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LOGIC OF ANTINOMIES

F. G. ASENJO and J. TAMBURINO

Purpose There are essentially three ways of looking at antinomies.
The first is to consider them as undesirable anomalies. This is the
predominant view, and was RusselPs when he discovered the famous
antinomy that bears his name. Because of the devastating consequences
that result from the presence of a single antinomy in any system based on
classical logic, this view has been understandably strong. It is well known,
for example, that Frege reacted with extreme and lasting consternation to
Russell's discovery. The second view considers antinomies less dramati-
cally, taking them as merely harmless abnormalities. Remarkably enough,
this was Cantor's position ([4], pp. 384-5), as well as Wittgenstein's: "If a
contradiction were now actually found in arithmetic—that would only prove
that an arithmetic with such a contradiction in it could render a very good
service" ([5], p. 181e). From this second point of view the problem with
antinomies is how to confine them, how to prevent their turning every
well-formed formula into a theorem without eradicating them and without
abandoning or radically altering the system in question. The third and last
view is to see antinomies as useful logical entities.1 According to this
position antinomies must be integrated into logical systems starting with
the propositional calculus, bearing in mind that while some sentences have
only one truth value, others have two. To use an example from ordinary
language, a sentence such as "It is raining here now" can only be true or
false, but not both. In contrast, "Peter is a good man" is not a single-
valued sentence and no attempt should be made to make it one. There are a
number of more or less artificial interpretations of propositional seman-
tics whose chief objective is to suppress the antinomies' first obvious
meaning, be the antinomies taken from ordinary language or from
mathematics. For example, it is against Cantor's original conception of

1. There are several philosophic precedents to this position. Kant, for example,
attached to antinomies the positive function of preventing reason from slumbering
—apart from their playing a very important demonstrative role in his own
philosophy.
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set theory to interpret the multiplicity of all the sets which are not
members of themselves as a meaningless notion or as a class that is not a
member of any other class. This paper adopts the third viewpoint, at the
same time accommodating the second. Our aim is to construct an antinomic
logic which is not trivially inconsistent and is complete in the sense that
the theorems of the propositional and predicate calculi are, precisely,
those formulas which are true or antinomic in each of these calculi. As an
application of such calculi, an antinomic set theory is presented, one that
in various ways is closer to Cantor's original naive idea of set. We found
that in addition to the intrinsic merit of building a set theory with a positive
attitude toward antinomies, working with antinomic sets provides a new
insight into classical axiomatic set theory.2

I. AN ANTINOMIC PROPOSITIONAL CALCULUS

1 Antinomies Semantically Considered There will be two kinds of state-
ment forms, those having only one truth value (true or false) and those
called antinomies having two truth values (both true and false). Labelling
truth, falsity, and antinomicity with the symbols 0 , 1 , and 2 respectively,
the propositional connectives can be defined by the following truth tables.

M2 —\ 12 12 Q 12 12 v# /?

(JJ i —' Λ> 2 VJ \ \ί (fj'2 Λ) i V Λ>2

X \ J2 \ M2

0 1 2 * i \ 0 1 2 i Λ s ^ 0 1 2
0 0 1 2 0 0 1 2 0 0 0 0
1 0 0 0 1 1 1 1 1 0 1 2
2 0 1 2 2 2 1 2 2 0 2 2

\ J2 \ 12
^\0J 2 \Λ> 2

£i \. 0 1 2 * \ 0 12 <βγ l£x

0 0 1 2 0 0 1 1 0 1
1 1 0 1 1 1 0 1 1 0
2 2 1 2 2 1 1 2 22

The tables for conjunction, disjunction, and negation are the same as those
given in [2], p. 103, where motivation for the construction of these tables
is provided. The table for implication differs from that given in [2] for the
case in which £x has value 2 and £2 has value 1, a difference that is
justified by syntactic reasons. With these tables it is easy to verify that
some compound statement forms are antinomic for all possible assign-
ments of truth values to the atomic statement letters, while others are not.

2. The authors wish to thank Professor D. Randolph Johnson for his thoughtful read-
ing of this paper and for his valuable suggestions. Also, it should be noted that
portions of a previous version of this paper were used in the second author's
doctoral dissertation.
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In fact, many classical tautologies still have the value 0 even where value 2
is involved (see examples at the end of this section). The statement form
£t =° £2 can alternatively be defined as an abbreviation of (JS1 = £2) &
( Ί ^ I Ξ ~Λ£2).

Two alphabets will be used for atomic statement letters. The capital
Roman Au A2, . . . are statement letters that take only one of the truth
values 0 or 1, while the capital Roman Bl9 B2> . . . are statement letters
that take only the truth value 2. Script a4l9 <A29 . . . denote atomic or
compound statement forms that take only the truth values 0 or 1, and script
£l9 £29 . . . denote any statement forms, either atomic or compound,
whatever their truth values. The formation rules for statement forms
follow (we shall let £x = £2 stand for (£λ =) £2) & (£2 ^ £j)).

1. All capital Roman statement letters are statement forms.
2. If £x and £2 are statement forms, then £x ^ £2, £λ & £2, £ίv £2, and l£x

are also statement forms (notice that since the c4's are special cases of the
£9s, expressions formed using rules 1 and 2 and involving only &49s or
combinations of cΛ's and £'s are also statement forms).
3. Expressions formed according to rules 1 and 2 are the only statement
forms (also called formulas, or well-formed formulas-wfs).

Statement forms taking only 0 or 2 for any arbitrary assignment of
truth values to their statement letters will be called tautologies. The next
metatheorems give some properties of tautologies.

Proposition 1.1. If £ι and £γ 3 £2 are tautologies, then £2 is a tautology.

Proof: Suppose £2 takes value 1, since £ι is a tautology £x D £2 cannot be
a tautology, contrary to the hypothesis.

Let us now distinguish between tautologies of type I—those having only
O's as values—and tautologies of type II—those having O's and 2's as
values.

Proposition 1.2. If cAλ and jlλ ^ <A2 are both tautologies of type I, then c42

is also a tautology of type I.

Proof: By Proposition 1.1, &42 is a tautology. JicJ2 were to take value 2,
then cAi => c42 should also take value 2, contrary to the hypothesis.

Proposition 1.3. If £j is a tautology containing as statement letters Au . . . ,
Am, Bl9 . . ., Bn, and £j arises from £j by substituting statement forms
cAl9 . . ., cAmfor Al9 . . ., Am, and £l9 . . ., £nfor Bu . . ., Bn, respectively,
then £j is a tautology.

Proof: For a given assignment of truth values to the statement letters of
B)y the statement forms c4l9 . . ., <Am take truth values xly . . .,*«, and
£u . . ., £n take truth values yu . . ., yn (where the Xi's are 0 or 1, and the
^, 's are 0, 1, or 2). If the truth values xu . . ., xm are assigned to Al9 . . .,
Am9 and the truth values yl9 . . ., yn are assigned to Bl9 . . ., Bn, then £j
takes the same value as £). Since £j is a tautology, then so is £).
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Proposition 1.4. If β] arises from £j by the substitution of £2 for one or
more occurrences of £u then (S1 =° £2)

 D {fij Ξ° JBj) is a tautology.

Proof: Consider any assignment of truth values to the statement letters of
£j and £2. # either β\ or £2 takes value 1 and the other does not, then
£x =° £2 takes value 1. If either £x or £2 takes value 2 and the other takes
value 0, then βx =° £2 takes value 1. So if £1 and £2 have different truth
values under the given assignment, then £1=° £2 takes value 1, and
(£i=°£2) => (£j Ξ° £j) takes value 0. If βx and £2 have the same truth
values, then so do £j and £j, since £j differs from £j only in some of those
places where £± occurs in £j. Thus, for the given assignment, £j =° £]
takes value 0 or 2, and (£λ =° £2) 3 (£j =° £j) takes value 0 or 2.

The following list of statement forms, all tautologies, is given here for
future reference.

(1) (Jgλ D ^ J D {(£λ D -\cAύ => Ί ί i )
(2) (£^ Jx) D ( η ^ D η^i)
(3) !(£!& £2) =° l£1vl£2

(4) -\{£xv£2) =° Ί^!& Ί^ 2

(5) (β1 ^ £2) ^ l£1v£2

(6) Ί ( ^ i = ) ^ 2 ) Ξ Λ & ~l<#2
(7) ^ 3 ^ ! = ° Ί^iV^i

(8) Sx=° •M£1

(9) ((Λ 3 A) => ̂ i) D Λi
(10) ( ^ 3 ̂ 2) 3 ((^x ̂  (^2 D ̂ 3)) D ( ^ D ̂ 3))

The following classical tautologies are not tautologies in the present
calculus.

(1) UPΛ) 3(1^3 1 )̂
(2) (iftv^^ίftDft).

(3) £1^('λ£ι^ Jλ)
(4) Ά£^ £2 = (£x ^> £2)
(5) ( Ί ^ i 3 Ί^ 2 ) 3 ((Ί^χ 3 ^ 2 ) 3 ̂ )

2 Antinomies Syntactically Considered and the Completeness Theorem
The same letters used for the various statement forms in the previous
section also apply here. We shall call a statement form (or wf) £x an
antinomy in the syntactic sense if and only if £x and i£λ are both theorems.
Statement letters Al9 A29 . . . will be atomic wfs that are not antinomic (in
the syntactic sense), and Bi, B2, . . . will be atomic wfs such that both B{
and iBi are provable. The rules of formation for wfs involving all or some
of these letters (A's, B's, <?4's, or £'s) are the same as those given in the
preceding section. In addition, the following closure conditions are in
order for the syntactic determination of the ^-formulas.

Cla. All statement letters Al9A2i . . . are ^-formulas.
Clb. The formulas Ax D A2, A1&A2, AXV A2,Ί Al9 Bx D Al9 and Aλ D (A l V Bj
are all c^-fbrmulas.
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C2a. If <Aχ and <A2 and ^-formulas and £x is any wf, then cAx => <̂ 2> <A\ &c42,
c4γ\/c4%i ~Λc4u £ι ^> c î and CJ1 => U i V ^ J are ^-formulas.
C2b. If Ί ^ ! is an ^-formula, then £x is an ^-formula.
C3a. Axiom L3a and Axiom L3b are ^-formulas (see axioms below).
C3b. Theorems inferred from c^-formulas by modus ponens are cd-
formulas.

It should be noted that under these closure conditions the propositional
rule of inference of modus ponens plays a basic role in determining the
^-formulas. Hence, the class of ^/-formulas will vary according to the
theory T under consideration. If new axioms are added to T, then the class
of ^-formulas usually increases. If Γ is a sequence of wfs to be added to
the axioms of a theory T (presumably Γ would contain some new c^-
formulas not provable in T), and if £x is an ^-formula in the theory Tf

obtained from T by adding the wfs of Γ as axioms, then we shall say that in
the theory T £x is an cA-formula relative to Γ.

The axioms and rule of inference for our propositional calculus L
follow.

LI. g1 ^ (β2 3 Sj)

L2. («! ^ (£2 3 tfa)) ^ ( t o D £2) 3 (Λ D £3))
L3a. Ίc4γ D {c41 ^ £t)
L3b. U 3 Ί(c^i & £d

L4. (Sx => Λ2)
 D (("l^i D ^2) D ^2)

L5. ftDhίj ^ i(^Dft))

L6. Λ => (*2 D (Λ & £2))
L7a. ^x 3 Ί Ί ^ i
L7b. ΊΊ Si ^ * i

L8a. £ί & £2^ B\
L8b. <̂χ & £2 —̂  <$2
L9a. £1 D £ίV £2

L9b. ^ 2 ^> £tv£2

L10. l ^ v l ^ 2 3 T(^x & £a)
Ll l . η^x & Ί ^ 2 3 -\{£^£2)
L12. Ί ( ^ ! => <#2) D (^! & l£2)

L13. Ί 5 , & .Bj

Rule of Inference

(Modus Ponens) £x and £x ^ ^ 2 yield £2.

Proposition 2.1. (Deduction Theorem) If T is a set of wfs and £x and £2

are also wfs, and if Γ, £t \-£2, then Γ \-£x 3 £2.

The proof involves only axioms Ll and L2, and does not differ from the
classical Deduction Theorem. C/. for example [3], p. 32.

Corollary 2.2.

(i) £\ ^ £2, £2 -) £z^~ &\ -^ ^3
(ii) £x ^ (£2 Ί £3), £2*-£i^ £3
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Proposition 2.3. Every theorem is a tautology.

Proof: All the axioms of L are verifiable tautologies, and by Proposition
1.1 modus ponens yields only tautologies from tautologies.

The converse of Proposition 2.3 calls for the following lemma.

Lemma 2.4. Let £ be any wf and let Γ be the sequence of statement letters
Al9 . . ., Am, Bl9 . . ., Bk of £. For a given assignment of truth values to
Al9 . . ., Am9 Bl9 . . ., Bk let B\ be Ίi?, & B,. Let A\ be A{ if Ai takes value
0 and let A\ be lA{ if Ai takes value 1. Let £' be £ if £ takes value 0; let
£' be i£ if £ takes value 1; let £' be i£ & £ if £ takes value 2. Let Γf be
A[9 . . ., Aln, B[9 . . ., B

f

k. Then Γ' H £r and when £ takes values 0 or 1, then
£ is an cA-formula relative to Γ" and is not antinomic relative to Γf {i.e., it
is not the case that Γ' \-£ and Γ" \-l£).

Proof: By induction on the number n of primitive connectives. For the
case n = 0 we just have the statement letter Aγ where k = 0, or Bλ where
m = 0. In the first case, the lemma reduces to A1\-A1 or iAί \- ΊAλ. Since
Bx takes value 2, then B[ is ~\B1 & Bt and therefore iBχ O i H iBλ & Bx.

Assume £ takes value 0, then £ is A1 (Γf is AJ. Ax takes value 0 since
£ is Al9 so £ is an ^/-formula by condition Cla for ^-formulas. If Γ' h- ΊAI
and TrhAl9 then Γ' hiA1& Aλ by Axiom L6. But Γ' is Al9 so by the
Deduction Theorem }(-A1 =) (ΊA1.& AJ, a formula which should be a tautology
by Proposition 2.3. However, Ax D (~\AX & At) is not a tautology, so Ax is
not antinomic relative to Γ".

Assume £ takes value 1. Then £ is Ax and Γ" is 1AX. Ax is an
c^-formula by conditions Cla and Clb for c^-formulas. If Γ'h-iAx and
Γf h llAl9 then Γf h Ax by Axiom L7b and so Γ' h nAx & Ax by Axiom L6.
By the Deduction Theorem \-lAx D (ΊAJ & Ax), a formula which should be a
tautology by Proposition 2.3. However, ΊAj D (IA X & Ax) is not a tautology,
so <# is not antinomic relative to Γr.

We assume now that the lemma holds for all j < n.

Case 1. £ is l£x. Then £x has fewer than n occurrences of primitive
connectives.

Subcase la. Let £x take value 0 under the given truth value assignment.
Then £ takes value 1. So £[ is £\ and £' is l£. By inductive hypothesis
applied to £x we have Γ'\-£1. Then by Axiom L7a Γf \- -}Ί£1. But Ί~\£1

is £\

Subcase lb. Let £x take value 1. Then £[ is i£x and £' is £. By inductive
hypothesis Γf H Ί ^ ! . But i£x is ^'.

Assume £ takes value 1. Then £x takes value 0 and by inductive
hypothesis £x is not antinomic relative to Γf and is an ̂ -formula relative
to Γ'. By condition C2a for ^-formulas £ is an ^-formula. If Γ ' h i ^
and Γ ' h i i ^ , then using Axiom L7a T'\-Λ£1 and Γ'h£1. But £x is not
antinomic relative to Γ", so £ is not antinomic relative to Γ".

Assume £ takes value 0. Then £± takes value 1. Since £λ takes
value 1, by inductive hypothesis £x is not antinomic relative to Γf and £γ is
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an ^-formula. Since £x is an cΛ-formula, l£λ (which is £) is an ^-formula
by condition C2a for ^-formulas. If Γ ' h i ^ and Γ' i- Ί Ί ^ 1 ? then T* hi£x

and Γ ' H ^ using Axiom L7b. However, by inductive hypothesis, £γ is not
antinomic relative to Γ', so £ (which is l£j) is not antinomic relative to Γr.

Subcase lc. Let £x take value 2. Then £[ is ~\£x & £x and £' is l£ & £.
By inductive hypothesis applied to £x we get Γ' h 1 ^ & £x. By Axioms L8a
and L8b we have Γ ' h Ί ^ and Γ'\-£1. By Axiom L7a we get Γf \-τ\£x.
Then by Axiom L6 we have Γr \-n£1 8ι l£i which is l£ & £ and which is
also £\

Case 2. £is £1'D £2. Then <̂χ and £2 have fewer occurrences of primitive
connectives than £.

Subcase 2a. £γ takes value 1. Hence £ takes value 0. Then £[ is "\£x and
£' is <#. So Γ Ί - i ^ i . By inductive hypothesis £x is an ^-formula. By
Axiom L3a Γf μ £x => <#2. Λ1 D <#2 is «#.

Subcase 2b. <#2 takes value 0. Then Γ'\-£2 and <#' is £. By Axiom Ll
Γ h ^ D £2. But # ! 3 <#2 is £.

Subcase 2c. £2 takes value 1 and £x takes value 0 (or 2). Then stakes
value 1 and £' is Ί£. By inductive hypothesis we have Tτ h £x (or
Γ' h i£x & £x) and Γr \-l£2. Thus by Axiom L5 we have l(£t D <#2) which
is ^ f .

Assume £ takes value 0. Let £γ take value 1. By inductive hypothesis
£ι is not antinomic relative to Γ' and £x is an ^/-formula. £γ to take
value 1 implies Γf \-Λ£^ Since £χ is an ^-formula, then by condition C2a
for c^-formulas Ί£x is an ^/-formula. By condition C3a ~λ£ι~3 (£ι ^ £2) is
an ^/-formula relative to T\ Since ~\£λ and ~Λ£X 3 (# x => <̂ 2) are c/-
formulas, then {£± 3 ^2) is an ^-formula relative to Γf by condition C3b
and the fact that Γf h l ^ , If Γ' h £1 D <£2 and Γf h Ί ( ^ X D ̂ 2), then Γf h ^ &
Ί^2 and Γ'h^x by Axiom L12 and Axiom L8a. But β1 is not antinomic
relative to Γf, so £ is not antinomic relative to Γf.

Assume £ takes value 0. Let £2 take value 0. By inductive hypothesis
£2 is not antinomic relative to Γ' and £2 is an ^-formula relative to Γ\
By condition C2a £λ 3 £2 is an ^-formula. If Γ'h i(£λ 3 £2) and Γ' h ^ D
^ 2 , then Γf i-^i & Ί<#2, Γf h i£2 and Γf μ ̂  by Axiom L12, Axiom L8a and
Axiom L8b. Since Γf h £x and Γf h £ι D ̂ 2 > then Γf h ^ 2 . However, ^ 2 is not
antinomic relative to Γf, so £ is not antinomic relative to Γ\

Assume £ takes value 1. Let £x take value 0 (or 2) and £2 take value 1.
By inductive hypothesis the lemma holds for £2, so Γ' hi£2, £2 is not
antinomic relative to Γf and £2 is an ^-formula relative to Γf. Since £2 is
an ^/-formula relative to Γ', then by condition C2a for .^-formulas £λ 3 £2

is an ^-formula relative to Γ'. If Γ'hi(£1^>£2) and T'h£ι^>£2, then
Γf h £x & i£2 and Γf h i£2 by Axiom L12 and Axiom L8a. Since Γf μ ̂  and
Γ Ή ^ D ^ 2 , then Γ' H< 2̂. However, £2 is not antinomic relative to Γf, so
£ is not antinomic relative to Γf.

Subcase 2d. £2 takes value 2 and £γ takes value 0 (or 2). Then £x => ̂ 2
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takes value 2. Thus £ϊ is i£2 & £2 and £[ is ^ x (or βx & π^J and <#' is
l£ & £. Therefore by inductive hypothesis V hl£2 & £2 and Γf \-βx. Thus
by Axiom L8a we deduce l£2 and by Axiom L5 we deduce l(£x => <#2) which
is l£. With the use of Axiom L8b and Axiom Ll we have £1 3 β2 which is
£. Thus it follows that we have l(£λ 3 £2) & C#χ 3 ^ 2) which is η ^ & £ or
<#'. (When <#! takes value 1, and </?2 takes value 0 (or 2) then Subcase 2a
applies.)

Case 3. £ is £x & <#2. Then ^ and <#2 have fewer occurrences of primitive
connectives than £, so by inductive hypothesis Γ' \-£[ and Γf v- £2.

Subcase 3a. βx and £2 take value 0. Then £ takes value 0 and £r is <#, £[
is ^i, and <#2' is £2. By inductive hypothesis Γ ' h ^ a n d T'\-£2. Then by
Axiom L6 we deduce £1 & £2 which is £\

Subcase 3b. βλ takes value 1. Then £ takes value 1 and £' is i£, £[ is
lβχ. By inductive hypothesis Γ' hi£x. By Axiom L9a we deduce i£λv i£2

and by Axiom L10 we deduce l(£1 & £2) which is <^f. (When £2 takes
value 1 the argument differs only in the use of Axiom L9b instead of L9a.)

Assume £ takes value 0. Then £x and £2 take value 0. By inductive
hypothesis £λ and £2 are not antinomic relative to Γ", are ^-formulas
relative to Γ', and Trh£1. By condition C2a £i &, £2 is an c^-formula
relative to Γ f. By Axiom L3a, Γf h ^{£x & £2) D ( ( ^ & <#2) 3 Ί ^ J . If Γf h
Ί ( ^ I & £2) and Γf h (£1 & ̂ 2), then Γf h- i£u However, £λ is not antinomic
relative to Γ f, so £ is not antinomic relative to Γ f.

Assume £ takes value 1. Let £1 take value 1 (the proof is the same if
£2 takes value 1). By inductive hypothesis Tι \-^£u £λ is not antinomic
relative to Γf, and £x is an ^-formula. By Axiom L3b, Γ ' H I ^ D -\{£x &
£2). Since Γ ' h i ^ i , then T1 \-Ί(£1 &, £^). By conditions C3a and C3b
Ί (£i & £2) is an ^-formula. By condition C2b £Σ & £2 is an c^-formula. If
Γ' h i(£i & <#2) and Γf hjSi & < 2̂> then Γ" μ ^ by Axiom L8a. However, <̂ i
is not antinomic relative to Γf, so £ is not antinomic relative to Γ".
Subcase 3c. £γ takes value 2 and <#2 takes value 0 (or 2); then £r is
l£ & £, £[ is l£1&, £λ and ^ is ^ 2 (or Ί ^ 2 & <#2) By inductive hypothesis
Γ ' m ^ & j ? ! and T'\-£2 (or Γ' f-Ί^ 2 &^ 2 ) . From l£1&£1 and Axiom
L8a and Axiom L8b we deduce i£λ and £x. By Axiom L9a we have
i ^ i v i ^ a and by Axiom L10 we have ~λ(£1 & £2) which is τ^ o By Axiom L6
we have £t & £2 which is ^ and by use of Axiom L6 again we have Ί £ & £
which is £'. (The proof when £2 takes value 2 and ^x takes value 0 (or 2)
goes along the same lines.)

Case 4. £ is £xv £2. Then <#χ and ^ 2 have fewer occurrences of primitive
connectives than £, and so by inductive hypothesis we have Γr\-£l and

Subcase 4a. £1 takes value 0. Then £ has value 0, £' is £ and <#{ is ^ .
Thus by inductive hypothesis Γ ' h ^ and by Axiom L9a we have £XΊ £2

which is £r. (The case where £2 takes value 0 is similar.)

Subcase 4b. £λ takes value 1 and £2 takes value 1. Then £ takes value 1
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and £' is i£, £[ is l£x and £2 is ~\£2. So by inductive hypothesis Γ" \-l£x

and Γ ' h i f t . Thus l ^ & l£2 follows from Axiom L6 and by Axiom Lll
we obtain l(£1v £2) which is i£ or £r.

Assume stakes value 0. Let £x take value 0. By inductive hypothesis
Γ" \-£l9 £λ is not antinomic relative to Γf, and £x is an ^/-formula relative
to Γf. Γ h ^ ^ f ^ v ^ ) by Axiom L9a. £1^> (£1v£2) is an ^-formula
relative to Γ' by condition C2a for ^-formulas, so £xv£2 is an <A-formula
relative to Γf by condition C3b for ^-formulas. By condition C2a l(£λ v £2)
is an ^-formula relative to Γ, so Γ ' h l ^ v A l ^ W i v ^ ) 3 ! ^ by
Axiom L3a. If Γ' H i(£x V £2) and Γ' h £x v £2y then Γf h i£lΦ However, £x is
not antinomic relative to Γf, so £ is not antinomic relative to Γ". (The case
where £2 takes value 0 is similar.)

Assume £ takes value 1. Let £x and £2 therefore take value 1. By
inductive hypothesis Γ h Ί ^ and Γ ' h i f t , £x and £2 are not antinomic
relative to Γf, and £x and £2 are c^-formulas relative to Γ'. Since £x and
£2 are cΛ-formulas relative to Γf, then by condition C2a for ^-formulas
£γv £2 is an ^-formula relative to Γf. By Axiom L3a Γf \-i(£xv £2) ^>
((ftvft) D £1). If Γf h i ( ^ v £2) and Γ' μ £xv £2, then Γ' h # x . However, £x

is not antinomic relative to Γ", so </? is not antinomic relative to Γ\

Subcase 4c. £x takes value 2 and ^ 2 takes value 1 (or 2). Then stakes
value 2. So £' is i£ & ̂ , {̂ is i£x & ̂  and ^2

f is i£2 (or l«^2 & £2)' By
inductive hypothesis Γ h i ^ f e ^ and Tf \-i£2 {or Tr \-i£2 &, £2); it then
follows that ~\£\ is obtained from Axiom L8a, i£χ & l£2 is obtained from
Axiom L6 and finally from Axiom Lll we get i(£xv £2) which is l£. £λ

follows from Axiom L8b and by Axiom L9a we have £XΊ £2 which is £.
Therefore by Axiom L6 we obtain l£ & £ which is £\ (For the case when
£x takes value 1 (or 2) and £2 takes value 2 the argument is similar.)

Proposition 2.5. If a wf £ is a tautology, then £ is a theorem.

Proof: Let £ be a tautology and let Aίy . . ., Am, Bl9 . . ., Z?& be the state-
ment letters occurring in £. For any assignment of truth values to the
statement letters Al9 . . ., Am, Bu . . ., Bk occurring in £ we have by
Lemma 2.4 that A[, . . ., Ar

m, B[, . . ., B*k\- £'. But since £ is a tautology,
for any given assignment of truth values to the statement letters occurring
in £, the tautology £ will take value 0 or 2. Thus £' is £ or £' is i£ & £;
in any case, A[, . . ., Aτ

m, B[, . . ., B*kh £ for any assignment of truth values
to the statement letters occurring in £. Br

k is iBk & Bk and A[, . . ., A'm,
B[, - . ., Ί-B* & Bkv~£. By application of Proposition 2.1 (Deduction Theo-
rem) it follows that A[, . . ., A*m9 B[9 . . ., Bf

k^ \-ΊBk & Bk 3 ^ . By Axiom
L13 we obtain ι-Ί£fe & Bk- Thus we obtain A[, . . ., A^, B[, . . ., Bτ

k.1h£.
By repeating this argument fe-times we eliminate the 5,'s. If Am takes value
0 for a given assignment of truth values to the statement letters, then Am is
Am and A[, . . ., A^_i, AOT h ^ . If Aw takes value 1 for another assignment
with the same truth value for the A^s up to Am.ly then A[, . . ., A^_1?

lAmh£. Applying the Deduction Theorem is both cases it follows that
A[, . . ., AT

m_xt-Am D £ and A[, . . ., A ^ h Ί A W D ̂ . By Axiom L4 we have
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A[, . . ., At

m.ι^-£. Repeating this argument m-times we eliminate the A, 's.
Thus we obtain \-£.

Proposition 2.6. A wf £ is a tautology if and only if it is a theorem of the
theory L.

Proof: Proposition 2.3 and Proposition 2.5.

Corollary 2.7. The theory I is absolutely consistent (i.e., not all wfs are
provable).

Proof: There are wfs which are not tautologies.

It should perhaps be remarked that the metatheory employed so far
uses the entire classical propositional logic—not an antinomic one. In fact,
nowhere in the remainder of the paper will antinomic proof methods be
extended to the metatheory.

II. AN ANTINOMIC PREDICATE CALCULUS

3 Antinomic Predicate Formulas Semanticaίly Considered In anticipation
of the formal definition below, we can say that an antinomic formula
£i(xl9 . . . , xn) will be one that for all w-tuples xl9 ...9xn9 both £i(xl9 ..., xn)
and ~\£i(xu . . ., xn) hold. Accordingly, (xj . . . (xn) £i(xl9 . . ., x») will be
an antinomic sentence if £i(xl9 . . ., xn) is an antinomic predicate formula.
Let us use Roman capital A1} A2, . . . for predicate letters which for no
w-tuple xl9 . . ., xn it is the case that both At(xu ..., xn) and lAi(xl9 . . ., xn)
hold, and let us use Roman capital Bl9 B29 . . . for predicate letters for
which there exist at least one n-tuple xl9 ...., xn such that both Bi(x1)..., xn)
and lBi(xl9 . . ., xn) hold. Let us also use the predicate letters Bf, B}9 ... .
to denote that subcollection of the B's for which B^(xί9 . . ., xn) and
!£*(#! , . . ., xn) both hold for all w-tuples. (n indicates the number of
arguments—or rank—of the predicate letters A{ or B{9 which is different in
general for each i.) Let script c4u c429 . . . denote predicate formulas
which for no n-tuple xl9 . . ., xn it is the case that both c4i(xu . . ., xn) and
Ί<?4i(xι9 . . ., Xn) hold, and let script £u £2, . denote predicate formulas
for which there may be w-tuples xl9 . . ., xn such that both £i(xί9 . . ., xn)
and lSi(xl9 . . ., xn) hold (obviously, the cA's are particular cases of the
iΓs). Let us use xί9 x29 . . . for individual variables, al9 a2, . . . for
individual constants, the same symbols used before for the propositional
connectives (including =°), and the symbol (#/) for universal quantification
(existential quantification being defined in the usual way). The rules of
formation for terms and formulas follow.

1. Individual variables and individual constants are terms.
2. If 11, . . ., tn are terms, then Aj(tl9 . . ., tn) and Bj(tl9 . . ., tn) are atomic
formulas (assuming that both A, and Bj are of the same given rank n).
3. Atomic formulas are wfs (well-formed formulas).
4. If J$ι and £2 are wfs (in particular, if <βx is c4x and £2 is <?42)9 then so are
βx D £2, £λ & £2, £ίv£29 l£l9 and (xj £i(xi).
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5. If cAλ and Si are wfs, then so are cAx 3 βl9 S1 ^> c4u C41 & Su Sx & c4l9

c4\ v Λx, and Sx v c^.
6. These are all the terms and wfs.

Wfs have meaning only when an interpretation is given to the formal
language just described. An interpretation for us shall consist of the
following items.

1. A non-empty set D called the domain of the interpretation.
2. An assignment to each predicate letter A{ of rank n of an w-place
relation A\ in D.
3. An assignment to each predicate letter Bj of rank n of a pair of
non-disjoint w-place relations Bj and Brj in D such that the union of B) and
B" is the whole cartesian product Dn.
4. An assignment of a fixed element of D to each individual constant.

The notions of satisfiability, truth, and antinomicity shall be made
precise in the following way. Let an interpretation with non-empty domain
D be given. Let Σ be the set of all denumerable sequences of D. We shall
define what it means for a sequence s = (bl9 b2, . . .) in Σ to satisfy a wf cAi
or Si under the given interpretation. Let s* be a function of one argument
with values in D such that

.(1) If t is xu then s*(t) is b{.
(2) If t is an individual constant, then s*(£) is the interpretation in D of
this constant.

Now we define the notion of satisfiability by induction.

la. If £j is an atomic wf of the form Ai(tl9 . . ., tn) and A\ is the cor-
responding relation in the given interpretation, then the sequence s
satisfies Sj if and only if A,'(s*(ί1), . . ., s*(4)) (i.e., iff the rc-tuple
(s*(^), . . ., s*(4)) is in the relation A ) .
lb. If βj is an atomic wf of the form Bi(tu . . ., 4), then s satisfies Sj if
and only if Bί(s*(ίi), . . ., s*(tn)).
2a. If Sj is an atomic wf of the form Ai(tl9 . . .,tn), then s satisfies iSj if
and only if 5 does not satisfy Af(tl9 . . ., tn).
2b. If Sj is an atomic wf of the form Bi(tl9 . . ., tn), then s satisfies iSj if
and only if rfisHtJ, . . . , «*(/)) .
2c. If Sj is a wf (atomic or not), then s satisfies llSj if and only if 5
satisfies Sj.

If Sj and Sk are wfs, then

3a. s satisfies Sj ^ Sk if and only if s does not satisfy Sj or 5 satisfies Sk*
3b. s satisfies l(Sj 3 Sk) if and only if 5 satisfies Sj and s satisfies i Λ .
4a. s satisfies (Sj & Sk) if and only if s satisfies Sj and 5 satisfies Sk
4b. s satisfies l(Sj & Sk) if and only if 5 satisfies ISj or s satisfies iSk-
5a. s satisfies Sj v Sk if and only if s satisfies Sj or 5 satisfies Sk.
5b. s satisfies I(SJV S^ if and only if s satisfies iβj and s satisfies iSk
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6a. s satisfies (x{) £j if and only if every sequence of Σ which differs from
s in at most the Vth component satisfies £j.
6b. 5 satisfies l (# t ) £j if and only if there is a sequence s ' in Σ which
differs from s in at most the e'th component such that sr satisfies ~Λ£J.

The definitions of true, false, and antinomic formulas are as follows.

Dl. A wf £j is said to be true (for a given interpretation) if and only if
every sequence in Σ satisfies £j.
D2. A wf £j is said to be false (for a given interpretation) if and only if
every sequence in Σ satisfies ~λ£j~
D3. A wf £j is said to be antinomic (for a given interpretation) if and only
if £j is both true and false.
D4. An interpretation is said to be a model for a set Γ of wfs if and only if
every wf in Γ is either true or antinomic for that interpretation.

The following properties can be verified from the preceding definitions
plus definitions D5 to D8, which can be found after properties P10, P16,
and P18.

PI. If a wf £χ is an cλ\ (for a given interpretation), then £γ cannot be both
true and false (for that interpretation).
P2. If £λ and £λ D £2 are true and not antinomic (for a given interpreta-
tion), then so is £2 (for that interpretation).
P3. If £ι and £ι ^ £2 are antinomic (for a given interpretation), then so is
£2 (for that interpretation).
P4. If £x is true but not antinomic and £2 is antinomic (for a given inter-
pretation), then £x n> £2 is antinomic (for that interpretation).
P5. If £x is antinomic and £2 is true but not antinomic (for a given
interpretation), then £1 n> £2 is true and not antinomic (for that interpreta-
tion).
P6. If £λ is true or antinomic and £2 is false but not antinomic (for a given
interpretation), then £± ^> £2 is false and not antinomic (for that interpreta-
tion).
P7. A sequence s satisfies £1 = £2 if and only if s satisfies both £1 3 £2

and £2 3 £λ.
P8. A sequence s satisfies £x =° £2 if and only if s satisfies both £x = £2

and l£x = i£2.
P9. A sequence s satisfies (3Xi) £1 if and only if there is a sequence sr

which differs from s in at most the z'th place such that sr satisfies £λ.
P10. £λ is true (for a given interpretation) if and only if (Xi)£ι is true (for
that interpretation).

D5. By the closure of £i we mean the closed wf obtained by prefixing
universal quantifiers that quantify those variables which are free in £{. If
£i has no free variables, then the closure of £{ is defined to be £{ itself.

P l l . £i is true (for a given interpretation) if and only if its closure is true
(for that interpretation).
P12. If £1 is antinomic (for a given interpretation), then the closure oi £λ

is both true and false (for that interpretation).
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P13. Every wf £λ obtained by substitution of wfs for the statement letters
of a tautology is either true or antinomic for any interpretation.
P14. If (xi)£i(xi) is satisfied by a sequence s, then so is £1(t)9 where t is
an arbitrary term. Hence (xί)£ι(Xi) => £ (t) is satisfied by all sequences in
any given interpretation.
P15. If £1 does not contain Xi free, then {Xi){£x => £2)

 D (<#i D (x%) £2) is
satisfied by all sequences in any given interpretation.
P16. l£ι(xi) ^ ~l(Xi) d?i(Xi) is satisfied by all sequences in any given
interpretation.

D6. A wf £x is said to be logically valid if and only if it is true or antinomic
for every interpretation.
D7. £1 is said to logically imply £2 if and only if in any interpretation
every sequence which satisfies β1 satisfies £2.

P17. £1 logically implies £2 if and only if JBλ => £2 is logically valid.
P18. If £1 logically implies £2 and £γ is satisfied by every sequence in a
given interpretation, then £2 is satisfied by every sequence in that inter-
pretation.

D8. £λ is a logical consequence of a set Γ of wfs if and only if in any
interpretation every sequence which satisfies every formula in Γ also
satisfies Jglm

P19. If £ί is a logical consequence of a set Γ of wfs and all wfs in Γ are
satisfied by every sequence in a given interpretation, then £x is satisfied by
every sequence in that interpretation.
P20. A closed wf £x is antinomic for a given interpretation if and only if
~λ£x is antinomic for that interpretation.
P21. A closed wf £1 is true but not antinomic for a given interpretation if
and only if ~\£x is false but not antinomic for that interpretation.
P22. Let (x^ £ι(xi) be a closed wf, then this wf is true for a given interpre-
tation and there is a term t for which both £1(t) and l£ι(t) are true for that
interpretation, if and only if (ΛΓ, ) £1(xi) is antinomic for that interpretation.

4 Antinomic Predicate Formulas Syntactically Considered and the Com-
pleteness Theorem A well-formed predicate formula £ι will be said to be
antinomic (in the syntactic sense) if and only if both £{ and l£i are
provable. We now introduce an axiomatic system K for a predicate calculus
which will include antinomies (in the syntactic sense). The symbols used
for the language of K are as follows. The same symbols introduced in the
preceding section for the propositional connectives, individual variables
and constants, and universal quantification will apply. Roman capital
Al9 A2, . . . will be used for predicate letters which for no n -tuple of terms
t19 . . .,tn it is the case that both Aί(tl9 . . ., Q and lAi(tl9 . . ., tn) are
provable. Roman capital Bl9 B2, . . . will be used for predicate letters
which for some w-tuple of terms tl9 . . .,tn both Bj(tl9 . . ., tn) and
ΊBi(ίi, . . ,tn) are provable. The symbols Bf, Bξ, . . . will denote that
subsequence of the JB'S which for all n-tuples of terms tί9 . . ., tnit is the
case that both.£*(*i, . . .,tn) and ΊB*(tl9 . . .9tn) are provable. (In each
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case, n indicates the rank of the specific letter At or Bj under considera-
tion.) The rules of formation for terms and well-formed formulas are also
the same as those given in the preceding section (with script £'s again
denoting well-formed formulas in general), plus the following rule: If £χ is
a wf, then (xj) £y is also a wf. In addition, we shall let script c4u c429 . .
denote a subcollection of the set of £ys determined by the following closure
conditions.

la. All atomic wfs of the form Ai(t1, . . ., tn) are ^-formulas,
lb. If <Λι denotes Ai(tl9 . . ., tn), cA2 denotes cAj{s19 . . ., sm)9 and £x denotes
Bki^i, •> ?*/), then .σ41 3 <A29 <J\ & <̂ 2> <Axv cA29 ΛcAu cAy => U j v ^ ) , and

£x 3 <Aλ are all ^-formulas (where the t's9 s 's, and r's are all terms).
2a. If cA± and <A2 are ^-formulas and £γ is any wf, then c4x ^ <A29 <A± & c429

<Aγ\tcA29 "\c4u (xi)cAl9 cAλ D (cAxv£^> and β1 ^ <Λλ are all ^-formulas.

2b. If l£χ is an c4-formula, then Sλ is an ^/-formula.
3a. Axioms K3a and K3b are ^-formulas (see axioms below).
3b. Theorems deduced from c^-formulas by modus ponens or generaliza-
tion are ^-formulas.
4. If the closure of Bx is not antinomic, then it is an <A-formula.

Axioms Kl to K12 of K are the same axioms Ll to L12 of L in
section 2 (interpreting the script letters as corresponding well-formed
predicate formulas); to these we add the following axioms.

K13. Bf(tl9 . . ., tn) & ΊBf(tl9 . . ., tn), (for; = 1, 2, . . .).
K14. (x{) £i(xi) ^ £i(t)9 (where t is a term free for Xi in £ι(xi)).
K15. (xi)(Si ^ S2) ^ {Si D (xi)S2)9 (where βx does not contain Xi free).
K16. ΊΛiί*!, . . ., tn) 3 lUO . . . (*„) *i(*i, . . ., Xn)

In addition to modus ponens, we will also use generalization as a rule
of inference; i.e., (xi) βΛ follows from d?λ.

Proposition 4.1. Every wf £x that is an instance of a tautology is a theorem
ofK.

(Proofs will not be given where there is no essential difference from
those of the corresponding propositions of the classical predicate calculus.
For example, see [3] for such proofs: we have patterned sections 1 to 4 as
much as possible after this reference to simplify our presentation.)

Proposition 4.2. The system K is absolutely consistent, that is, not all wfs
in the language of K are provable.

Proof: For each wf Λi of K, let h(Si) be the expression obtained by erasing
all the quantifiers and terms in Si (together with the associated commas
and parentheses). Then h(£{) is a statement form with the A's and the B's
playing the role of statement letters. Clearly h(~λ£^ = ~λh(<β^9 h{£x ^> £2)~
h(Sχ) ^ h(£2), M*i & * a ) = h(£x) & h(£2)9 and h(£^£2) = h{£λ) v h\£2). It can
be verified under this transformation that all the axioms of K become
tautologies. In addition, if h(£x) and h(£λ D £2) are tautologies, then h(£2) is
a tautology; and if h(£λ) is a tautology, then so is h((xi)£1), which is the
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same as h(J?j). Hence, if £1 is a theorem of K, then h{£^) is a tautology. If
every wf were provable in K, then for every wf £l9 h(£^) would be a
tautology under the mapping h. In particular, if Ί ( ^ 3 ( Ί ^ D £j) were a
theorem of K, then h{Λ(Jλ => ( Ί ^ D jtfj)) = π(A(^i) => (iΛMi) D ^(^i)))
would be a tautology, which is not the case. Therefore not all wfs are
theorems of K, and K is absolutely consistent.

Let £p be a wf in a set Γ of wfs; assume that a deduction £l9 . . ., £n

from Γ is given, together with a justification for each step of the deduction.
We shall then say that £j (for i = 1, 2, . . ., n) depends upon £p in this
deduction if and only if:

(i) £{ is £p and the justification is that it belongs to Γ; or
(ii) £i is a direct consequence by modus ponens or generalization of some
preceding wfs of the sequence where at least one of these preceding wfs
depends upon £p.

Proposition 4.3. If £2 does not depend upon £i in a deduction Γ, £1t-£2,
then T\-£2.

Proposition 4.4. (Deduction Theorem) Assume that Γ, £γ \-£2 where in the
deduction no application of the generalization rule to a wf which depends
upon £1 has as its quantified variable a free variable of £x. Then
ΓhftD £2.

Corollary 4.5. If a deduction Γ, £1*-£2 involves no application of the
generalization rule of which the quantified variable is free in £l9 then
TΛ-£ι^>£2.

Corollary 4.6. If £χ is a closed wf and Γ, £1\-£2, then Γ \-β1 D £2.

Proposition 4.7. Every theorem of K is logically valid.

Proof: Since all the axioms of K are logically valid, and by properties P l l
and P17 modus ponens and generalization preserve logical validity, then
every theorem of K is logically valid.

Definition of similar wfs. If Xi and Xj are distinct, then £ι(x{) and £I(XJ)
are said to be similar if and only if Xj is free for Xi in £1(x{) and £x(xi) has
no free occurrences of Xj. (It is assumed that £1(XJ) is obtained from £x{x^)
by substituting Xj for all free occurrences of # t .)

Lemma 4.8. If £1(Xi) and £X(XJ) are similar, then H(X, ) £1(Xi) =(XJ)£1(XJ).

Lemma 4.9. If a closed wf i£x of a first-order theory T based on K is not
provable in T, then the theory T' obtained from T by adding £λ as an axiom
is absolutely consistent.

Proof: Assume T' is not absolutely consistent. Then for any wf £i we have
^j,£i and *j,l£i. By the Deduction Theorem, it follows that ^j£1 D l£l} and
by the tautology ~\£λ 3 i£t we get ^jΛ£ι => i£l9 Thus, by the tautology
(-\£x D i£j 3 ((£i D ~[£1) D ^£1) and modus ponens, ^Λ£ι which contra-
dicts our hypothesis that i£x was not provable in T. Thus the theory T ' we
obtain by adding £γ to the theory T is absolutely consistent.
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Lemma 4.10. The set of expressions of a first-order theory T is
denumerable. (Hence the same is true of the set of terms, wfs, and closed
wfs of T.)

Definition of Completeness. A first-order theory T is complete if and only
if for any closed wf β{ of T either ^jlβi or ^βit

Definition of Extension. A first-order theory T' having the same symbols
as the first-order theory T is said to be an extension of T if and only if
every theorem of T is a theorem of T'.

Lemma 4.11. (Lindenbaum's Lemma) If Ί is an absolutely consistent
first-order theory, then there is an absolutely consistent and complete
extension of T. If βj is a closed formula of T, then βj is an <A-formula in
T if and only if βj is an c4-formula in that complete extension of T. Hence
a closed formula βj is antinomic in T if and only if it is antinomic in the
complete extension of T.

Proof: Let βu β2, . . . be an enumeration of all closed wfs of T, by Lemma
4.10. Define a sequence Jo, Λ, . . . of theories in the following way. J o is
T. Assume Jn is defined, with n ^ 0. If it is not the case that \~λβn+u then
let Jw+i be obtained by adding βn+1 as an additional axiom. On the other
hand, if ^ " l ^ + i , then let Jn = Jw+1. Let J be the first-order theory obtained
by taking as axioms all the axioms of all the J/s, including Jo = T. To show
that J is absolutely consistent it suffices to prove that the formula
σ4γ & ΛcAλ is not provable in J. If cAx & Ίc4χ were provable in J, the proof
would involve only a finite number of axioms; hence, for some nc4x & Ί ^ i
would be provable in J». Therefore in order to prove that J is consistent,
we must prove that in all the Ji's <A± & ic^i is not provable. If <A\ & Λ<AX is
provable in Jo, then by Axiom K8a, Axiom K8b, and Axiom K3a, any
formula β\ would be provable in Jo. But Jo = T is absolutely consistent,
therefore c4x & Άc41 is not provable in Jo. Now assume that o4λ & Ί ^ is
not provable in J*. If J, = J ί+i, then <A\ & Ic41 is not provable in J ί + 1. If
Jt Φ J ί + 1, then βi+1 is added to J t to form J ί + 1. Suppose that l j ί +1<τ/i & "Wi,
or expressing this another way, βi+1^.c41 & Λ<AX. If βi+i ̂ <^i &Ίσ4ly then
by Axiom K8a and Axiom K8b, βi+1 ^{Ji and A+i^. i^ i . Hence by the
Deduction Theorem, ^βui D ^ i and j f . βui 3 iΌ4i. By the tautology (βj =)
c4k) 3 ((Sj 3 ΛJ^ 3 1*;), then ^r\£i+1. But l£i+1 is not provable in J i ? so
<A & Ί ^ i is not provable in J ί + 1 . Therefore Ji+1 is absolutely consistent
and so is J. To prove the completeness of J, let βj be any closed wf. Then
βj is βi+ί for some i ^0 . Now either ^Iβi+i or l j ί +1<#/+i, since if not-
hj.lβi+i> then βί+1 is added as an axiom in Ji+1. Thus either ι-jΊ^ + 1 or
hj βi+1. Hence J is complete.

Assume £i is an ^-formula in J. If β{ is not an c^-formula in T,
then—by condition 4 for σt-formulas—since β{. is closed it is antinomic in
T. Because all theorems of T are theorems of J, by Axioίn K3a any
formula βj is provable in J (since Si is an ^-formula in J). This contra-
dicts the absolute consistency of J. Thus β{ is an ^-formula in T. Suppose
now that βj is an ^-formula in T and βj is not an ^-formula in J. By
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condition 4, βj is antinomic in J. Since βj is not antinomic in T, take the
least i for which %+1£j and •j|.+1"i#y. By Axiom K6, hji+1£j & "l#/; using
reasoning similar to the above, we can then show that any formula βk is
provable in J, which contradicts the absolute consistency of J. Therefore
for all i not-^.βj & iβj and βj is an ^-formula in J. If βj is antinomic in
J, £j is antinomic in T, for if βj is not antinomic in T, then (since βj is
closed) it is an ^-formula in T hence βj would be an ^-formula in J by
the preceding proof. If βj is antinomic and is an ^-formula in J, then by
Axiom K3a any formula £k is provable in J. But J is absolutely consistent.
Thus βj must be antinomic in T. Conversely, since all theorems of T are
theorems of J, if βj is antinomic in T, then βj is antinomic in J.

Proposition 4.12. Every absolutely consistent first-order theory T has a
denumerable model.

Proof: Add to the symbols of T a denumerable set {bx, b2, . . ., bn, . . .} of
new individual constants. Call this new first-order theory To. Its axioms
are those of T plus those logical axioms which involve the new constants.
To is absolutely consistent. For if it were not, then ^ βj for any wf βj.
Replace each 6t appearing in this proof with a variable which does not
appear in the proof. This transforms axioms into axioms and preserves the
correctness of the applications of the rules of inference. The final proof is
then a proof in T. Thus we would have for any wf β^ in the language of T
that tjj?£, which contradicts the absolute consistency of T.

By Lemma 4.10 let βχ{xij, . . ., <#&(%), . . . be an enumeration of all
wfs having at most one free variable. (Let Xjk be the free variable of βk if
the latter has a free variable, otherwise let Xik be ΛΓ1#) Choose a sequence
bjv bj2, . . . of some individual constants such that bjk is not contained in
<#i(#ΰ)> •> &k(xik) a n c * such that bjk is different from each of bjv bj2,. . .,

If (Xik) βk(χik) is n ° t antinomic in the theory To, then we shall let the wf

(Sk)beβk(bjk)^(xik)£k(xik)

where (xik)βk(χtk) i s a n ^-formula by condition 4. If (xik) £k(χik) i s

antinomic in the theory To, then we shall let the wf

(Sk) be Ί(xik)βk(xik) => Ίβk(b1h) & βk{b1k).

Let Ίn be the first-order theory obtained by adding (Sj, . . ., (Sn) to the
axioms of To, and let Too be the theory obtained by adding all the (S, )'s to
To. If "Wi & <Λχ were provable in T^, then by Axiom K8a, Axiom K8b, and
Axiom K3a, any wf βj would be provable in T oo, which then would not be
absolutely consistent. If i ^ & ^ i were provable in Too, then its proof
would contain a finite number of the (Sf )'s and therefore would be a proof in
some Tw. Hence, if in all the Tf 's Λc4\ & c4x is not provable, Too is
absolutely consistent. The proof that in all T, 's ~\JX & Jx is not provable
is by induction. In To, ~\<Aγ & <A\ is not provable because if it were, then by
the same reasoning as above, To would not be absolutely consistent.
However, To is absolutely consistent, so lc41 & c4x is not provable in To.
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Assume ~\σ41 & <Aγ is not provable in all T/'s for i < n. The case in which
(Xik)Sφcik) is an ^-formula in (S&) is the same as the classical one. The
case in which (Xik)Sk(χίk) * n ($k) is antinomic in To is proved as follows.
Assume »γ "l*/i & *4U

 o r i n other words (SJ |τJI_1*#i & "\a4\. By the Deduc-
tion Theorem, hj-IJ.1(5ij) D o4x & 1 ^ ; but since (Sw) Ξ° Ί(SW) is a tautology we
also have htn.1"l(5«) ^ <?/i & "Wi, so by Axiom K4 hfw_1^i & "Wi This
contradicts the inductive hypothesis that in the theory Ίn.lcτ41 &, Άc41 is not
provable. Thus c4x & iσ41 is not provable in Ίn for all n, so Too is
absolutely consistent.

For any closed wf Sk, Sk is an ^-formula in To if and only if it is an
^-formula in Too. Suppose Sk is an c^-formula in To and not an ^-formula
in Too. By condition 4, Sk is antinomic in Too. If Sk i s antinomic in Too,
then take the least n for which (Sn)

 hfw_1̂ fe and (Sn) ljn iSk where Sk is an
c^-formula in ln.1 and is antinomic in Ίn. By the Deduction Theorem,
^.-iCSi ) D £k and h-w.f(Sw) => Ί^ f e . If (Sn) is antinomic in T^, then Hj-^Λ
and tj^iSk By Axiom K3a, any formula Si is provable in Tw-i, which
contradicts the absolute consistency of T^. If (Sn) is not antinomic in T^x,
then since (Sn) is closed by condition 4, (Sn) is an ^-formula in Tw_lβ By the
tautology ((Sw) o> Sk) => (((Sw) D Ί ^ D Ί ( S Λ ) ) , it is the case that ^ . ^ ( S j .
But (Sw) is added to ln.1 to form the theory Ίn, and (Sn) is an c^-formula in
Tw; so by Axiom K3a, any formula Si is provable in T«. But Tw is absolutely
consistent. Thus Sk is an ^-formula in T oo Conversely, assume Sk is an
c?/-formula in Too and not an <τ/-formula in To, then Sk is antinomic in To by
condition 4. Since all theorems of To are theorems of Too, Sk is antinomic
in T oo. Since Sk is an ^-formula in T oo, then by Axiom K3a any formula Si
is provable in Too. But Too is absolutely consistent. Thus Sk is an
c^-formula in To. Hence by reasoning similar to that of Lemma 4.11, it
follows that Sk is antinomic in T 0 if and only if Sk is antinomic in T oo. T^
is an extension of To, and by Lemma 4.11 we shall let J be an absolutely
consistent and complete extension of T oo. The denumerable interpretation
3Λ shall have as its domain the set of closed terms of To which by Lemma
4.10 is a denumerable set. If c is an individual constant of To, then its
interpretation shall be c itself. For a predicate letter A, of K, the
associated relation A\ in 9W shall hold for arguments tί9 . . .,tn if and only
if *-jAi(tι, •> in)* For a predicate letter Bj of K, the associated relation
Bj shall hold for arguments tl9 . . ., tn if and only if j-By(fi, . . ., 4), and the
associated relation B" shall hold for arguments tι, . . ., tn if and only if
^ lBj(tι, . . ., 4). To show that 9W is a model for To (and therefore also for
T, since every theorem of T is a theorem of To), it suffices to show that
any closed wf Sj of To is true and not antinomic in 9W if and only if *j Sj and
not-fjΊ</?p and that a closed wf Sj of To is antinomic in 2W if and only if
^]Sj and tj~lSj, since all theorems of Toare theorems of J. The proof is
given by induction on the number of connectives and quantifiers in the wf
Sj. If Sj is a closed atomic wf, then by definition Sj is true and not
antinomic in 9JΪ if and only if tjSj and not-t-jlSj, and Sj is antinomic in 3W
if and only if Hj SJ and t-jlSj. We shall assume for the inductive step that if
SH is any closed wf with fewer connectives and quantifiers than Sj, then Sh
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is true and not antinomic in Wl if and only if v^£h and not-hjΊ«#Λ, and £h is
antinomic in Wl if and only if ^]£h and ^ l£h

Case 1. £j is i£h.

Subcase la. £j is antinomic in 9W if and only if ^£j and ^jl£j.

Proof: If 1 ^ is antinomic in 2R, then £^ is antinomic in 2R. By the
inductive hypothesis, £% is antinomic in 9W if and only if ^£h and ^ Ί ^ A . By
Axiom K7a, we have ^Ίi£h- Thus if 1<£A is antinomic in 2W, then f j i ^ and
^Ίl£h. Conversely, assume * j l^ and ^ll£h- By Axiom K7b, we have
^j£h and ^jΊ^. Thus by the inductive hypothesis, £h is antinomic in 28. If
£h is antinomic in 2W, then i£h is antinomic in 9Jί.

Subcase lb. Ί ^ is true but not antinomic in Jtt if and only if HjΊ^and
not- tjii£h.

Proof: Assume Ά£\Ϊ is true and not antinomic in 2W. Therefore £κ is false
and not antinomic in 2tt. Since J is complete, it follows that *jl£h or
*j Ίl£h- Assume first that ^i£h and IJΊΊ^A. By Axiom K7b we obtain
^j^and ^]l£h- By the inductive hypothesis, £h is antinomic in 9W. It was
assumed, however, that £}ι is not antinomic in 2R, so Ί ^ i s not antinomic
in J. Assume that ^ j Ί Ί ^ and not-tjΊ^. It follows by Axiom K7b that
Hj £h and not- \-j i £jι. By the inductive hypothesis it follows that £h is true
and not antinomic in 9W. But £h is false and not antinomic in 2W. Thus
hjl£h and not- Hj Ί Ί ^ On the other hand, assume ^l£h and not- i - j i l f t If
l£h is antinomic in 9W, then ^ is antinomic in 9W. If £^ is antinomic in 9W,
then by the inductive hypothesis, ^j£h and *j"l<#λ By Axiom K7a we
obtain ^jil£h9 which is contrary to our assumption, so l£h is not
antinomic in 9W. Assume now that l£h is false and not antinomic
in 9)1, then £h is true and not antinomic in 9W. By the inductive hypothesis
it follows that hj£h and not-^"1 </?/>. By Axiom K7a, ^ll£h9 which is
contrary to our assumption. Thus £fι is true and not antinomic in
2».

Case 2. £j is £γ 3 £2.

Subcase 2a. £1'D £2 is antinomic in 3H if and only if ^~j£χ ^ £2 and

Proof: li £χ^> £2 is a closed wf, then so are £λ and £2. £ι^> £2 is
antinomic only when £2 is antinomic in 9J1 and ^ x is true or antinomic in 9W.
By the inductive hypothesis we have t-J£1 (or ^]£1 and ^Ί^i ) , jΊ<^2?and
^ ^ 2 By Axiom Kl we obtain ^£λ 3 < 2̂. By Axiom K5 we obtain ijΊ(^x ^
4̂ 2). Conversely, we assume ^£x =) <#2 and »j Ί ^ =) <#2). By Axiom K12 we
obtain ^£x & Ί ^ 2 By Axiom K8a and K8b we obtain ^£γ and tjΊ^2 So by
ϊj <#i >̂ <#2 and ^£^£2. By the inductive hypothesis, £1 is true or anti-
nomic in 9tt and £2 is antinomic in 9tt. Therefore £x => <̂ 2 is antinomic
in 9».

Subcase 2b. £x ^> £2 is true but not antinomic in 2W if and only if hj£i^ £2
andnot-Hjl(^! 3 £2).
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Proof: Assume that £1 => £2 is true and not antinomic in 2ft. There are two
subcases to consider. First, £λ is false and not antinomic in 9ft and £2 is
true, false, or antinomic in 2ft, and second, £2 is true and not antinomic and
£x is true, false, or antinomic in 2ft. Let us first assume that £x is false
and not antinomic in 9ft. By Case lb and the fact that ~[£λ is true and not
antinomic in 2ft, it follows that ^ Ί ^ i and not- ^ 1 1 ^ . l£λ is not antinomic
in J, therefore—since ~λ£x is closed—by condition 4, l£t is an ^-formula
and Si is also an ^-formula by condition 2b. By Axiom Kl, ^Λ£2

 D Ί<#i>
and by the tautology (l£i => Ί ^ ) => (*/f 3 **), ^£λ^ £2. If HpO^ 3 # a ),
then by Axiom K12, Axiom K8a, and Axiom K7a we have *j~π<#i. This is
impossible since it is not the case that HJΊΊ^I Thus n o t - ^ i ί ^ D £2).
For the second case, let us assume that £2 is true and not antinomic in 2ft.
By the inductive hypothesis, \j£2 and not-»jΊ^2. By ^£2 and Axiom Kl,
hj^1 D £2. if hj i ( ^ D <#2), then by Axiom K12 and Axiom K8b, j i£2. This
is impossible, so not- ^ l ( # i ^ £2). In both cases tjJSt^JS* a n c * n o t "
hj η ^ D £2). On the other hand, assume that ĵ £t D £2 and not- *j "!(</?! =>
</?2). If ^i D <#2 is antinomic in 2W, then £2 is antinomic and £x is true (or
antinomic). By the inductive hypothesis, ^£2, ^}l£2, and ^£ι (or Hj^ and
Hji^i). By Axiom K5, Hj 1 ^ => < 2̂), which is contrary to our assumption;
so £x ^ £2 is not antinomic in 9W. Now suppose that £x 3 ^ 2 is false but not
antinomic in 9W. It follows that £ι is true and not antinomic in 2W (or £1 is
antinomic in 9W) and <#2 is false and not antinomic in 2B. So by the inductive
hypothesis and Case lb, ^j^i, not-iji^x (or v^£1 and ^jl^i), and \-$~\£2 and
not- Hjiπ^g. By Axiom K5, j l ( ^ i D < 2̂), which is contrary to our assump-
tion; so £λ ^ £2 cannot be false and not antinomic in 9R. Thus £x 3 £2 is
true and not antinomic in 9W.

Case 3. £j is £1 & £2.

Subcase 3a. £x & £2 is antinomic in 9tt if and only if ϊj£1&,£2 and
Hjl(^i &^2).

Proof: If £λh £2 is antinomic in 2K, then one of the £'s is true or
antinomic in 9W and the other is antinomic in 9W. Assume that £1 is true or
antinomic in 2ft and </?2 is antinomic in 2ft. By the inductive hypothesis,
^£i, ^ l£2, and ^£2. By Axiom K6 we obtain i j ^ & < 2̂. By Axiom K9b we
obtain ^ Ί ^ v Ί<#2 and by Axiom K10 we obtain HjΊ(^!&^2). Conversely,
we assume hj i(£x & £2) and Hj^x & £2. By conditions 2a and 2b, if £γ and
^ 2 are ^-formulas, then Ά(£X & £2) is an c^-formula.. Since l(£x & ̂ 2) is a
closed wf (because ^ x and £2 are closed), then by condition 4 Ί(<#I & £2) is
not antinomic in J. So d?± (or ^ 2 ) is not an ^-formula. If £λ (or £2) is not
an ^-formula, then by condition 4 £1 (or j?2) is antinomic in J. By the
inductive hypothesis, £λ (or £2) is antinomic in 9H. Since ^ ^ x & ̂ 2 , then by
Axiom K8a and Axiom K8b ]^£1 and ^£2. If ^ 2 i s not antinomic in J, then
by the inductive hypothesis, £2 is true and not antinomic in 9W. Thus
£ι & £2 is antinomic in 9ft.

Subcase 3b. £λ & £2 is true and not antinomic in 9ft if and only if *j £γ & £2

and not- H j Ί ^ & £2).
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Proof: Assume that £λ & £2 is true and not antinomic in 2W. Therefore £y

and £2 are true and not antinomic in 9W. By the inductive hypothesis, ĵ< î,
not-^Ί^u ^j£2, and not-^Ί<#2. So by condition 4, £1 and £2 are <A-
formulas, and by condition 2a, £λh£2 is an c^-formula. By Axiom K6,
•j £χ & £2. If *jl(<#i & <#2)> then by Axiom K3a any formula £k is provable,
which contradicts the absolute consistency of J. Thus tj £x & <#2 and
not-^i(^! & < 2̂) On the other hand, assume that *j £x & £2 and not-
ij ~\{£x & <#2). First, if £λ & ̂ 2 is antinomic in 2W, then ^ is antinomic in
2W and </?2 is true (or antinomic) in 2W. The argument is similar if £λ is
true (or antinomic) in 9K and <#2 is antinomic in 2W. Therefore, by the
inductive hypothesis, »j £x and ^jl£ly and by Axiom K9a tjid?ivid?2-

 B v

Axiom K10, ^ i t f t & f t ) . But this is contrary to our assumption, so
£i & </?2 is not antinomic in 9W. Suppose now that £x & <̂ 2 is false but not
antinomic in 9W, hence £λ (or ^ 2 ) is false and not antinomic in 9K. By Case
lb, it follows that ^Ί<#i and not-^ΊΊ^i. By Axiom K9a, t-j-}£1vi£2, and
by Axiom K10, ^l(£ι & £2), which is contrary to our assumption. Thus
£ι & £2 is true and not antinomic in 9W.

Case 4. £j is £1w£2.

Proof: Both subcases are similar to the subcases in Case 3.

Case 5. £j is (xn)Sh-

Since we have an enumeration of all formulas with at most one free
variable, we may assume that £h is £k(xik)

Subcase 5a. (xn)<#k(xik) is antinomic in Stt.if and only if ^ (xn)£k(xik) and
lj"l(#n)A(*f*).

Assume first that xn is not Xik, then £k(xik) is closed and does not
contain xn free. If £k(%ik) is closed, then it is clear from the definition of
satisfiability that (xn)£k(xik) is antinomic in 2Jί if and only if £k(xik) is
antinomic in 9W. We shall show that (xn) £k(xik) is antinomic in J if and only
if £k(xik) is antinomic in J. Assume £\ is antinomic in J. If £k(xik) is not
antinomic in J, being a closed wf it is an c^-formula. Therefore, by
condition 2a, (xn)£k(xίk) is also an ̂ -formula. Since ^]£j and ^l£j, then
by Axiom K3a any wf £ι is provable in J, which contradicts the absolute
consistency of J. Therefore £k(xik) is antinomic in J. On the other hand,
assume that Skixik) i-s antinomic in J. By generalization, f ] W 4 f e ) > and
by Axiom K16 and *jld?%(xik)9 we also have that tjl(xn)£k(xik)- Thus £, is
antinomic in J. By the inductive hypothesis, subcase 5a is proved for xn

different from Xik.

Assume now that xn is Xik. If (Xik)£k(χik) is antinomic in 9tt, then for
some closed term t we have that £k(t) is antinomic in 9W by property P22.
By the inductive hypothesis, ίj £k(t) and *j l£k(t) We shall prove that
(xik)£k(xik) is not an ̂ -formula. Assume that it is, then by the complete-
ness of J either ^ (xik) £k(χίk) or ^~i(Xik)£k(χίk) # £j is antinomic in J,
then by Axiom K3a any wf £χ is provable in J contradicting the absolute
consistency of J. Therefore £j is not antinomic in J. Assume that Hjify and
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not-ijΊ^/. Since ^jl£k(t), then by Axiom K16 ^jl(xik) £k(χik)> which con-
tradicts the assumption. Assume now that *jl£j and not-Kj</?; . Since £y is
not antinomic in J, (Sk) is £k(bik) D (χik)£k(χik) £j is antinomic in 9M, then
by property P22 and definition 6a of satisfiability, £k(xik) is true or
antinomic in 9W. By the inductive hypothesis, it is the case that ^j£k{bik)
(or *jJBk(bik) and *j"lΛ(δ, *))> which together with (Sk) leads to »j £j, contrary
to the assumption. Hence £j is not an ^-formula, and it follows from
condition 4 for ^-formulas that £j is antinomic in J. On the other hand,
assume that (xik)£k(χik) is antinomic in J. By Proposition 4.11 and the
reasoning offered earlier, (xik) £k(χtk) is antinomic in To. Hence (S )̂ is
"1 (x'ik) £k(χik) D ~l£k(bik) & <Kk(bik). Let t be any closed term of To. Since
hj(χik)£k(χik), by Axiom K14 it is the case that tj£k(t) By the inductive
hypothesis, £k(t) is true in 3W for every t in the domain of 2JI, therefore
(xik)£k(χik) is true in 2W. By the inductive hypothesis, £k(bik) is antinomic
in 9W since £k(bik) is antinomic in J. Thus (xik)£k(χik) is antinomic in 3W by
property P22.

Subcase 5b. (xn)£k(χik) is true and not antinomic in aw if and only if
hj (χn) <#k(χik) and not- Hj Ί(XW) £k(

χik)-

Assume first that #w is notxik, then <#fe(#t fe) is closed and (xn)£k(χik) is
true and not antinomic in 9W if and only if £k(χik) is true and not antinomic
in 3» by definition of satisfiability. We shall prove that fj (xn) £k(xik) if and
only if ^j£k(χik)- Assume that ^ (xn)£k(χik); by Axiom K14, 'j^fefe). Con-
versely, assume that *-j£k(xik), then by generalization, ^(AΓJ^(ΛΓ^). By the
inductive hypothesis, subcase 5b is proved for xn different from x^.

Assume now that xn is # f &. Further, assume that £j is true and not
antinomic in 9W. Since J is complete, either bj£j or hji£j. We shall show
that l£j is not provable in J and £j is not antinomic in J. Suppose that l£j
is provable in J. (Sk) is either £k(bik) => (Xik)£k(χiύ or ~\{χik)£k(χik) D

Ί<#k(χik) & £k(χik)- By the tautology ( ^ D ̂ ) D ( Ί ^ D Ί ^ ) , we obtain
l (#ίfe) <#fe(#, fe) 3 ~l̂ fe(&/jfe) whenever ^/ is not antinomic (and therefore an
c^-formula by condition 4). If l£j is provable in J, whatever the form of
(Sk) it follows that ijΊ£*(&**) (using Axiom K8a when necessary). If £k(bik)
is antinomic in J, then by the inductive hypothesis, £k(bik) is antinomic in
2W. By property P22, (χik)£k(χik) is then antinomic in 9W, which is a
contradiction. Therefore £&(bik) is not antinomic in J. If l£k(bik) is
provable in J, then by Case lb l£k(bik) is true and not antinomic in 2K.
Since (Xik) £k(χik) is true in 2W, £k(b{k) is true in 9W. This would mean that
£k(bik) is antinomic in 9W. By property P22, (Xik) £k(χik) is again antinomic
in aw, which is a contradiction. Therefore ΊiΓ*(&f &) is not provable in J.
Hence l£j is not provable in J. That £j is not antinomic in J is proved as
follows. If £j is antinomic in J, then (S )̂ is i(xik) £k(xik) D ~l£k(bik) &<#fe(&/fe);
as a consequence, £k(bik) is antinomic in J and therefore in 8W. Thus £j is
antinomic in 3W—a contradiction. Hence ij</?y and not-fj Ί </?/. On the other
hand, assume that \-y£j and not-Hp^y. First suppose that £] is false and not
antinomic in 3W. Then for some closed term t in 2W, £k(i) is false and not
antinomic in 9W. By Case lb, hj l£k(t) and not- ^ll£k(t). Hence not-^£k(t).
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By condition 4, £k(t) is an c4-formula. By Axiom K14, (Xik) £k(%ik) D <#k(t),
and the tautology (jgx D ̂ X ) 3 ( Ί ^ D i ^ J , we obtain hj "I (*,*)#*(#,•*), which is
a contradiction. So ify cannot be false and not antinomic in 9W. Suppose now
that d?j is antinomic in 9W, then for some closed term t, £k(t) is an-
tinomic in 3W. By the inductive hypothesis, £k(t) is antinomic in J, but then
h " l f e ) & W by Axiom K16, which is contrary to our assumption. Hence
Sj cannot be antinomic in 2W and must be true and not antinomic in 2W.

Proposition 4.13. If a wf £j is logically valid, then £j is provable in T.

Proof: We shall consider only closed wfs, since a wf £j is logically valid if
and only if its closure is logically valid, and £j is provable in T if and only
if its closure is provable in T. Assume that Sj is a logically valid closed
wf. If Sj is antinomic in the theory T, then £j is of course provable in T.
Assume that £j is not provable in T, then by Lemma 4.9 we can add l£j to
T to form the theory T', which will be absolutely consistent. Suppose that
l£j ^f£j. It follows that \JΊ£J D £J by the Deduction Theorem, and since
£j >̂ £j is a tautology, we have \j£j by Axiom K4, which is contrary to our
assumption. Therefore i£j is not antinomic in T' by Axiom K7b. By
condition 4 for ^-formulas, Ί£J is an ̂ -formula in T\ By Proposition
4.12, we can construct a model 2H such that l£j is true and not antinomic
in 9W if and only if *j Ί£J and not- \jll£j9 and l£j is antinomic in 9W if and
only if ^jl£j and h[Ίl^/, where J is the complete and absolutely consistent
extension of T^ constructed as in the proof of Proposition 4.12. If l£j is
antinomic in 2W, then ^jl£j and ĵ il£j. Since l£j is an ̂ -formula in T',
then it must be an ̂ /-formula in To (where l'o is T' with the addition of the
constants bl9 b2, . . . as in the proof of Proposition 4.12). If this were not
the case, then we would have proofs in To of l£j and £j. If we were to
replace all occurrences of the b^s by variables not occurring in the proofs
of l£j and £j, then the resulting proofs would be proofs in Tf. But £j is an
<?/-formula in Tf, and by Axiom K3a any wf would be provable in Tf, which
contradicts the absolute consistency of T'. Hence i£j is an ̂ /-formula in
TQ. l£j is also an ̂ -formula in Tio (see the proof of Proposition 4.12 and
also Lemma 4.11), therefore l£j is an ̂ -formula in J. But then by Axiom
K3a any wf £t would be provable in J. Since J is absolutely consistent, ~λ£\
cannot be antinomic in 9W. Because i£j is provable in J, it is true and not
antinomic in 9W by the proof of Proposition 4.12. Since £j is logically
valid, £j is also true in 2W. £j is not antinomic in 2B because l£j is not
antinomic in 9W. Hence i£j is both true and false, and also not antinomic
in 3W, which is impossible. Thus, £j must be a theorem of T.

Proposition 4.14. A well-formed formula of T is logically valid if and only
if it is a theorem of T.

Proof: Propositions 4.7 and 4.13.

III. AN ANTINOMIC SET THEORY

5 Antinomic Sets and Ordinals We shall use two predicate letters, = and e,
the first an A-letter, the second a B-letter (see section 3). Definitions Dl
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to D4 introduce respectively inclusion, union, intersection, and comple-
mentation. These definitions are identical to those of classical set theory,
except that here = is replaced by =° in each definition. In addition, we need
the following.

D5. x ^ y =° (x Qy &,x Φy) (Proper Inclusion)
D 6 . (t)(t e <jb =° t Φ t) (Null Set)
D7. (t)(t e V =°t = t) (Universal Set)

D 8. x=* y =° (t)(tex =°tey)
D9. (t)(te {x,y}=°t=*xvt=* y) (Unordered Pair)
D10. (t)(t e (x, y) =° t =* {x}v t =* {x, y}) (Ordered Pair)
D l l . ( t ) ( t e w x z =° t = * ( u , v ) & u e w & v e z) (Cartesian Product)
D12. RelW =° x Q V x V (Binary Relation)
D13. (t)(te E =° t=* (u,v) &ue v) (e-relation)
D14. x Irr y =° (t)(t e y ^ {t, t)^x) & RelW (x is an irreflexive relation on y)
D15. x We y =° Re\(x) & x Irr y & (z)(z C y & (3t)(tez) 3 (3w)(wez &

(v)(ve z & v Φ* w ^> (w,υ)ex & ((w,v)ex & (v, w)ex o
M; =*f)))) (ΛΓ well orders 3;)

D16. Trans (x) =° (t)(t e x 3 t c x) (x is transitive)
D17. OW =° Trαns(tf) & E We X
D18. OrdM =°O(ΛΓ) & (y)(θ(y) &yey ixey) & ty)(O(y) & ΛΓ€ΛΓ D yeΛ;) &

(y)(Otv Qx btey h.tiy ^y Qt) & (y)(:yeΛr D O W )
(AT is an ordinal)

D19. tfeOn =°OΓCI(ΛΓ)

Sets y for which there is a ί such that tey and i/y will be called
antinomic, and t will be called an antinomic member of y. Sets without
antinomic members will be called consistent. Axioms for a Set Theory S
follow (not all independent).

SI. (x)(x = x)
S2a. (u)(v)(z)(v = z -D (Sχ(uf υ) 3 S^u, z)))
S2b. (u)(v)(z)(u = z D ( ^ ( M , Z;) D £&, v)))

In Axioms S2a and S2b <Bλ is any wf containing an arbitrary finite
number of free variables.

53. (x)(y)(z)(x = y&y=z^>x = z )
5 4 . (x)(y)(x =* y = x = y) (Axiom of Extensionality)

This axiom states that two sets are identical if they contain the same
consistent and antinomic members.

55. (x)(y)(^z)(t)(t e z=°t=*xvt=* y) (Axiom of Unordered Pairs)
56. (3z){x)(xe z =° x ΦX) (Null Set Axiom)
57. (x)(y)(3z)(t)(tez =°tex btey) (Intersection)
58. (x)(3y){t)(t ey =°t ix) (Complementation)
59. (3y)(x)(x e y =° £i(x)), where x occurs free in β^x) but y does not, and

where £x(x) is a wf that contains only occurrences of e, or only
occurrences of =, or if it contains occurrences of both predicate
letters then not-ι-£ι(x) = x Φx.. (Axiom of Comprehension)
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Proposition 5.1. Ord(#) D xix & (u)(ue x 3 ufίu).

Proof: Since Ord(#), then E is Irreflexive on x; so (w)(̂ e x ^ uiu). Ji xe x,
thenxfίx.

Proposition 5.2. E Irr On.

Proof: Let xe On, thenθrd(x). By Proposition 5.1 it follows that xix.

Proposition 5.3. Ord(#) & Trans(y) & y C # 3 y e x.

Proof: Let us consider the set £ defined in the following way: υez=°υexh
Vfίy (i.e., z is the intersection of x and the complement of 3;). It follows
that z Q x. Since Ord(#), x is well-ordered and therefore there is a w which
is the least member of z (then, for all v, υ Φ* w & υ e z 3 w e v). Since w e x,
if 3; =* w, then y e x by Axiom S4 and Axiom S2b. In order to prove y =* w,
the following cases should be proved (see definition of y =* x): Case 1,
tey 3 tew (i.e., y c w); Case 2, tew ~^> tey (i.e., w C 3;); Case 3, tiy 3
ί^w; Case 4, f/w => ί/y.

Case 1. Assume tey and tfίw. Since ΛΓ is well-ordered and the set {t, w} is
a subset of #, then {t, w} has a least member. There are two cases to
consider: (i) when it is the case that tfίw and tew; (ii) when it is not the
case that tew. In either case we shall reach the conclusion that xex.
First let us assume that tew and tiw. SinceOrd(x) and wex, then tex and
O(t). Ord(#), we x, tew, and tiw imply w Qt. But tew and w c t imply that
tet. Ord(#), O(t), tet imply xet. Trans(x), xet, and ί e # imply#ex . We
shall now assume that it is not the case that tew, then wet (there is a least
member of the set \t,w}). Trσns(y), wet, and ί e y imply wey. Because
we z, it follows from the definition of z that wiy also. By the definition of
Ord(Λr) it follows thatθrd(x),3> c x, wey, and w(y imply y c w. Since we 3;
and y e w , then we w. Since we x andOrd(x), then O(w). By the definition of
Ord(Λr), Ord(Λr), θ(w), and we w imply xe w. Since #e w and wex, then by
transitivity of x, xe x. Since x is well-ordered and 3; is a subset of x (by
assumption), then y is well-ordered (a subset of a well-ordered set is
well-ordered). Since by assumption Trαns^) and E We y, then 0(3;). By the
definition of Ord(Λτ),Ord(Λr), O(y), and xex imply ye x. Also, xe w and w Q y
imply xe y (xew and w c y in both cases above). Consider the set {x,y},
which is a well-ordered subset of x. Thus the set {x,y} has a least
member. By the definition of well-ordering, xϊ*y,xey, and yex imply
x =* y. If # =* 3?, then by Axiom S4 x = 3;. Therefore by assuming tfίw we
obtain y = x (i.e., t^w^>x = y). Since ΛΓ = 3; is an c^-formula, it follows by
the tautology ( Ί ^ X => c^i) => ( l ^ i 3 ^1) (in which £λ is ίe w and c41 is x = y)
that # ?t 3; D ίe w. By assumption y is a proper subset of x, so x Φ y by the
definition of proper subset. Thus x Φ y and x Φ y 3 tew imply tew.

Case 2. Assume /ew and tiy. tex and ί/3; by assumption, so it follows
from the definition of z that tez. Since tez, then we t (where w is the least
member of z). Consider the set {t,w}, which is a subset of x. x is
well-ordered because Ord(#), therefore {t, w} has a least member. As in
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Case 1, tew and wet imply t = w. By Axiom S2b, te w and t = w imply
we w. By definition of Ord(#), we.x implies O(w). By definition of Ord(#),
OΓCI(ΛΓ), O(w), and we w imply xew. Consider the set {x, w}} which is a
subset of the well-ordered set w. The set {x, w} has a least member.
Again, as in Case 1, xew and wex imply w = x; furthermore, also as in
Case 1, O(y), By Axiom S2a, w = x and xew imply xe x. Ord(Λτ), 0(3;), and
xex imply yex by the definition ofOrd(Λr). Let us consider the two cases
yey and yjy. If yey then, since Ovό(x) and O(y), it follows from the
definition of Ord(λr) that xe y. Consider the set {x,y}, which is a subset of y.
Since y is well-ordered, there is a least member of {x,y}. By the same
argument used in Case 1, xe y and ye x imply y = x. If y/y, and since ye x,
then by the definition of z, ye z. It follows then that we y because w is the
least member of z. By Axiom S2b, w = x and we y imply AT ey. Again by
considering the set {x, y}, it follows through the same reasoning used above
that xe y and yex imply y = x. By Axiom K4 (where £1 is ye y and <#2 is
y = ΛΓ), it follows that y = x. So by assuming t^y, we obtain y = x (i.e.,
£/3> D y =#). By the tautology (l£x D 0/1) => (1^/χ D <#I) (where βx is /ey
and cAi is y = ΛΓ), and because 3; * # (since y is a proper subset of x), then
ίey . Thus tew ^ ί e y .

Case 3. tfίy ^> t(w. Assume ij/ y and te w, then y = x where the proof is
like that in Case 2 (i.e., t e w 3 y = x). By the tautology (£x 3 c4^j 3 ( 1 ^ 3
l£j) (where Sλ is tew and ^ is y = x), and because y Φ X, it follows that
tiw.

Case 4. ί/^ z> tiy. Assume tfίw and ίey . Assuming that teyf we obtain
y = x (i.e., ί e ^ ^ ^ = Λ τ ) with the same proof used in Case 1. By the
tautology (£x 3 σ4λ) 3 ( 1 ^ 3 Ί^x) (where £x is ίe 3; and ĉ x is y = x), and
the fact that y * ΛΓ, it follows that tiy.

Proposition 5.4. Ord(#) & Ord(y) 3 (Λ C y vy e ΛΓ VΛ: = y).

Proof: Assume Ord(Λr), Ord(y), and x Φ y. Now x Π y c x and ΛΓ n y c y.
Since x and y are transitive and well-ordered, then x Π y is transitive and
well-ordered; so O(x Π y). Ίϊ x Π y <^ x and x Π y c y, then ΛΓ n y e x and
ΛΓΠyey by Proposition 5.3, hence ^ΠyeΛτΠ3;. By definition of Ord(x),
Ord(Λr), O(x Π y), and xΠyexn y imply xe x Π y, and similarly for Ord(y),
y c ΛΓ Π y. The set {*, Λ; n 3;} c x Π 3; and contains a least member because x
is well-ordered. As in the reasoning used in Case 1 of Proposition 5.3,
xe x Π y and x Πy ex imply x = * 0 y; similarly, y='xny. By Axiom S3,
x = y, which is contrary to our assumption. Thus xnyQx orxΠycy.
Since * * y, then # n y c # o r # n y C y ; so 1 c 3; or 3; c 1, Thus by
Proposition 5.3, xe y or ye x.

Proposition 5.5. Ov6(x) & ye x 3Ord(y).

Proof: Since by assumption ye#, then O(y) by the definition of Ord (ΛΓ). In
order to prove that Ord(y) we must prove the following:

(1) (z)(O(z) & zez ^yez);
(2) (z)(O(z) byey^zey);
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(3) (z)(t)(z Qy btez htiz ^z c t);
(4) (u)(uey^O(u)).

(1) Assume O(z) and zez. By the definition of Ord(#), Ord(Λτ), O(z)? and
z e z imply xe z. Since y e x, xe z} and Trans(z), then yez. Hence (z)(θ(z) &
zez ^> ye z).

(2) Assume 0(2) and y ey. By the definition of Ovό(x), Or6(x), O(y), and yey
imply xey. Since O(y), then y is well-ordered, so the set{x,y}9 which is
a subset of y, has a least member. As in Case 1 of Proposition 5.3, xey
and yex imply x = y. By Axiom S2a, x - y and xe y imply # e # . By the
definition of Ord(#), Ord(x), O{z), and #e # imply zex. By Axiom S2a, z e x
and ΛΓ = y imply £ e y. Hence (z)(O(z) & yey ^ zey).

(3) Assume ^ c ^ ί e ^ , and t^z. Since by assumption 3; € x, the transitivity
of x implies y c ΛΓ, SO because 2C3) and 3; c ΛΓ it follows that 2 c i . By the
definition of Ord(#), Ord(#), z Q x, te z, and tfίz imply K ί . Hence (z)(t)(z c
3> & £e£ & ̂ 2 ^ ^ c ί ) .

(4) Assume we3;. Since Trans(x), then wey and yex imply we#. By the
definition of OrdW, OrdW and uex imply O(u). Hence (u)(uey ^ O(w)).

Proposition 5.6. E We On.

Proof: Assume x Q On and x ** 0. If 3? is the least member of x, then the
proof is finished. If y is a member of x but not its least member, then
x (Ί y Φ* φ. Since x 0 y c y and 3> is an ordinal, then x Π 3; is well-ordered.
Let w be the least member of x Πy; w is an ordinal because wex. If ί is
any ordinal of ΛΓ, then by Proposition 5.4 te w or we t or t = w. If for all ί
in ΛΓ, M; e t or w = t, then w is the least member of x. On the other hand, if
for some ttew, we shall show that w = t. Assume tew. Since tew and
wey, then tey by the transitivity of 3;. Thus texfty; so it follows that
we £, since w is the least member oί x Πy. Consider the set {w, t} included
in 3;. The set y is well-ordered because y is an ordinal, so {w, t} has a
least member. As in Case 1 of Proposition 5.3, wet and tew imply t = w.
Thus w is the least member of x.

Proposition 5.7. Trans (On).

Proof: Assume ueOn. We shall show that if ve u, then υe On. Since we On,
then by definition of On it follows thatθrd(w). By Proposition 5.5, veu and
Ord(w) imply Ord(t>), therefore v e On.

Proposition 5.8. O(On).

Proof: By Propositions 5.6 and 5.7.

Proposition 5.9. (Ord(#) & x e x & Ord(y) &3>e3>) => x = y.

Proof: x and y are any two ordinals that are members of themselves.
Consider the set {x,y} Q On. Since On is well-ordered, the set {x,y} has a
least member. By the definition of ordinal, from Orό(x), Orό(y), xe x, and
yey we obtain xey and yex. By the same argument used in Case 1 of
Proposition 5.3, xe y and yex imply x = y.
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Proposition 5.10. Orό(w) & we w ^ w = On.

Proof: Since Ord(w), we w, and O(On), it follows from the definition of
Orό(w) that On e w. Consider the set {On, w} c w, which has a least member.
As in Case 1 of Proposition 5.3, we On and One w imply w = On.

Proposition 5.11. Ord(On) and hence On e On.

Proof: By Axiom S9, there is a w such that we w andθrd(w). On = w follows
from Proposition 5.10. Therefore by Axiom S2b,Ord(On).

Proposition 5.12. (3y)(x)(xey =°Xfίx).

Proof: Xfίx satisfies the conditions of the Comprehension Axiom.

The set y in Proposition 5.12 is Russell's antinomic set, which in this
theory does not have the same radical consequences that it had in classical
set theory.

Since the set of c^-formulas of our antinomic predicate calculus is not
recursively decidable, it is not possible to assign to every one of them an
identifiable Gΰdel number. Therefore, it is not possible to arithmetize the
metamathematics of systems based on such a calculus and as a con-
sequence the proof of GδdeFs incompleteness theorem does not apply to
these systems. Furthermore, having admitted inconsistencies, it is now
possible for set theory to be complete. Which specific axioms are required
to produce such a complete set theory is still an open question.

REFERENCES

[1] Asenjo, F. G., " L a idea de un calculo de antinomias," Seminario Matematico,
Universidad de La Plata (1954).

[2] Asenjo, F. G., "A calculus of antinomies," Nvtre Dame Journal of Formal
Logic, vol. VII (1966), pp. 103-105.

[3] Mendelson, E., Introduction to Mathematical Logic, Van Nostrand, Princeton
(1964).

[4] Wang, H., A Survey of Mathematical Logic, Science Press, Peking (1962).

[5] Wittgenstein, L., Remarks on the Foundations of Mathematics, translated by
G. E. M. Anscombe, Macmillan, New York (1956).

University of Pittsburgh
Pittsburgh, Pennsylvania




