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CREATIVE SEQUENCES AND DOUBLE SEQUENCES

Sr. M. ADRIAN CARPENTIER, 0O.S.U.

Introduction.* Creative sets, creative pairs of sets, creative k-tuples
for any finite %, and creative sequences of sets have been treated already
by J. Myhill [8], R. M. Smullyan [11], A. H. Lachlan [4, 5], V. Vickovi¢
[12, 18], and J. P. Cleave [1], among others. This paper presents first of
all a complete mathematical theory for sequences using the methodology of
Smullyan and Vickovi¢. Definitions of effective inseparability, creativity,
and universality are given, and for disjoint recursively enumerable
sequences these concepts are shown to be equivalent. Isomorphism of
creative sequences follows immediately from universality as in previous
literature.

The second part of this paper is a development of analogous theories
for double sequences. Four cases arise from considering a double
sequence as a square array:

AS AS A% A9 A°... AY...
Ad A} As As A: ... AL ...

4y AT A A AT AL

and viewing it from different aspects. This is best explained by considering
the property of disjointness. A double sequence is: (1) h-disjoint or
pairwise disjoint within each row if for each neN, A7 N A? = ¢ whenever
i #j, (2) v-disjoint or pairwise disjoint within each column if for each ieN,
A}NAT = ¢ for n + m, (3) t-disjoint or totally pairwise disjoint if A7 N A7 = ¢
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Dame in partial fulfillment of the requirements for the degree of Doctor of Philosophy
with Mathematics as major subject in June 1967. The author wishes to express her
gratitude to Professor V. Vuckovié of the University of Notre Dame for his suggestion
of the topic and his direction of this research.
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whenever (n,i) # (m,j), (4) v-h-disjoint or pairwise disjoint within each
column and each row if A7 N A" = ¢ whenever (n = m and i # j) or (n # m and
i =4). The first or h-case, where all conditions are stated for sets in the
same row, gives uniform notions for a sequence of sequences. The v-case
easily reduces to the h-case, and the t-case to that of a single sequence.
Separate considerations for the v-h-case are given with some questions left
open. Finally, that these cases are distinct is shown by theorem 2.7.1.

This exposition is given in the theory of general recursive functions.
Throughout this paper N is the set of natural numbers with zero, and all
sets are subsets of N unless otherwise specified. A sequence of sets,
denoted (A);.y, Will often be written (4;); with the index set N understood
likewise ((A47);cn)nen» Meaning the sequence of sequences whose nd sequence
is (A});, will be written (4});,. For the enumeration of all recursively
enumerable (abbreviated r.e.) sets we use wo, Wy, Wz, . . . , Where xew; <>
3 Ty(éx,y). A sequence (4;); of subsets of N is said to be r.e. if there is a
recurswe function # such that A; = wy(;) for every ie N. This is equivalent
to saying that the binary predicate ‘‘x€A;’’ is r.e. An enumeration of all
r.e. sequences is obtained as follows: choose a recursive function y by the
iteration theorem such that

(0~1) 3 Tz(u,v,x,y)e ; TI(Y(U’u),x,y);
then for each ec N set Wy = wy(,e), giving:
xe Wi <> ITily(6,e)x,y) <> ITole,ixy);

then (W3);, (Wi);, {W?),,...is an enumeration of all r.e. sequences.
Similarly, a double sequence, (A i, iS r.e, if there is a recursive function
k such that for each neN, (A7) = (Wh(” %, and this is true if and only if the
predicate ‘“xeA}’’ is r.e. Let ¢ be a recursive function satisfying

(0.2) ; Ts(u,v,w,x,y) <> ;I Toop(ue,v),w,x,9)

and write We" for W™ Then W™, (W™, ,, (W™, ,, . . . is an enu-
meration of all r.e. double sequences.

A set A is reducible to a set B if there is a recursive function f such
that xeA <> f(x)eB, or equivalently, A =f “XB). A function, f, reduces a
sequence (4;); to a sequence (B;); if for each ieN, f reduces A; to B;, and
similarly for double sequences. A reduction is said to be 1-1 if the
reduction function is 1-1.

Certain Greek letters will be used only for the following operators and
functions: p is the standard minimalization operator, uz(P(z)) = the
minimal 2 such that P(z); ¥ and ¢ will be used only for the functions defined
in (0.1) and (0.2); y and X are defined in lemma 1.1.1 and lemma 2.6.1,
respectively, and give indices of disjoint sequences or double sequences
with certain properties. It is well-known that there exist bijective
primitive recursive correspondences between N and N° for any 0 # seN
(Ouspenski [9], thm. 19, p. 103). We will use the following notation for such
a correspondence: 71:N°*— N, and 7i:N — N for ¢ = 1, 2, ..., s, with
(1), . . ., 758) =t and T(T°(xy, . .., X)) =x; for i=1,...,5s.
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Finally, we conclude these preliminary remarks by quoting two
theorems from the theory of recursive functions, which we shall use
frequently.

Iteration Theorem. Given any vecursively enumervable predicate @, there
is a primitive recursive 1-1 function h such that
Q(yh I T3 T :xp)Hng(h(yu LRI :ym)!xlr LK A »xp:y)-

(Kleene [3], thm. XXIII, p. 342.)

Myhill’s Fixed Point Theorem. For any v.e. predicate Q of p + 2 arguments
theve is a 1-1 primitive recursive function f such that
Q(Z, E2 PRI XP,f(Z))é—> 3 Tp(f(z): X1s o0 oy xps y)'

(Smullyan [11], p. 72.)

Part 1. Sequences of Sets.
1.1 Effective Inseparability.
Definition 1.1.1 A sequence (4;); of sets is effectively insepamblce0 (ab-
breviated E.l.) if there is a recursive function f such that f(e) £ ,-L=Jo we,
whenever the r.e. sequence (W), satisfies:

EJd. 1) WfN4; =9, all ieN;
o0
EJd. 2) Wynw'c L=J° A;, for B #7, B, jeN;

and
E.l. 3) WD A, fori+j, i, jEN.

Theorem 1.1.1 If a vecursive function f veduces the disjoint sequence
(A4,); to (By); and if {A;); is E.l., then (B;); is also E.l.

Proof. Let (A;), be E.l. under g and let % be a recursive function such that
for each eeN, (WH®), = (f~XW7));. Then it is easily verified that (B;); is
E.l. under %(x) = flg(h(x))).

Since effective inseparability for pairs of sets was classically con-
sidered in relation to recursive inseparability, we give the following
definition and theorem.

Definition 1.1.2 A sequence (4;); is recursively separable if there exists a
r.e. sequence (B;); ooof recursive sets, pairwise disjoint, such that A; c B;

for each ieN and u) B; =N. (A)); is recursively inseparable (R.l.) if it is
=

not recursively separable.

Theorem 1.1.2 If a 7.e. sequence (A,); is E.l., then it is also R.l.

Proof. Let (A;); be E.l. under the recursive function f, and suppose
(B)); recursively separates (4,);. Construct a sequence (C;); with:
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Coam=AoU. .. Udgpy UBypUdomip UAga UL
C2n+1 =A0 U.. -UAzn—l U anUA2n+2 U A2n+3 Ue ooy

that is, if » and s are indices of (A4,); and (B,); , respectively, then
xeC; <> ,5»,’[2 = 21%/\{5!(1%;6 2nam#2n+ 1 A xeW,)vxeWsa}] A
g[i=2n+ La{3(m#2nam#2n+ 1axeW,) v xeW]
<> Q7,s,i,x) <> ;Tz(g(r,s),i,x,y)e» xeWES

for some recursive function g. Then by the construction of (C;); and the
disjointness  of (B, g(r,s) satisfies E.. 1)-3) w.r.t. (4,);; hence

flgln,9) £ U Wg(r ) 2 U B; = N, a contradiction.

Lemma 1.1.1 There exists a primitive recursive function, ¥ which has the
Jollowing thvee properties:

a) (WYY is pairwise disjoint for any e N;
o0 o0

b) L_JO W)= u W{, for any esN;
= 1=0

and
c) WE- !}J; We e wOC Wy,

Proof. Consider the predicate:

max(Z,y)*1 max(f,y)*1
Q(e;iyx) H% [Tz(eyirx,y) A V vo ~ Tz(e,j;x:'z) A

1=0 Z =

o
Y, ~Tale,d,x, max(iy) v i = 0}].

Choose y by the iteration theorem such that
Qle,i,x) <> 3_T2(¢,(e),i,x,y) <> xe WY

Examination of the predicate @ shows that it gives specific meaning to:
‘“xg W before being in W; for j # 4,”” namely, for a sequence with index e
and a particular xeN, we have Q(e,i,x) if and only if x& W7 and among pairs
(¢,y) satisfying Tole,i,x,y) one is chosen such that max(sy) is minimal; if
more than one such minimal pair exists, the one with smallest 7 is
chosen. Verification of a), b), and c) is straightforward.

Theovem 1.1.3 Theve exists a r.e. sequence {B;); of disjoint sets which is
effectively inseparable.

Proof. Comsider the sequence (A;); defined by: xgA; <> x&W;". Since
this predicate, and hence the sequence, is r.e., there is an n& N such that
(A)); = (W});. Define (B,); by B; = WP tor ieN, where y is the function of
lemma 1.1.1. Now suppose ecN satisfies E.l. 1)-3) w.r.t. (B;), and suppose
ee W/ for someieN. There are two cases:

a) esWf - LJ’ Wi <> ecd; - ,‘L;eJiAi — ee B;. Then esW;NB;, contradicting
i
E.l.1).
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b) ef Wf - gi W; implies by E.l. 2) that ecB; for some k. But then
7

B, C A, — etA; — egW{, whereas E.l. 1) implies ec Wg. Hence, if e

satisfies E.l. 1)-3) w.r.t. (B;);, then ef ig W£, which proves that {B,); is

E.l. under the identity.

1.2 Creative Sequences. In the classical theory, creative sets are defined
as r.e. sets with productive complements; the complement of any produc-
tive set is called coproductive. To avoid repeated use of notation for
complements, we phrase the definition for coproductive sequences.

Definition 1.2.1 The sequence (4;); of sets is coproductive under the
recursive function f if for any pairwise disjoint r.e. sequence (W3); with

Wi NA; = ¢ for all ;e N, we have f(e)¢ U (A; UWS).

=0
Definition 1.2.2 A sequence of sets is called creative if it is r.e. and
coproductive.

Theorem 1.2.1 A necessary and sufficient condition for a disjoint 7.e.
sequence to be E.l. is that it be creative.

Proof. a) Assume (A)); is creative under the recursive function f; let
eeN satisfy E.l. 1)-3) w.r.t. (4;);. Consider the disjoint sequence (W,-W)},-,
where { is as in lemma 1.1.1. By E.l. 1) and lemma l.loal.c, we have

I/V,."’(e)nA,' =¢ for all {e N; hence by creativity of (4,);, f(Y(e))¢ lg) (4; UWY©),

o0
Then property b) of lemma 1.1.1 gives f((e))f iLJ) W and this proves that
(A)); is E.l. under g =foy. b) Assume now that (4;); is E.l. under a recur-
sive function f. Let # be an index of (4,);, and consider the predicate:

Q(n,e,ix)<> xe <Wf u l;‘! W,-").
17t

By the iteration theorem there is a recursive function g such that
Q(n,e,i x) <> 3T,(g(n,e),i,x,y) <> xg WE™®)
Now for any r.e. sequence (W$); which is disjoint and satisfies:
W7 N A; = ¢ for all ieN,
we will show that g(n,e) satisfies E.l. 1)-3) w.r.t. (4,), from which it

follows by the assumption that (4;); is E.l. under f that f(g(n,e))¢ L_JO Wig("'e);
=

0 ] ]
then since Uo m.g"""é Uo Wy U A;), we have flg(n,e))¢ U0 (A; U W¥), which
=i 1= i=

proves that the sequence (4;); is creative under the function % defined by

h(x) = flg(n,x)).
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The verification of E.l. 1)-3) follows:

Ed. 1) W™ N A; = ¢ for all ieN because W N A; = ¢ and A; N Aj=¢
fori #j.

o0
<ine inAk) n (ije U glAk)C iLéJoAi.

E.l. 3) Wf(”’e) D Ajfor i+ j by construction.

o0
E.. 2) Wf("’e) n W]«g(”’e) c !~__J0 A;, for i # j, because W7 N W7 = ¢ implies

Observe that part a) of this proof demonstrates, in fact, the stronger
statement: A coproductive sequence is strongly effectively inseparable,
where we use:

Definition 1.2.3 A sequence (A,); is strongly effectively inseparable if
o0

there is a recursive function f such that f(e) £ U wy whenever the r.e.
i=0

sequence (W}); satisfies E.l. 1) and E.l. 2).

We see that a disjoint r.e. sequence is E.l. if and only if it is strongly E.l.
In later sections we shall use only conditions E.l. 1) and 2).

Corollary 1.2.1.1 There exists a creative sequence.

Proof. The E.l. sequence of theorem 1.1.3 is disjoint and r.e.; hence
by theorem 1.2.1 it is creative.

Theorem 1.2.2 If (A)); is reducible to (B;); and if (A;); is coproductive,
then (B;); is also coproductive.

Proof. Entirely similar to theorem 1.1.1.

Theorem 1.2.3 If a sequence (A;); is coproductive undev a vecursive
Sfunction f, then it is coproductive undev a monotone increasing function f*

Proof. There is a recursive function g such that for every ee N

W'g(e) = Wg U {f(e)}, ifi=0
! W§, if i # 0.

(g can be obtained by applying the iteration theorem to:
Qeix)<«> (@ =0ax =fle)) vxeWS.)

Let 7z be the recursive function obtained by iteration of g: %(0,x) =x and
nly + 1,x) = gh(yx)). Denote by A the set of all ecN such that (W7 is
disjoint and W7 N A; = ¢ for all ie N, Then for ecA:

2) et U s uwy;

b) Z(y,e)eA for all yeN; and
c) the sequence: f(n(0,e)), fk(L,e)), f(r(2,e)), . .. g a non-repeating

sequence of numbers all of which are outside of Uo (4; U w%).
1=
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Proof of a) is immediate from the definition of coproductive. Proof of b) is
by induction: 7(0,e) = e A; suppose 7 = i(y,e)e A and let s = A(y + 1,e); then
s = g(7) and both conditions of A follow for s because they are true for 7,
and the only element added to any set of the sequence, namely f(#»), satisfies

F(NE lL:Jo (A; U W;). Proof of c) follows from a) and b), for if 4 < v, then

<0

flwe)e Wif,(”’e,) but f(z @ e))¢ LJO WH”¢) Now define the partial recursive
functions s and ¢ by:

s(x,0) = £(0) and s(x,y + 1) = pz{P(x,y + 1,2)}

where P(x,y,2)<— f(h(z,y)) > xAuE’o U\Zo [u v —-fR@,)+ )]
t(x,0) is undefined and Hx,y +1) = pz{Qx,y + 1,2)}

where @(x,9,2) <> 3, fl(2,3)) = fv, ) A 2 # 0a ¥ fhluy) =x.

By inspecting the defining equations for s and £ we see for every (x,y)e N*
exactly one of s(x,y) and £(x,y) is defined. (For a given pair (x,y), s or ¢ is
defined depending on whether in generating the values of f(k(z,y)) for

z =0,1,2, ... we first obtain a value greater than x or a repetition of
values.) Finally, define f* by
7¥0) = £(0)

F(s(f*),y+ 1),y + 1)), if s(f*(p), y + 1) is defined;
fHy+1) =
FXy) + 1, if %), v + 1) is defined.

f* is monotone increasing, for if s(fy),y + 1) = 2, then f*(y + 1) =
f(n(z,y + 1)) and this is greater than f*(y) by definition of the function s, and
in the other case the monotonicity is obvious. f* is recursive since it is
partial recursive and total. The implication:

(1.2.1) ce A — F¥(e) £ L=J0 (4; U WY

must now be proved to show that f* is a coproductive function for (4;);.
If e = 0, then f£*(0) = (0), and (1.2.1) follows by hypothesis. If e =y + 1 and
s(f*(y), v + 1) is defined, then f*(e) = f(A(s(f*(y), v + 1), y + 1)) and by
property b) of the set A, A(s(f*(y), y + 1), ¥ + 1)¢ A whenever y + 1eA;
(1.2.1) then follows by property c) of the set A. Ife = y+1 and £(f*(y), y+1)
is defined then the sequence f(%(0,¢)), f(7(1,e)), ... has at least one
repetition and hence by property c¢) ef A.

We give here two definitions and two theorems to show that k-tuples of
sets may be treated as a special case of our theory for sequences.

Definition 1.2.4 A k-tuple of sets (4, ..., A is coproductive under the
recursive function fof % arguments if for any disjoint k-tuple (w,,, ..., Wy
satisfying
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we; N A =¢for 1 =i =<k,

we have
k
o m t U o).

Definition 1.2.5 A sequence (4)); is said to be coproductive w.r.t. disjoint
sequences (W}); having W” = ¢ if ¢ = 0 or ¢ > k, if there is a recursive
function f such that for such sequences

;SUN(Wf" NAJ) = ¢ — fn) ¢ L{ (A; U WY,

Theovem 1.2.4 If a sequence (A)); is coproductive, then (A, . .., Ay is a
coproductive k-tuple for any k = 1 and any n,, . . . , n, with n; # n; for i # j.

Proof. Without loss of generality we can assume that (n,, ..., n) =
(1, ..., k) since we can define a recursive permutation rearranging the
sequence (4,); thus Define a r.e. predicate R by: R(v,kix)<«>1=i=%k
A XEWk(), with T as defined in the introduction. By the 1terat10n theorem
there exists a recursive function  satisfying: R(7,k,i X)) <= AT, (N7 k),i,x,9).
Thus, for a k-tuple, {w,,, . . ., wip and ¥ = 73, . . ., 4), We have an index
of a sequence (Wh(' )>,, where

W ., if 1 =i <k
WA ey ’

pifi=00ri>Fk.
Now let f be a coproductive function for {(4,); and let (w;,, . . . , w;,) be any
disjoint &- tuple satlsfymg wi, N A, = ¢ for n = 1,2, , k. Then, agam
taking v = 7 (zl, ..., 1), the sequence (W"(' k)> is dls]omt and Wh(’ bY NA;
¢ for all ieN; hence, f(h(»,k))¢ ,Uo 4; U Wf:‘(’ ). Then for the recursive

i=

function g defmed by gy, . . ., %) = f(7Mxy, . . ., x),k)), we have
g1, ..., U (A, U w;), which proves that (4,, ..., 4 is coproduc-
tive under g.
Theovem 1.2.5 {A,, ..., Ay is a coproductive k-tuple if and only if the

infinite sequence (B;); where

opifi=0o0ri>Ek,
is coproductive w.v.t. sequences (W3); for which Wi =¢ if i =0 or i > k.
Proof. Given a coproductive function ffor (4,, . .., 4;) and using the
function v of (0.1), define g{x) = fly(1,n), . . ., v(k,n)). Then g is coproduc-

tive for (B;);. In the other direction, the proof is similar to that for
theorem 1.2.4.
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1.3 Universal Sequences. In this section we define what is meant by a
universal sequence and show that for disjoint r.e. sequences universality is
equivalent to creativity. We also use the property of universality to prove
that any two disjoint r.e. creative sequences are isomorphic in the usual
sense (definition 1.3.3).

Definition 1.3.1 A sequence (A)), is many-one universal if every disjoint
r.e. sequence is reducible to it; the sequence is 1-1universal, or simply
universal, if the reduction function can always be chosen 1-1,

Lemma 1.3.1 Every many-one univevsal sequence is copvoductive.

Proof. By corollary 1.2.1.1 there exists a disjoint r.e. creative
sequence; hence by theorem 1.2.2 a many-one universal sequence is
coproductive.

Lemma 1.3.2 Every disjoint coproductive sequence is 1-1universal.
Proof. Given by Vuckovié in [13], theorem 3.1.

Theorem 1.3.1 A disjoint sequence is coproductive if and only if it is
universal.

Proof., Lemmas 1.3.1 and 1.3.2.

Covollary 1.3.1.1 A disjoint sequence is 1-1 universal if and only if it is
many-one universal.

Corollary 1.3.1.2 There exists a disjoint v.e. sequence which is universal.
Proof. Theorem 1.3.1 and corollary 1.2.1.1.

Theovem 1.3.2 Let(A,); be a disjoint v.e. sequence. Then the following are
equivalent:

a) (A,); is creative;
b) A;); is E.l;
c) A,); is universal.

Proof. Theorems 1.2.1 and 1.3.1.

The following definitions are analogous to those of Myhill for sets
in [8].
Definition 1.3.2 Two sequences are equivalent to each other if each is 1-1

reducible to the other.

Definition 1.3.3 Two sequences (4,); and (B,); are isomorphic if there is a
recursive permutation, p, such that p(A4;) = B; for each ieN.

Lemma 1.3.3 Letf and g be 1-1 (primitive) recursive functions. Then
theve exists a 1-1 (primitive) recursive function h, having the following
property: For awy two sets D CN and E C N, if D =f""&) and E =g~ (D)
then h(D) = E and h™"E) = D.

Proof. Myhill, theorem 17 in [8].
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Theorem 1.3.3 Up to isomorphism theve is only one disjoint v.e. sequence
which is universal, hence also creative and E.l.

Proof. By definition of universal, two disjoint r.e. sequences which
are universal are equivalent. Applying lemma 1.3.3 to the reduction
functions fand g, we obtain the desired isomorphism.

Part 2. Double Sequences of Sets

The first three sections of part 2 constitute a complete exposition of
h-creative double sequences. It will be recalled from the introduction that
this is a study of uniform notions for a sequence of sequences.

2.1 Uniformly Effectively Inseparable Double Sequences.

Definition 2.1.1 A double sequence (A});, is uniformly effectively in-
separable (abbr. U.E.l.) if there is a recursive function f such that

fle)g il;! W "for each e,neN satisfying:

U.E.L.1) WS" N A7 = ¢ for all ieN,

and
o0
U.E.L2) W™ WP ¢ l_Jo Al fork #j,k, jeN.

Observe that we have omitted a third condition analogous to E.l.3) of
part 1. This definition corresponds to that of strongly effectively in-
separable (def. 1.2.3); as in the case of a single sequence we shall prove
that uniformly creative implies U.E.l. as defined here and that a weaker
U.E.l. with the third condition on e and # is sufficient for uniformly
creative. This differs from the literature (Smullyan [11] and Lachlan [4]
and [5]); it is preferable for its simplicity.

Theovem 2.1.1 There exists an h-disjoint v.e. double sequence which is
U.E.l.

Proof. Define a double sequence (A}, by: x€Aj <> xeW;" Since
this predicate is r.e., (4});, is an r.e. double sequence; hence there is an
7eN such that (A7), = W,"™);,. Let (B});, be the h-disjoint r.e. double
sequence defined by xe B} <> x& W;.'l’("s(””?) Claim: (B});, is U.E.l. under
f = indentity. Assume e,neN satisfy U.E.l. 1)-2), and suppose ec W;"” for
some jeN. There are two cases:

a) esW" - U W'" <>ec A} - U A} — eeBj;
i %]

this contradicts U.E.l.1).
b) eg W;"" - ;an, W;"" — et B for some k&N by U.E.l.2); then By C A} —

ee A} <> eeWy" and U.E.l.1) — e£W;'"; again we arrive at a contradic-
tion; hence the supposition is false and the claim is established.
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Theovem 2.1.2 If a double sequence (A',’«)i'n is U.E.l., then for each neN the
sequence (A7), is E.l.

Proof. Define a predicate R by: R(nk,m,i,x) <> m=nnAx¢ Wy(i,ky and
choose by the iteration theorem a rec. function, %, such that

R(n,k’ m, l’x) <> 3 TS(h(nyk)a m, i’x’ y) <> xawy(i,¢(h(n.k).m))-

Thus for a given r.e. sequence with index %, (W5);, (we use again our
convention of suppressing y and ¢), A(nk) is an index of the double
sequence, <W,’-“”’k)’”’>iy,,,, in which the n™ sequence is (Wf‘),- and all other sets
are empty. Now let (4});, be U.E.l. under f, and for a given n let g be the
rec. function given by: g(x) =f((n,x)). Claim: (4}); is E.l. under g. For,
suppose k satisfies E.l. 1)-2) w.r.t (A';),—; then k(n,k) satisfies U.E.l. 1)-2)
w.r.t. (A, u; it follows that

(k) f h(n k)) L=J h(n k)n_

W,

‘C8

i}
o

1

Definition 2.1.2 A double sequence (4});, is recursively separvable if there
exists an r.e. h-disjoint double sequence (B?),-,,, of recursive sets such that
for each neN the sequence (B}); recursively separates (47);. A double
sequence is recursively inseparable (R.l.) if it is not recursively separable.

Theorem 2.1.3 If a v.e. double sequence (A3); , is U.E.l., then it is also R.l.

Proof. By theorem 2.1.2, for each neN, (A}); is E.l., hence also R.l.
by theorem 1.1.2. Clearly, then, (43);, is R.l.

2.2 Uniformly Creative Double Sequences.

Definition 2.2.1 The double sequence (A’:'),",, is uniformly coproductive if
there is a recursive function, f, such thatf(e) ¢ U (A7 U W$'™) whenever e
and » satisfy: e

U.C.1) W NW™ = ¢ for i # 7, i,jeN

and

U.C.2) W™ N 4] = ¢ for all ieN.

A double sequence is wuniformly productive if the double sequence of
complements is uniformly coproductive.

Definition 2.2.2 A double sequence is uniformly creative if it is recursively
enumerable and uniformly coproductive.

Theovem 2.2.1 A necessary and sufficient condition fov an h-disjoint 7.e.
double sequence to be U.E.l. is that it be uniformly creative.

Proof. a) Assume (A",'>,-,,, is uniformly creative under the rec. function
f, and let (W;"™),  be any r.e. double sequence. Consider the predicate:

Q(e,n,i,x) <= x & Wy(i,(¢(e,n))) -
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By the iteration theorem there exists a rec. function g such that
Qlem,i,x) <> 3T3(g(e),n,i,x,y) «>xE Wig(e)’".
Thus, g(e) is an index of an h-disjoint r.e. double sequence such that for

eachne N:

2.2.1 U W - U we” ana
{EN iEN

(2.2.2) wp” - H W].e'" c Wf(e)"’ c Wi
(cf. lemma 1.1.1 where the function ¢ was introduced.)
Now, for any e,neN satisfying U.E.l. 1)-2):

WE” N A} = ¢ for all ieN,

o0
by U.E.l.1) and (2.2.2). Hence by uniform creativity, f(g(e)¢ igo (A U Wf(e)'").
o0
Then by (2.2.1) we have f(g(e))¥ U W ", which concludes the proof that
i=0

(A7), is U.E.l. under the rec. function % defined by %(x) = f(g(x)).
b) Assume, now, (47);, is U.E.l. under the rec. function f. Define a r.e.
predicate @ as follows:

Q(u,v,m,8,%) <> xe W" v 3 #i a xeW"").
i
By the iteration theorem there is a rec. function g such that

Q (u,v,n,4,x) <> gTs(g(u,v),n,i,x,y),

so that for any indices u,veN: Wf(”'”)'”z Wi U g W;’"’_

]¥Ft
Let » be an index of (A});,. Then for any e,ne N satisfying U.C.1)-2), we
will show that g(e,7),n satisfy U.E.l.1)-2) w.r.t. (A7) ,:

1) wEe™"n 4} = ¢ for all ieN since (A7), is h-disjoint and Wf”" N A} = ¢
for all ieN;

2) wE@nn ﬂWf(e")’" c iLS{A}’, for i # j since W{"" O W;""= ¢ and the con-
struction shows that
Wig(e,r).n A ng(e,r),n c [( Wie,n n Wje,n) U tLEJN A7l
As (4}); , is U.E.l. under f,
flele,n) g lEJN wEeD" = tLE{ (A7 VW)

thus (47); , is uniformly creative under the recursive function % defined by

r(x) = flglx,7)).
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Covollary 2.2.1.1 There exists an h-disjoint cveative double sequence.

Proof. The h-disjoint U.E.l. double sequence of theorem 2.1.1 is
uniformly creative.

Notice that in this proof the double sequence with index g(e,») used in
part b) satisfies also what we would define as U.E.l. 3), namely:

U.E.L 3) WEC™" S A7 for i +5.

Thus as stated at the beginning of section 2.1, a weaker form of uniform
effective inseparability with U.E.l. 1)-3) is sufficient to imply uniform
creativity and, hence, is equivalent to the definition we have given.

Theorem 2.2.2 If a double sequence (A});, is veducible to (B}, and the
formevr is uniformly coproductive, then the latter is also.

Proof. Let f reduce (A7), to (BY);,, and let (A7), be uniformly

coproductive under g By the iteration theorem applied to: Q(e,n,ix)<—>
f(%)e W&™ we can find a rec. function % such that WX = 7= YW "),
Define the rec. function % by: &(x) = f(g(k(x))). Claim: (BY);, is uniformly
coproductive under 2. To prove this, let eneN satisfy U.C. 1)-2) w.r.t.
(A’Z},;,,. Since for any function f: ANB=¢ —f (A)N f~YB) = ¢, we have
W AW = 6 for i #j and WK™ N A] = ¢ for all ieN.

Then by the hypothesis that (A'Z),-_,, is uniformly coproductive:
0
gee) ¢ U @i uwieon,
and hence
ne) = @) £ U (87 uw;.

Theovem 2.2.3 If a double sequence <A';>,-,,, is uniformly coproductive under
a recursive function f, then it is uniformly coproductive under a monotone

increasing function f*.

Proof. The reasoning is the same as in part 1, theorem 1.2.3. We will
give only the technical and notational changes necessary. Obtain the rec.
function g by applying the iteration theorem to:

Qum,ix)<> (@ =0ax=flu) vxew
so that

W uifle)}, if i =0;
wEen -

W§'”, otherwise.

The functions %,s,f, and f* are defined exactly as before. For each neN
define a set A,, by:

A, = {eeN| en satisfy U.C. 1)-2) w.r.t. (A7), , }.



48 Sr. M. ADRIAN CARPENTIER, O.S.U.

Properties a), b), and c) are essentially the same as in theorem 1.2.3 and
the proofs are the same; however, there are notational differences. For
any ecA,:

a) fle)¢ UN @ uwEn;

b) h(y,e)eA, for all yeN;
c) the sequence: f(#(0,e)), f(#(1,e)),...is a non-repeating sequence of

numbers all of which are outside of U (A7 U W),
ieEN
We must show:

(2.2.3) ecA, — fXo ¢ L{, (A UWEm.

If e =0, f¥e) = fle), and (2.2.3) follows from a). If e = y + 1 and
s(f*(y), y + 1) is defined, then f*(e) = f(h(s(f*(»), ¥ + 1), ¥ + 1)); by property
b), e Ap— R(s(f¥(3), ¥ + 1),e)e A, (2.2.3) follows then froma), If e=y+ 1
and #(f*(y), y+ 1) is defined, then the sequence f(%(0,¢)), f(2(1,e)),. . . has
at least one repetition and hence by ¢), egA,. This completes the proof.

2.3 Uniformly Universal Double Sequences.

Definition 2.3.1 A double sequence (A7);, is said to be uniformly universal
if every h-disjoint r.e. double sequence is 1-1 reducible to it.

Lemma 2.3.1 Every h-disjoint uniformly coproductive double sequence is
uniformly universal.

Proof. Let (4};, be uniformly coproductive under the 1-1 rec.
function f. (By theorem 2.2.3 we know such a 1-1 coproductive function
exists.) Let (B});, be an h-disjoint r.e. double sequence. Applying Myhill’s
fixed point theorem to the predicate: @Q(v,n,é,x,u) <> veEB; A x = fu), we
obtain a 1-1 recursive function g such that:

Qle,n,ix,g(e)) < 3Ts(g(e),n,i,x,y).

Thus,
Wg(e). n

eeB] ax = flgle)) <> xe W™,
Then for any xeN, g(x) is an index of a r.e. double sequence which is
h-disjoint, in fact, Wf(")'” = ¢ unless x¢ B, in which case Wf(")'” = {f(gx))}.

We shall prove that the rec. function % = fog reduces (B7); , to (A nt
x&B] <> h(x) = fg(x))e A].

1) Suppose x& B, for some #,jeN. Then W].g(")’” ={ f(g(x))}, and Wig(")'"= o
fori # j. Thus
U o 0 dpy = w0 45,

=0
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As the double sequence is uniformly coproductive,

U " na =9 - flete) ¢ U % v ws®n,
i=0 i=0

From these two facts follows:
{7l N A7 = ¢ — Ag)EWF™”,
which would contradict the supposition. We have shown: x£B} — flg(x))e Aj,
2) Now suppose f(g(x))eA} for some n,jeN. If x¢ U B/, then Wf(")"‘= ¢ for
iEN

all ieN, so that Wf(")"’ N A} = ¢, all €N and hence by the uniform coprod-
uctivity of (47);,,

0

rleteng U 4
=

in particular, f(g(x))¢A], contrary to the supposition. Hence, there is an
seN such that xeBJ; but by the previous part this implies f(g(x))e As from
which it follows that s =j, since A7 NAs# ¢ impliesj = s.

Thus f(gx))e A7 — x¢ B}

Theorvem 2.3.1 An h-disjoint double sequence is uniformly coproductive if
and only if it is uniformly universal.

Proof. ‘‘if’’ by corollary 2.2.1.1 and theorem 2.2.2. ‘‘only if’’ by
lemma 2.3.1.

Corollary 2.3.1.1 There exists an h-disjoint v.e. double sequence which is
uniformly universal.

Definition 2.3.2 Two double sequences are equivalent to each other if each
is 1-1 reducible to the other.

Definition 2.3.3 Two double sequences, (A} i » and (B}); , are isomorphic if
there is a recursive permutation, p, such that p(47) = B?. for all 4,neN.

Theorem 2.3.2 Up to isomorphism theve is only one h-disjoint r.e. double
sequence which is uniformly univevsal, hence also U.E.l. and uniformly
creative.

Proof. By lemma 1.3.3 as for theorem 1.3.3.
2.4 v-Creative Double Sequences.

Definition 2.4.1 For a double sequence <A','-),~,,, we define its transpose to be
the sequence (B});, where B}= A, for i,neN.

Definition 2.4.2 A double sequence (A7), is v-disjoint if for each ieN,
A}'N A7 = ¢ for n# m, n,meN.

Definition 2.4.3 A double sequence (A});, is v-effectively insepamble

(abbr. v-E.l.) if there is a recursive function f such that f(e) £ U w" for
each e,ieN satisfying
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V-E.l. 1) Wi NA; = ¢ for all neN, and
v-E.l. 2) W' nwf™ C U A? for n+ m, n,meN.

n=0
Definition 2.4.4 A double sequence (4});, is v-coproductive if there is a

recursive function f such that ()¢ U (A7 UW;""), whenever e and i satisfy:
neN

v-C. 1) Wi n W™ = ¢, for n # m, and
v-C. 2) W{'" N A} = ¢, for all neN.

Definition 2.4.5 A double sequence is v-creative if it is r.e. and v-
coproductive.

Definition 2.4.6 A double sequence is v-universal if every v-disjoint r.e.
double sequence is 1-1 reducible to it.

The theory for the v-case is obtained from that for the uniform or
h-case by the following theorem.

Theorem 2.4.1 A double sequence is v.e., v-disjoint, v-E .l.,v-coproductive;
v-universal if and only if the transposed double sequence is respectively
r.e., h-disjoint, U.E .., uniformly coproductive, uniformly universal.

Proof. a) Transposing a double sequence preserves recursive enu-
merability since a permutation of variables is a primitive recursive
function.

b) Transposition carries rows into columns and hence h-disjointness to
v-disjointness, and conversely.

c) Effective inseparability and coproductivity will be demonstrated by
lemmas 2.4.1-2.4.3.

d) Let (47);, be a given double sequence with (B}); , its transposed
sequence, and (W), a v-disjoint r.e. double sequence with (C});, its
transposed sequence. Then a recursive functionf reduces (C});, to (B}),,
if and only if it reduces (W/"");, to (4});,. Thus (4});, is v-universal if
and only if (B});, is uniformly universal.

Lemma 2.4.1 There exists a recursive function g such that for any index e
of a v.e. double sequence, g(e) is an index of the transposed double
sequence.

Proof. Let @ be the r.e. predicate defined by: Q(u,v,w,x) <>
3 Ty(u,w,v,x,y). By the iteration theorem there exists a recursive function
g such that:

Qu,v,w,%) <> ITs(g(u)v,w,%,3).
Hence,
gTs(u,w,v,x,y) > ;Ts(g(u),v,w,x,y)-
Now, for any index e:

xSWf'” > gTS(eyn;i’x,y);
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thus we have:
xeWE "< 3T5(g(e),m4,%,5) <> ITs(ed,mx,3) <> %Wy,
which shows that g(e) is an index of the transposed double sequence.

Lemma 2.4.2 A double sequence is v-E.l. if and only if the transposed
double sequence is U.E.l.

Proof. Let (A7), , and (B}); , be a double sequence and its transposed
double sequence.
i.) Assume (B});, is U.E.l. under the recursive function f, and let e, 7eN
satisfy v-E.l. 1)-2) w.r.t. (47);,,. Then g(e) and 7 satisfy U.E.l. 1)-2) w.r.t.
(B!)i.n, so that

0 0
feent U wer = U wen
n=0 n=0
Thus (47);, is v-E.l. under the rec. function fog.
ii.) Assume (47);, is v-E.l. under a recursive function f, and let (W;"");,
be a r.e. sequence with e,7eN satisfying U.E.l. 1)-2) w.r.t. (B} Then
gle),reN satisfy v-E.l. 1)-2) w.r.t. (47); ,; hence

in*

[ee]

eeng U wr' = U e,

i=0
Thus, (B}); , is U.E.l. under the rec. function fog.

Lemma 2.4.3 A double sequence is v-coproductive if ard only if the
transposed sequence is uniformly coproductive.

Proof. Analogous to that for lemma 2.4.2.

Theorvem 2.4.2 A v.e. v-disjoint double sequence is V-E.l. if and only if it
is v-creative if and only if it is v-universal.

Proof. Theorem 2.4.1 together with theorems 2.2.1 and 2.3.1.

Theorem 2.4.3 Up to isomovphism theve is only one w-disjoint v.e.
v-univevsal double sequence.

Proof. Theorem 2.4.1 and theorem 2.3.2.

2.5 t-Creative Double Sequences.
Definition 2.5.1 A double sequence (A','-),-',, is said to be t-disjoint if
A N AT = ¢ for (i,n) # (j,m).

Lemma 2.5.1 Any double sequence can be wvilten as a single sequence and
conversely. Further, theve exist recursive functions h and k such that h(e)
is an index of the v.e. sequence obtained from the v.e. double sequence with
index e and k(e) is an index of the v.e. double sequence obtained from the
r.e. sequence wilh index e.

Proof. Let (A7);, be any double sequence. Define a sequence (B)); by:
B; = A7 with j = 73({) and m = 73(i). Conversely, for any sequence (B;);,
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there is the double sequence (A7);, defined by: A = B,2;,. By the
iteration theorem we obtain a rec. function % such that

g Tsle,36), 73(3),x,y) <> 3 To(he), i,%,9);
that is,
xe W™ A j = 13) A m = 13() <> x& W}
Likewise, there is a rec. function 2 such that
3 Ta(e, 7°(4,n),%,y) <> gTs(k(e),n,i,x,y);
k(e).n

which means x ¢ W,z(, <> xeW;

Definition 2.5.2 A double sequence is t-effectively inseparable (t-E.l.) if
there is a recursive function f such that

] ]
feyeU U we
n=0 i=0
whenever e is an index of a r.e. double sequence satisfying:

t-EJ. 1) Wi" N 4] = ¢, all i,neN,

and
0 0

e ) wrrawem cU U 47, = Gom.
n=0 1=0

Definition 2.5.3 A double sequence (47);, is t-coproductive if there is a
recursive function f such that for any t-disjoint r.e. double sequence
<W5'n>i,n:

IIC8

UU(W”ﬂA)—di—‘f(e) L)(A’f U Wy,

n=0 {=0
Definition 2.5.4 A double sequence is t-creative if it is r.e. and t-
coproductive.

Definition 2:5.5 A double sequence is t-universal if every t-disjoint r.e.
double sequence is 1-1 reducible to it.

Theovem 2.5.1 A double sequence is v.e., t-disjoint, t-E.l., t-coproductive,
or t-universal if and only if the velated single sequence of lemma 2.5.1 is,
respectively, r.e., disjoint, E.l., coproductive, or universal.

Proof. Let (A});, be a double sequence and (B;); the related single
sequence. Since the functions 72, Ti, and 7 are primitive recursive, either
sequence is r.e. if and only if the other is. The disjointness is straight-
forward, as is universality. For E.l.:

i) Assume (B;); is E.l. under the rec. function f and let W;""); , be a r.e.
double sequence satisfying t-E.l. 1)-2) w.r.t. (47); ,. Then (W/), where
is the function from lemma 2.5.1, satisfies:
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Ed.1) WM9nB; = W™ N A7 = ¢, where j = 11(i), m = 3(i);
] o0 o0
EL2) WP nwk@-wem nwerc U U 4 - l_J0 B;,

for i # j, - AG), m = 10), 7 = 720, b = 720).
Hence, f(h(e)) £ U Whe) = U U wen,

1t follows that (A ), . 1S t-E .l. under the function fok.

ii) Assume (47);, is t-E.l. under the recursive function £, and let W5),; be
any r.e. sequence satisfying E.l. 1)-2) w.r.t. (B;);. Then (Wk(e)' %, Satisfies
t-E.l. 1)-2) w.r.t. <A),,,,sothat

f(k(e))rfU U wHe U W

n=0 i=0
hence (B;); is E.l. under the functionfok. An analogous proof shows that
(AD)i is t-coproductive if and only if (B;); is coproductive.

Theorem 2.5.2 Let (A7); , be a r.e. t-disjoint double sequence. Then (A7),
is t-E.l. if and only if it is t-creative, if and only if it is t-universal.

Proof. Theorem 2.5.1 and theorem 1.3.2.

Theorem 2.5.3 Up to isomovphism theve is only one t-disjoint v.e. double
sequence which is t-universal.

Proof. Theorem 1.3.3 and theorem 2.5.1.

2.6 v-h-Creative Double Sequences. The following development of the
theory for the v-h-case is not so complete as that for the other cases.
However, the results do include the existence of v-h-universal double
sequences and of v-h-creative ones as well as the equivalence of v-h-
creative with many-one v-h-universal. Isomorphism of any two v-h-
universal double sequences follows as in the other cases.

Definition 2.6.1 A double sequence (A3); , is v-h-disjoint if for every
ieN,neN: A; N A7 =¢, for n# m, meN, and A7 N A7 = ¢, for i #j, jeN.

Lemma 2.6.1 Therve exists a recursive function, X, such that for any eeN,
X(e) is an index of a v-h-disjoint double sequence such that for all (i,n)sN2:

(2.6.1) Wy - (U, /% U W,?'k> c WX wpn

(262)U UWen U UWX(e)n

iEN neN ieN neN

Proof. Let @ be the r.e. predicate defined by:

. max(n,y)*=1 max(n,y)*1
Q(e9n’l;x) < 3[T3(e)n’i)x’y) A vO Zvo {NTS(e;m’irx’z)} A
m= =

n=1
v {~Tsle,m,ix,max(n,y))vn = 0}].
m=0
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By the iteration theorem there exists a rec. function 7z such that:
Q(e’n:i’x) g 3 Ta(h(e),n,i,x,y).

For a particular (e,i,x) this predicate determines the meaning of ‘“‘xe W;"”
before being in W;'” for any n # m.”” The function % gives an index of a
v-disjoint double sequence satisfying:

(2.6.3) UW!'(e)'" -U W;*", for each icN,
neEN neN
and

(2.6.4) we™- Hﬂ Wk ¢ W c wen for all ieN.

(cf. the predicate used in lemma 1.1.1.) From theorem 2.2.1 we have the
function g which from an index of a double sequence gives an index of an
h-disjoint doubde sequence with properties (2.2.1) and (2.2.2) analogous to
(2.6.3) and (2.6.4). Define X by: Xx(x) = Z(g(x)). Then for any ecN, Xx(e) is
an index of a v-h-disjoint double sequence. Moreover, letting s = g(e) and
€ =X(e),

win- U were wenc we,
¢
by (2.2.2);

Wf’" _ (U W:'” U U Wf'k) c W-is.n_ U Wf’kC
k#i k#n k#n

c W - kg wikc winc wirc wpn
n

by (2.6.4) and the first line. This proves (2.6.1). Then by .(2.2.1) and
(2.6.3):
XEWP™ = Jxe W™ — 33 xe W)™
i m j
hence

U UWf"‘c U U wen

iEN neN ieN neN
inclusion the other way follows from (2.6.1) so that we have now verified
(2.6.2).

Definition 2.6.2 A double sequence is many-one v-h-universal if every
v-h-disjoint r.e. double sequenece is reducible to it. If every such reduction
can be chosen 1-1, if is said to be 1-1 v-h-universal or, simply, v-h-
universal.

Theovem 2.6.1 There exists a V-h-universal, v-h-disjoint 7.e.. double
sequence.
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Proof. Let f be the bijective primitive recursive function 7*: N? — N.
Define a double sequence (B});, by:

yeB! <> 3 g[szf(e)’" Ay =fle,x)]

Clearly (B});, is r.e. since the defining predicate is r.e. That it is
v-h-disjoint follows from the injectivity of f and the v-h-disjointness of
(W}X(e)'”)i’,,. We have only to prove it is v-h-universal. For this, let e€ N be
an index of a v-h-disjoint r.e. double sequence. Then for each i,neN:
WX - ", Let f, be the recursive function defined by: f.(x) = f(e,n).
It follows that:

fo(x)e Bl <> x eW " < x e W™
which shows that f, reduces (W;”"), , to (B});, and completes the proof.

Definition 2.6.3 A double sequence (A}); , is v-h-coproductive if there is a
recursive function f such that for eeN an index of a v-h-disjoint r.e. double
sequence and (j,m)eN>: U[(WZ"" n A}) u (W]-e'k N A?)] =¢ —fle)g U
A7 uwgmuak uweh), e e
Definition 2.6.4 A double sequence is v-h-creative if it is r.e. and

v-h-coproductive.

Theovem 2.6.2 Theve exists a v-h-creative, v-h-disjoint v.e. double
sequence.

Proof. Define a sequence A);, by: xeA; <> xeW;". As the right
hand side is r.e., there is an 7&N such that @});, = (WI"),,. Let (B}),, be
the r.e. double sequence with index X (7). Claim: (B});, is v-h-coproductive
under the identity function. (Then being r.e. and v-h-disjoint, it is the
v-h-creative double sequence we seek.) Let (W;"");, be a v-h-disjoint r.e.

double sequence and (j,m)eN?such that U [(wg™NBy) U (Wf'kﬂBf)] = ¢.
keN

We must show:
et U @z v wemusk uweh.
keN

Recall that by definition of (4});,: eeA} <> ec W{'". Thus, if eg B C Aj,
with # = m or ¢ = j, it follows also that ec W/ ” contrary to the assumption
that W;"" N B} = ¢. On the other hand, since (W;""),, is v-h-disjoint,

e W™ — ec WE” - (U weru U Wf"‘>,
k#i k#n

which in turn implies: egA? - <U AL U U Af) c BY;
k#i k#n
again, for ¢ =j or » = m we have a contradiction.

Lemma 2.6.2 If a v-h-coproductive double sequence (A’;)im is reducible to
(B, n » then (B}); , is also v-h-coproductive.
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Proof. (cf. theorem 2.2.2) Let f reduce @7);, to (B},, andlet g be
the v-h-coproductive function for (A4});,. Let % be the recursive function
such that WHe»» =~ (ws'™), all i,n,ee N. Claim: (B}, is v-h-coproductive
under the recursive function % defined by A(x) = f(g(k(x))). To prove this,
let (W{"");, be a v-h-disjoint r.e. double sequence with (jm)eN® such that
Wi” N B = ¢ for n = m or i = j. Since for any function f and sets A4, B,
and C:

ANBcC-f AN B crC),

and since in this case A7 =f~'(B}) and We»" f'l(We "), we have (Wk("’)”),,,
is v-h-disjoint and WX N A7 = ¢ for n = m or i = j; hence by the
v-h-coproductivity of (A}); ,:

glr(e))E rleJN [A7 U wHem g A7y wHOT),
Then using again the properties of inverse image sets:
ne) = fgteems U (87 v wem v B uwy7]
Lemma 2.6.3 If (A});, is a v-h-disjoint, v-h-coproductive double sequence,

then it is many-one V-h-universal.

Proof. Let (A7);, be a v-h-coproductive double sequence under the
rec. function f. For any r.e. double sequence (B}, we can obtain, as
shown in the proof of lemma 2.3.1, a rec. 1-1 function g such that

yeWED e s xe BIny = flg(x)).

Then if (B});, is v- h-disjoint, g(x) for any xc£N is an index of a r.e. double
sequence which is v-h-disjoint, in fact, W} “»* % unless x&Bf, in which
case Wg(") ”= {f(g{x))}. We shall prove that the rec. function % = fog reduces
<B”>t,ﬂ tO <A >i,n: i.e.:

x& Bl <> h(x) = flg(x))e A4;.
1) Suppose x€ B but h(x) £ A for some (j, myeN>. Then

(x),m m g(x),k Ay _ (%), m
g (W70 A U (WFEN A7) = WES" 0 A7 =,

so that by the coproductivity of (4}); ,:
et U g v wiomuah o weh,
But this means, in particular, that flg(x) £ ng(x),m= {f(g(x))}, a contradiction.

2) Suppose h(x)eA]. If x¢ kUN(BZ' u B?), then Wf(")'” =¢pif i=jorn =m
€

and by v-h-coproductivity f(g(x)) = h(x)#A';’, contradicting the supposition.
Hence, there is some {i,n) with { = j or » = m such that x¢ B. By part 1)
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this implies A(x)e A7. Then M(x)e A7 N A} and v-h-disjointness yieldn = m
and i =3j.

From 1) and 2): xeB! <> h(x)e A;.

Theovem 2.6.3 A v-h-disjoint double sequence, (A';),-’,,, is many-one
v-h-universal if and only if it is v-h-coproductive.

Proof. ‘‘if”” by lemma 2.6.3. ‘‘only if’’ by theorem 2.6.2 and lemma
2.6.2.

Definition 2.6.5 A double sequence (A});, is v-h-effectively inseparable

(abbr v-h-E.l.) if there is a recursive function f such that fle)g U wen
We’ ) for each ee N, (jm)eN? satisfying:
v-h EJd.1) W"N A} =¢ if i =j or n = m;

v-h-E.l. 2) W/"Nw™ C HVA}" if {# k&, and
wer awgt ¢ U 47 itk

neN
Theovem 2.6.4 If a vecursive function f reduces a v-h-E.l. double sequence
(A to (B} ,, then (B});, is also v-h-E.l.

Proof. Let (A7});, be v-h-E.l. under the rec. function g, and let’% be a
rec. function such that W/” = f=}(w#"). Claim: (B})in is v-h-E.l. under
fogoh. Suppose e€N, {(jm)eN? satisfy v-h-E.l. 1)-2) w.r.t. (B});,. Then

I(e) and (jm) satisfy v-h-E.l. 1)-2) w.r.t. (4%, so that g((e))t kUN
€

(th(e)”” u W;‘(e)'k). By the properties of inverse image sets, we then have:

Flgmem ¢ U wem v weh.
keN

Corollary 2.6.4.1 If there exists a v-h-disjoint, v-h-E.l. 7v.e. double
sequence, then any v-h-universal double sequence is v-h-E.l.

Theovem 2.6.5 Up to isomorphism theve is only one v-h-disjoint r.e.
double sequence which is v-h-universal.

Pyroof. By lemma 1.3.3.

At present, attempts to prove a) that v-h-E.l. implies v-h-universal,
b) the existence of a v-h-disjoint v-h-E.l. r.e. double sequence, and c) the
equivalence of v-h-E.l. and v-h-creativity for v-h-disjoint r.e. double
sequences have failed. It would be sufficient to prove either a) and b) or c):
¢) would follow from a) and b) by theorem 2.6.3 and corollary 2.6.4.1, and
from c) the others would follow by theorems 2.6.2 and 2.6.3.

It will also be noted that we have shown that v-h-coproductive implies
many-one V-h-universal only. This is because the proof for the existence
of a monotone coproductive function does not hold as in the other cases. It
would be possible to prove this theorem with a stronger definition of
v-h-coproductive, but we have been unable to prove existence for this
definition. The definition is as follows:
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Definition 2.6.6 A double sequence (A4});, is strongly v-h-coproductive if

there is a recursive function f such that f(e)g¢ U [Af uwg™u Af U W]‘?'k],
keN

whenever ec N and (j,m)eN? satisfy:

v-h-C 1) W™ 0 Wy'™=¢ fori # kand W;"” N Wf'k = ¢ for n# &
v-h-C 2) Wi" NAj=¢if n=mori =j.

2.7 Classifications of Recursively Enumerable Double Sequences. We are
now ready to show that the four cases of double sequences which we have
considered are really distinct cases. To obtain similarity of notation we
replace ‘‘uniformly’’ for the first case by ““h’’: e.g. ‘‘uniformly universal”’
will be ‘‘h-universal’’. All double sequences will be recursively enumer-
able in this section.

Notation. For X = h,v,v-h, or t, let
9x = the class of X-disjoint r.e. double sequences;
Ux = the class of X-universal r.e. double sequences.

It is clear from the definitions that:
9t C Byeh = (9y N D), and Uy U L, C Uy.h C Uy,
Now, let
€x = 9x N Uy = the class of X-disjoint X-universal r.e. double sequences.
Theorvem 2.7.1 €x N €y =¢ for X+ Y, X,Y = h,v,v-h, o7 t.

Proof. Take X =vand Y = h, and suppose (C}), , € €x N Sy. Let (4});,
be r.e. and v-disjoint but not h-disjoint, for example, define xcA; <=
x =1a n =1, Then, since (C}’),;,,s Uy, there is a rec. function f such that
xeAj <> f(x)e C]. Since (A}, , is not h-disjoint, there exist y,n,%,je N, with
i + 7 and yeA; N Aj. We then havef(y)e C} N C/, contradicting (C}); , € Dp.
Other cases for X and Y are proved similarly.

Theorem 2.7.2 FEach class €y, X = h,v,v-h, or t, is nonempty and consists
of isomorphic double sequences which ave also X-creative. For X =h, v,
or t, the members of Cx are also X-E.l.

Proof. X =h: corollary 2.3.1.1, theorems 2.3.1 and 2.2.1. X = v:
theorems 2.4.1, 2.4.2, and 2.4.3, with corollary 2.3.1.1 for the existence of
one v-disjoint, v-universal r.e. double sequence. X = t: theorems 2.5.1,
2.5.2, and 2.5.3, with corollary 1.3.1.2 to show € # ¢. X =v-h: theorems
2.6.1 and 2.6.5.

2.8 E-tuples of Sequences. We have developed the theory for double infinite
sequences. That this theory includes that of Z-tuples of sequences is the
content of this section. We assume 2 = 1,

Definiton 2.8.1 Let (A));cn,0¢n<k be any k-tuple of sequences. We will say
that (B});en, nen 1S the double sequence associated with A7);:x o¢q<s if for all
iEN:
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Af, for0=n<k
B} =
o, for n= k.

Definition 2.8.2 A double sequence {A?)i,,, is said to have length =<k if for
all {eN:

Ai=¢if n=k.

That a k-tuple of sequences is universal for k-tuples of r.e. sequences
if and only if the associated double sequence is universal for r.e. double
sequences having length =4, is straightforward, whichever type of disjoint-
ness is considered. To obtain the analogous theorems for effective
inseparability and creativity, we must be able from the indices of % r.e.
sequences to give an index of the associated r.e. double sequence and
conversely. This is accomplished in the first direction by the recursive
function 7 defined as follows:

1) Let R be the recursively enumerable predicate:
R(7,k,n,i,x) <> 3 D=n<kaxeW!am=1t, (]
2) By the iteration theorem there is a rec. % such that:
R(7,k,n,i,x) < ;l Ts(r,k),n,ix,y).
3) Then k(7,%) is an index of the double sequence:

W with m = 7f, @), f0=n<
W!l(f,k).ﬂ -
1

oif n=~k.

Thus, given indices %o,X1, . . ., %-1, #(T¥%o, . . . , %-1),k) is an index of
the double sequence associated with the given 2-tuple of sequences. For the
converse, given any index e of a r.e. double sequence, ¢(e,”) is the index of
the nh sequence.

Definition 2.8.3 A k-tuple of sequences {A]);en,0<n<kis Y.E.l. if there is a
rec. function f such that f(xo,xy, ..., %_1) £ G Wi” whenever the nth
sequence satisfies: e

U.E.l. 1) W/ N A} = ¢ for all ieN,

and
o0

U.EL 2) Wi nwirc U 47, for i+, 4,jeN.
i=0

Definition 2.8.4 A double sequence (A';"),-,,, is U.E.l. for double sequences of
length =<2 if there is a recursive function f such that

AU wer
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whenever e is an index of a r.e. double sequence of length <& of which the
n sequence, 0 = < k, satisfies:

U.E.l. 1) W N A7 = ¢, for all {eN,
¢

and

o]
UEL 2) we” 0 wec U 47, for i # j,ijeN.

i=0
Theorem 2.8.1 A k-tuple of sequences (ADieno¢n<riS UE.. if and only if
its associated double sequence is U.E.l. for v.e. double sequences of length
=k.

Proof. Let (B});cn nen b€ the associated double sequence.
a) Assume (A7)en, 0cq<k iS U.E.l. under f, and let (¥;"");, be a double
sequence of length =% whose nth sequence, 0 =#n < &, satisfies U.E.l. 1)-2).
Then the n™ sequence of the %-tuple <W,‘-”(“"”)),.EN,OS,K,e satisfies U.E.l. 1)-2)
w.r.t. A7)ienogn<ks SO that

f9le,0p(e,D), . . ., glee = D) U Wi,

Hence, (B); , is U.E.l. under the rec. function g:
g(x) =f(¢(x’0)) e ¢(x,k - 1»-

b) Assume (B});cn.nen iS U.E.L. for double sequences of length <% under the
rec. function f, and let (W,f"‘),-w,og,,< pbe. a k-tuple of sequences whose n
sequence, 0 = n < kB, satisfies U.E.l. 1)-2). Then the associated double
sequence with index (7o, . .., %z-1),k) is such that its n sequence

satisfies U.E.l. 1)-2) w.r.t. (B});, so that f(k(Tk(xo, e, Xper), RNE U win
=0
Hence, <A'§>isN,o<n<kiS U.E.l. under the rec. function g:

g(x(hxly L ’xk-l) =f(h(7k(x0y L ’xk-l)’k))-

Analogous definitions and proofs can be given for uniformly coproduc-
tive and for both effective inseparability and coproductivity in the v-, t-,
and v-h-cases. It remains, then, only to give a treatment of the theory for
double sequences of length =%. This can be obtained by re-writing sections
2.1-2.7 with all double sequences assumed to be of length =k A few
changes need to be made for the v- and t-cases. For the v-case, the
transpose of a double sequence of length =% becomes a double sequence
each of whose sequences has length =<k. As the uniform theory is valid
also when restricted to sequences of sequences of length =£&, the analog of
theorem 2.4.1 is true. In the t-case to obtain the analog of theorem 2.5.1
we use the following map from double sequences of length <&, (A7);en 0<n<ts
to single sequences (B;);.y:

B; = Ajfori = vk + s.
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