1 For a double sequence (A")ί)W we define its transpose to be
the sequence (B")i>n where B"= A*n, for i,nεN.

Definition 2.4.2 A double sequence (A*)^ is v-disjoint if for each iεN,
A"'Π AΪΊ = φ for nΦ m, n,mεN.

Definition 2.4.3 A double sequence (A$)i>n is v-effectively inseparable
OO

(abbr. v-E.I.) if there is a recursive function/ such that f(e) f, U ^/'wfor
each e,iεN satisfying
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v-E.I. 1) Wln Π A* = φ for^all nzN, and

v-E.I. 2) Wf'9 Γ)W?m c U ^ f o r nΦm,n,mzN.
«=o

Definition 2.4.4 A double sequence (A*)t> is v-coproductive if there is a

recursive function/ such thatf(e)ft> U (^/ U Wi'n), whenever 0 and i satisfy:
nέN

v-C. 1) Wf'n n PF/'m = φ, for rc * m, and
v-C. 2) Wf'n nA% = φ, for all nεiV.

Definition 2.4.5 A double sequence is y-creatiυe if it is r.e. and v-
coproductive.

Definition 2.4.6 A double sequence is v-universal if every v-disjoint r.e.
double sequence is 1-1 reducible to it.

The theory for the v-case is obtained from that for the uniform or
h-case by the following theorem.

Theorem 2.4.1 A double sequence is r.e., v-disjoint, v-E.1.,v-coproductive;
^-universal if and only if the transposed double sequence is respectively
r.e., h-disjoint, U.E.I., uniformly coproductive, uniformly universal.

Proof, a) Transposing a double sequence preserves recursive enu-
merability since a permutation of variables is a primitive recursive
function.
b) Transposition carries rows into columns and hence h-disjointness to
v-disjointness, and conversely.
c) Effective inseparability and coproductivity will be demonstrated by
lemmas 2.4.1-2.4.3.
d) Let (^i)itn be a given double sequence with (B")i>n its transposed
sequence, and (Wt'n ) i t f l a v-disjoint r.e. double sequence with (C")in its
transposed sequence. Then a recursive function/ reduces (Cj)ίfΛ to (β^)ittt

if and only if it reduces <WΪ'n)i,n to <A*)f> . Thus (A%ffl is v-ύniversal if
and only if (B%ffl is uniformly universal.

Lemma 2.4.1 There exists a recursive function g such that for any index e
of a r.e. double sequence, g(e) is an index of the transposed double
sequence.

Proof. Let Q be the r.e. predicate defined by: Q(u,v,w,x) <—>
lT3(u,w,v,x,y). By the iteration theorem there exists a recursive function

g such that:

Q{u,v,w,x) <-> lT3(g(u),v,w,x,y).

Hence,

3Ts(u,w,v,x,y) «-> lT2(g{u),v,w,x,y).

Now, for any index e\

xzWf <-> lT3(e,n,i,x,y);
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thus we have:

xzψfe)'n*-> lTz{g{e),n,i,x,y) *-> 3 Tz{e,i,n,x,y)*-+xzWe

n'
{,

which shows that g(e) is an index of the transposed double sequence.

Lemma 2.4.2 A double sequence is v-E.I if and only if the transposed
double sequence is U.E.I.

Proof. Let (An-)in and (Bfyi.n be a double sequence and its transposed
double sequence.
i.) Assume (£/)/,„ is U.E.I, under the recursive function/, and let e,rεN
satisfy v-E.I. l)-2) w.r.t. <A*)/fll. Then g(e) and r satisfy U.E.I. l)-2) w.r.t.
<B,\, , so that

oo oo

Me))t U wfe) r = U wr.
n=0 «=0

Thus (A7)i,n is v-E l under the rec. function fog,
ii.) Assume <A*)t>w is v-E.I. under a recursive function/, and let (Wf'n)iitl

be a r.e. sequence with e,rεN satisfying U.E.I. l)-2) w.r.t. <B*)ίfβ. Then
g(e),rεN satisfy v-E.I. l)-2) w.r.t. (A"\n; hence

f(g{e))t U TV*U = U Wf'r.
ί=0 ί=0

Thus, (Bj)ίfll is U.E.I, under the rec. function f°g.

Lemma 2.4.3 A double sequence is v-coproductive if and only if the
transposed sequence is uniformly coproductive.

Proof. Analogous to that for lemma 2.4.2.

Theorem 2.4.2 A r.e. v-disjoint double sequence is v-E.I. if and only if it
is v -creative if and only if it is v-universal.

Proof. Theorem 2.4.1 together with theorems 2.2.1 and 2.3.1.

Theorem 2.4.3 Up to isomorphism there is only one ψ-disjoint r.e.
M-universal double sequence.

Proof. Theorem 2.4.1 and theorem 2.3.2.

2.5 t-Creative Double Sequences.
Definition 2.5.1 A double sequence (A")iιn is said to be X-disjoint if
AS r\A"j =φfor (i,n)Φ (j,m).

Lemma 2.5.1 Any double sequence can be written as a single sequence and
conversely. Further, there exist recursive functions h and k such that h(e)
is an index of the r.e. sequence obtained from the r.e. double sequence with
index e and k(e) is an index of the r.e. double sequence obtained from the
r.e. sequence with index e.

Proof. Let (An/)iin be any double sequence. Define a sequence (Bt){ by:
Bi = Aj with j = τ\(i) and m = τl(i). Conversely, for any sequence (B,-),-,
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there is the double sequence (A")it1l defined by: A^ = Bτ\itn). By the
iteration theorem we obtain a rec. function h such that

lT3(e,τ2

2(i),τl{i),x,y) «-> 2T2(h(e),i,x,y);

that is,

xzWfm Λ j = τ2i(i) Λ m = τ5(0 <-» * ε ΐ ^ ( e >

Likewise, there is a rec. function k such that

3 T2(e,τ2(i,n),x,y) ^-> 3 Γ3(*(e),M,#,:y);

which means xεWe

τ2(i>n) <?-> x zwfe)t".

Definition 2.5.2 A double sequence is X-effectively inseparable (t-E.I.) if
there is a recursive function/ such that

OO OO

Ae)t\J U wr
«=0 ί=0

whenever e is an index of a r.e. double sequence satisfying:

t-EΛ. 1) W 'n n i4j = φ, all i,nεtf,

and
OO OO

t-E.I. 2) Wt'"C\W? m c U U 4 , «,n) # Um).

Definition 2.5.3 A double sequence (^i)i,n is t-coproductive if there is a
recursive function / such that for any t-disjoint r.e. double sequence

oo oo oo oo

U U {wr n4) = ψ - yte) * U U (4! u wT).
«=0 ί=0 «=0 i=o

Definition 2.5.4 A double sequence is X-creative if it is r.e. and t-
coproductive.

Definition 2.5.5 A double sequence is t-universal if every t-dis joint r.e.
double sequence is 1-1 reducible to it.

Theorem 2.5.1 A double sequence is r.e., X-disjoint, t-E.I., X-coproductive,
or X-universal if and only if the related single sequence of lemma 2.5.1 is,
respectively, r.e., disjoint, E.I,, coproductive, or universal.

Proof. Let (A")^ be a double sequence and (Bj)i the related single
sequence. Since the functions τ2, T?, and Ί are primitive recursive, either
sequence is r .e. if and only if the other is. The disjointness is straight-
forward, as is universality. For E.I.:

i) Assume (B^i is E.I. under the rec. function / a n d let QVf'n)i,n be a r.e.
double sequence satisfying t-E.I. l)-2) w.r.t. <A")ί#n . Then (W^(e))if where h
is the function from lemma 2.5.1, satisfies:
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E.I. 1) W\{e) OBi = Wj'm DA™ = φ, where j = τ\{ί), m = τl(i);

EΛ. 2) WΪ{e) Π tffe) = We

k'
m Π We

q'
pcz\J U Ani = U Bi,

for iΦj, k = τ\(i), m = τ&i), q = T\{J), p = τl(j).
oθ oθ oθ

Hence, f(h(e))ί\J W^e)=[j U Ŵ /'8.
i —0 n = 0 i = 0

It follows that <A*>ί#n is t-E.I. under the function foh.
ii) Assume (A":), f» is t-E.I. under the recursive function /, and let (PFf\ be
any r.e. sequence satisfying E.I. l)-2) w.r.t. (B^. Then (W^e)'n)in satisfies
t-E.I. l)-2) w.r.t. <A/>/,π, so that

f(k(e))ft\J U W*e)>«=\Jwh
n=0 i=0 i=0

hence (Bi)i is E.I. under the function/0&. An analogous proof shows that
^i)i,n is t-coproductive if and only if (β, )t is coproductive.

Theorem 2.5.2 Let (A")^ ^e a r-e- t-disjoint double sequence. Then <A*)/#W

is t-E.I. if and only if it is t-creative, if and only if it is \-universal.

Proof Theorem 2.5.1 and theorem 1.3.2.

Theorem 2.5.3 Up to isomorphism there is only one X-disjoint r.e. double
sequence which is t-universal.

Proof. Theorem 1.3.3 and theorem 2.5.1.

2.6 v-h-Creative Double Sequences. The following development of the
theory for the v-h-case is not so complete as that for the other cases.
However, the results do include the existence of v-h-universal double
sequences and of v-h-creative ones as well as the equivalence of v-h-
creative with many-one v-h-universal. Isomorphism of any two v-h-
universal double sequences follows as in the other cases.

Definition 2.6.1 A double sequence ( Ό f #w is v-h-disjoint if for every
iεN, nεN: A" Π A™ = ψ, for nΦ m, mεN, and A" Π A" = ψ, for i ΦjJεN.

Lemma 2.6.1 There exists a recursive function, X, such that for any eεN,
X(e) is an index of a v-h-disjoint double sequence such that for all (i,n)εN2:

(2.6.1) W 'n - (U We

k'
n u U W Λ c Wf{eU^ W 'n

\kΦi kφn /

(2.6.2) U U Wf" = U U W*
(e)
 ".

tEN n£N iεN nεN

Proof. Let Q be the r.e. predicate defined by:

[ max(«,y)-l max(n,y)il
T3(e,n,i,x,y) Λ V V {~T3(e,m,i,x,z)} Λ

m=0 z=0
n-1 η

V {~T3(e,m,ijc,max(n,y)) v n = 0} .
m-0 J
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By the iteration theorem there exists a rec. function h such that:

Q{e,n,i,x) *-> lT3(h(e),n,i,x,y).

For a particular (e,i,x) this predicate determines the meaning of "xεW*'"
before being m W\'m for any n Φ m." The function h gives an index of a
v-disjoint double sequence satisfying:

(2.6.3) \Jw}i€U = U Wj'Λ, for each iεN,
nεN nεN

and

(2.6.4) Wtn- U Wlk c WΪ(e)'nc: W 'n, for all iεN.
kΦn

(cf. the predicate used in lemma 1.1.1.) From theorem 2.2.1 we have the
function g which from an index of a double sequence gives an index of an
h-disjoint double sequence with properties (2.2.1) and (2.2.2) analogous to
(2.6.3) and (2.6.4). Define X by: \(x) =h(g(x)). Then for any eεN, χ(e) is
an index of a v-to-disjoint double sequence. Moreover, letting 5 = g{e) and
e = X(β),

W\'n- U Winc W\'nc Wei'n,
kΦi

by (2.2.2);

Wf - fU Wί' u U WeΛ c W-'" - U Wϊk c
\kΦi kφh I kφn

c W-'n - U Wsi'k<z Wfn c Wϊ'n<z Wf'n

kφn

by (2.6.4) and the first line. This proves (2.6.1). Then by (2.2.1) and
(2.6.3):

χεW?'n-* 3xεWf'n-> 3 1 xεψf*;
j J m j

hence

U U^ΓcU Uwj ;
tEN nεN iBN nεN

inclusion the other way follows from (2.6.1) so that we have now verified
(2.6.2).

Definition 2.6.2 A double sequence is many-one v-h-universal if every
v-h-disjoint r.e. double sequence is reducible to it. If every such reduction
can be choβ en 1-1, if is said to be 1-1 v-h-universal or, simply, v-h-
tmiversal.

Theorem 2.6.1 There exists a v-h-universal, v-h-disjoint r.e. double
sequence.
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Proof, Let / be the bijective primitive recursive function τ2: N2 —• N.
Define a double sequence (B*)f> by:

yεB?+-> lj[xεW?(e)'nΛy=f(e,x)].

Clearly (B?X> is r.e. since the defining predicate is r.e. That it is
v-h-disjoint follows from the injectivity of/ and the v-h-disjointness of
(Wf{e)>n)ί>n. We have only to prove it is v-h-universal. For this, let eεNbe
an index of a v-h-disjoint r.e. double sequence. Then for each i,nεN:
W?{e)'n = W-'n. hetfe be the recursive function defined by: fe(x) =f(e,n).
It follows that:

fe{x)zBn

i^-^xzW^e)'n<r^χzWe

i'
n,

which shows that/e reduces (W\n\n to (JBΊ)itn and completes the proof.

Definition 2.6.3 A double sequence (A")in is v-h-coproductive if there is a
recursive function f such that for ezN an index of a v-h-disjoint r.e. double

sequence and (j,m)εN2: \J [(We

k'
m Π Am

k) U (W-'k Π A))] = ώ -> f(e)ί U
kεN kεN

{Al U We

k'
mUAkj UW-'k).

Definition 2.6.4 A double sequence is v-h-creative if it is r.e. and
v- h- coproductive.

Theorem 2.6.2 There exists a v-h-creative, v-\\-disjoint r.e. double
sequence.

Proof. Define a sequence ψlJ)ίfJI by: xεA" <-> xzWfn. As the right
hand side is r.e., there is an rεN such that <£?),-„ = QV?n)i,n L e t ^ ί k n b e

the r.e. double sequence with index X(r). Claim: (B/), #n is v-h-coproductive
under the identity function. (Then being r.e. and v-h-disjoint, it is the
v-h-creative double sequence we seek.) Let (Wi'n)itn be a v-h-disjoint r.e.

double sequence and (j,m)εN2 such that U [ ( ^ ' " Π ΰ J 1 ) U (JFy'*n£*)] = φ.

We must show:

eί U (B? U WϊmUBΪ U PFf'*).

Recall that by definition of <Aj>/fΛ: βεA" ̂ -> eε PΓ/'11. Thus, if eeBfczA",
with n = m or i = j , it follows also that #ε Wf'n contrary to the assumption
that Wei'n n 5" = φ. On the other hand, since ( ^ ' \ w is v-h-disjoint,

e ε W f - e ε ^ r - (Ό ̂ /'w U U PF/'Λ
Vyfê ί kφn / '

which in turn implies: eεA" - fU 4 u U A*A c JB?;

again, for z = j or n - m we have a contradiction.

Lemma 2.6.2 T/7 α v-h-coproductive double sequence (A")in is reducible to
{^f)itn, then (Bf)itn is also v-h-coproductive.
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Proof, (cf theorem 2.2.2) Let/ reduce <AJ)f#ll to (B%n and letg be
the v-h-coproductive function for (^) / f W . Let k be the recursive function
such t h a t P F ^ ' ^ j Γ 1 ^ ' * ) , all i,n,ezN. Claim: (B")ifn is v-h-coproductive
under the recursive function h defined by h(x) = f(g{k(x))). To prove this,
let (Wi'n)i>n be a v-h-disjoint r.e. double sequence with (%m)εN2 such that
Wi'n Π Bi = φ for n = ra or i = . Since for any function/and sets A, B,
and C:

A Π B c: C -+f-\A)Π f-\B) <zf-\C),

and since in this case A* =f'\BT) and Wf{eU =f'\Wfn), we have (wf e ) '\ w

is v-h-disjoint and W^e)'n Π A" = φ for n = m or z = j ; hence by the
v-h-coproductivity of (Af)ί>w:

^(β))^ί U K u w«β)'M uΛj u ^ ( e ) ' r ] .

Then using again the properties of inverse image sets:

hie) = MkieW U [BΓ U w?m u B; U ΪΓ; Γ ] .
rEN ' J

Lemma 2.6.3 If (dζ)i,n is a v-h-disjoint, v-h-coproductive double sequence,
then it is many-one v-h-universal.

Proof. Let (A")iιtι be a v-h-coproductive double sequence under the
rec. function /. For any r.e. double sequence (Bf)itn we can obtain, as
shown in the proof of lemma 2.3.1, a rec. 1-1 function g such that

yεWfix)'n^xεBfAy =βgfcc)).

Then if (Bt})it9 is v-h-disjoint, g(x) for any xεN is an index of a r.e. double
sequence which is v-h-disjoint, in fact, Wf^x)>n = φ unless xεB?, in which
case Wf^'n= {f(g(x))}. We shall prove that the rec. function h =f°g reduces
(Zf)ifn to(AΊ)i>n,i.e.:

1) Suppose Λ ε B^but h(x) £ Aj for some (j, m)εN2. Then

U [(wg

k

(xXm n Am

k) u (wf(xlk n 4 ) ] = wfx)'m n ̂  = ψ,

so that by the coproductivity of (A|) ί>w:

/te(*)¥ U [AJ U Wf^-UAj U Wfix)'kl
k Sri

But this means, in particular, thatf(g(x)) jί Wf(x)'m= ίf(g(x))}, a contradiction.

2) Suppose h{x)εjfj . If ^ U (2Jj U By), then ^ ( Λ ί ) ' w =φ\ί i=j oτ n = m

and by v-h-coproductivity /(#•(#)) = ̂ ( Λ : ) ^ ^ , contradicting the supposition.
Hence, there is some ~(i,n) with i = j or n = m such that xεB". By part 1)
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this implies h(x)εA". Then h(x)εA™ Π A" and v-h-disjointness yields = m
and i = j .
From 1) and 2): xεBf *->h(χ)ε A".

Theorem 2.6.3 A v-h-disjoint double sequence, (^)/>w, is many-one
v-h-universal if and only if it is v-h-coproductive.

Proof, "if" by lemma 2.6.3. "only if" by theorem 2.6.2 and lemma
2.6.2.

Definition 2.6.5 A double sequence (A!\)ifn is v-h-effectively inseparable

(abbr. v-h-E.I.) if there is a recursive function/such that/(e)^ U (Wl'm U
Wj'k) for each eεN, (j,m)εN2 satisfying: * ε N

v-h-E.I. 1) Wf'nΠ Ani = φ if i = j or n = m\

v - h - E . I . 2) Wk'mnw-'m c U ^ Γ i f iΦk, and

we,n n ^ β , * c \J Anj iinΦk.
n£N

Theorem 2.6.4 If a recursive function f reduces a v-h-E.I. double sequence
(A")itn to (B%>n, then 0")ifn is also v-h-E.I.

Proof. Let (A")f #w be v-h-E.I. under the rec. function g, and let& be a
rec. function such that W^e)'n =f\wtn). Claim: <£*>,-„ is v-h-E.I. under
figbh. Suppose eεN, (j,m)εN2 satisfy v-h-E.I. l)-2) w.r.t. (B*>i,Λ. Then

h(e) and (j,m) satisfy v-h-E.I. l)-2) w.r.t. (A%n so that g{h(e))fί \J
kεN

(ψh(e\m u λ̂(e)»Ajβ B y t h e p r O p e r t i e s of inverse image sets, we then have:

f(g(h(e))) f. U (Wk'M u Wj'k).
keN

Corollary 2.6.4.1 If there exists a w-h-disjoint, v-h-E.I. r.e. double
sequence, then any v-h-universal double sequence is v-h-E.I.

Theorem 2.6.5 Up to isomorphism there is only one v-h-disjoint r.e.
double sequence which is v-h-universal.

Proof. By lemma 1.3.3.

At present, attempts to prove a) that v-h-E.I. implies v-h-universal,
b) the existence of a v-h-disjoint v-h-E.I. r.e. double sequence, and c) the
equivalence of v-h-E.I. and v-h-creativity for v-h-disjoint r.e. double
sequences have failed. It would be sufficient to prove either a) and b) or c):
c) would follow from a) and b) by theorem 2.6.3 and corollary 2.6.4.1, and
from c) the others would follow by theorems 2.6.2 and 2.6.3.

It will also be noted that we have shown that v-h-coproductive implies
many-one v-h-universal only. This is because the proof for the existence
of a monotone coproductive function does not hold as in the other cases. It
would be possible to prove this theorem with a stronger definition of
v-h-coproductive, but we have been unable to prove existence for this
definition. The definition is as follows:
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Definition 2.6.6 A double sequence (A"); n is strongly v-h-coproductive if

there is a recursive function / such that f(e)jί \J [A™ U We

k'
m UA U fltf'*],

kεN
whenever eεiVand (j,m)εN2 satisfy:

v-h-C 1) Wei'm Π We

k'
m = φ for i Φ k and Wj'n Π pp?'* = φ for n * &;

v-h-C 2) ^ ' w Π Λ? = φ if n = m or i = j .

2.7 Classifications of Recursively Enumerable Double Sequences. We are
now ready to show that the four cases of double sequences which we have
considered are really distinct cases. To obtain similarity of notation we
replace "uniformly" for the first case by " h " : e.g. "uniformly universal"
will be "h-universal". All double sequences will be recursively enumer-
able in this section.

Notation. For X = h,v,v-h, or t, let
S)χ = the class of X-disjoint r.e. double sequences;
Ex = the class of X-universal r.e. double sequences.

It is clear from the definitions that:

2>t c $v-h = (2>v n ®h), and 12h U llv c llv.h c ϋ t .

Now, let

£ x = 2)x Π u x = the class of X-disjoint X-universal r.e. double sequences.

Theorem 2.7.1 &χ 0 &γ = φ for X Φ Y, X,Y = h,v,v-h, or t.

Proof. Take X = v and Y = h, and suppose (Cj)ί#n ε S x ί l <SY. Let (^t)i>n

be r.e. and v-disjoint but not h-disjoint, for example, define xεjίj <r->
x = 1 Λ n = 1. Then, since (C?>,;8εllv, there is a rec. function / such that
χεAni<r-^f(x)εCi. Since <A")t> is not h-disjoint, there exist y,n,i,jεN, with
i Φ j and yεA" Π Ay. We then have/(;y)εC? n C", contradicting (C'f)i>nε2)h.
Other cases for X and Y are proved similarly.

Theorem 2.7.2 Eαc/? cZ<zss £ x , X = h,v,v-h, or t, is nonempty and consists
of isomorphic double sequences which are also X-creative. For X = h, v,
or X, the members of <SX are also X-E.l.

Proof. X = h: corollary 2.3.1.1, theorems 2.3.1 and 2.2.1. X = v:
theorems 2.4.1, 2.4.2, and 2.4.3, with corollary 2.3.1.1 for the existence of
one v-disjoint, v-universal r .e. double sequence. X = t: theorems 2.5.1,
2.5.2, and 2.5.3, with corollary 1.3.1.2 to show <£t * φ. X = v-h: theorems
2.6.1 and 2.6.5.

2.8 k-tuples of Sequences. We have developed the theory for double infinite
sequences. That this theory includes that of ^-tuples of sequences is the
content of this section. We assume k > 1.

Definiton 2.8.1 Let CA"), εN,o<:»<& be any fe-tuple of sequences. We will say
that (Bnι)iEN>nεN is the double sequence associated with ^>feN#o<»<A ** f o r a 1 1

iεN:
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( A", for 0 2= n < k

Bi = \
(φ, for n> k.

Definition 2.8.2 A double sequence ($\)itn is said to have length ^ k if for
all iεN:

A" = φ if n > k.

That a &-tuple of sequences is universal for ^-tuples of r.e. sequences
if and only if the associated double sequence is universal for r.e. double
sequences having length ^k, is straightforward, whichever type of disjoint-
ness is considered. To obtain the analogous theorems for effective
inseparability and creativity, we must be able from the indices of k r.e.
sequences to give an index of the associated r.e. double sequence and
conversely. This is accomplished in the first direction by the recursive
function h defined as follows:

1) Let R be the recursively enumerable predicate:

R(r,k,n,i,x) *-> 3 [0 <n<k A XZW? Λ m = τ£+i(r)].
m

2) By the iteration theorem there is a rec. h such that:

R(r,k,n,i,x) *-> 3 Tz(fι(r,k),n,i,x,y).

3) Then h{r,k) is an index of the double sequ€nce:

(W? with m = τί+i(r), if 0 < n < k
ττrh(r,k),n _ 1

[φ if n > &.

Thus, given indices ΛΓO,ΛΓI, . . . , #&-i, h{τk(xQ, . . . , #&-i),&) is an index of
the double sequence associated with the given &-tuple of sequences. For the
converse, given any index e of a r .e. double sequence, φ(e,n) is the index of
the nth sequence.

Definition 2.8.3 A &-tuple of sequences (A")iεNt04n<kis U.E.I, if there is a
OO

rec. function / such that f(xo,Xι, . . . , Xk-i)fi U W*n whenever the nth

sequence satisfies:

UJE.1. 1) W*n Π A" = φ for all iεtf,

and
oo

U.E.I. 2) W*" Π w ^ c U A", for z ̂  j, ijεN.

Definition 2.8.4 A double sequence (^\)iιn is U.E.I. for double sequences of
length <& if there is a recursive function / such that

oo

f(e)ί U W^B

ί = 0



60 Sr. M. ADRIAN CARPENTIER, O.S.U.

whenever e is an index of a r.e. double sequence of length ^&of which the
nth sequence, 0 ^ n < k, satisfies:

U.E.I. 1) W-'n ΠA" = φ, for all iεN,

and

U.E.I. 2) Wei'n Π W*'n<z U An

i9 for iΦj,ijzN.

Theorem 2.8.1 A k-tuple of sequences (^)/EN,O^»<£*5 U.E.I. /̂ and only if
its associated double sequence is U.E.I, for r.e. double sequences of length

Proof Let (B%)iεNfnεN be the associated double sequence.

a) Assume (Ani)ieN,θζ.n<k i s U.E.I, under /, and let ^Wf'n)itn be a double
sequence of length ^k whose nth sequence, 0 ^n < k, satisfies U.E.I. l)-2).
Then the nth sequence of the &-tuple {wf{e'n))iεNtQ^n<ksatisfies U.E.I. l)-2)
w.r.t. (A%ENtHn<k, so that

CO

/(φ(β,0),φ(β,l), . . . , φiefi - ί))ί U Wf".

Hence, (E^)itn is U.E.I, under the rec. function^-:

g(x) =/(0(^,O), . . . , φ(x,k - 1)).

b) Assume {B^)i£NfnεN is U.E.I, for double sequences of length ^Sunder the
rec. function /, and let (^fw), ε̂ ,o<:«<febe a &-tuple of sequences whose nth

sequence, 0 ^ n < k, satisfies U.E.I. l)-2). Then the associated double
sequence with index h(τk(x0, . . . , Xk-i),k) is such that its n ώ sequence

00

satisfies U.E.I. l)-2) w.r.t. {Έfξ)in so that f(h(τk(xό, . . . ,xk-i)Mί U W?n.

Hence, (Atl)iεNp0^n<kis U.E.I, under the rec. function^:

g(xO,Xi, . . . ,Xk-i) =f(h(τk(x0, . . . ,Xk-i),k)).

Analogous definitions and proofs can be given for uniformly coproduc-
tive and for both effective inseparability and coproductivity in the v-, t-,
and v-h-cases. It remains, then, only to give a treatment of the theory for
double sequences of length ^ k. This can be obtained by re-writing sections
2.1-2.7 with all double sequences assumed to be of length ^k. A few
changes need to be made for the v- and t-cases. For the v-case, the
transpose of a double sequence of length ^k becomes a double sequence
each of whose sequences has length ^k. As the uniform theory is valid
also when restricted to sequences of sequences of length ^ k, the analog of
theorem 2.4.1 is true. In the t-case to obtain the analog of theorem 2.5.1
we use the following map from double sequences of length ^k, (Anϊ)ieN,04n<k>
to single sequences (^/) ί ε N :

Bi = As

r for i = rk + s.
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