Notre Dame Journal of Formal Logic
Volume XV，Number 1，January 1974
NDJFAM

CONCERNING THE PROPER AXIOMS OF S4． 02

BOLESłAW SOBOCIŃSKI

In［4］it has been established that the addition of the following formula Ł1 『ç $p L p p C L M L p p$
as a new axiom，to $S 4$ generates a system，called S 4.02 ，which is a proper extension of S4．And obviously，cf．［6］，in the field of $S 4, Ł 1$ is inferentially equivalent to

Ł2 『espLppLCLMLpp

In this note it will be shown that in the field of S4 each of the following two formulas

```
Ł3 <बङ pLpLpCLMLpLp
```

and
Ł4 sespLpLpCLMLpp
is inferentially equivalent to $t 1$ ．
Proof：
1 Assume $S 4$ and $Ł 3$ ．Then，obviously，we have $Ł 4$ ．Now，$S 4$ yields the following formulas：

Z1 『LpLLp
Z2 『®pq® LpLq
Whence，

$$
\begin{array}{llr}
Z 3 & \text { さ§ } L \text { §pLpLpCLMLpp } \\
Ł 1 & \text { さ§§ } p L p p C L M L p p & {[Ł 3 ; Z 1]} \\
& {\left[Z 2, p / ® p L p, q / p ; Z 3 ; \mathrm{S1} 1^{\circ}\right]}
\end{array}
$$

Thus，in the field of $S 4:\{\nmid 3\} \rightarrow\{\mathbf{t} 4\} \rightarrow\{\mathbf{t} 1\}$.
2 Now，let us assume $S 4$ and $Ł 1$ ．Then：
Z1 ささu『qresくprs『u®をpqs

Z3 sepqes rses q 『『 $p s$ ［S3 ${ }^{\circ}$ ］
 ［S4］
Z5 s®pCqresrsepCqs ［S3 ${ }^{\circ}$ ］
$Z 6$ 『®pCqre『pCqs『e rCst®pCqt ［S3 ${ }^{\circ}$ ］
Z7 厄espqCrpeepqCrq ［S2］
Z8 ©CqrCCpqCpr ［S1 ${ }^{\circ}$ ］
$Z 9$ ऽ厄 p 厄 $p q$ 『 $p q$ ［S2］
Z10 厄 $p C N p q$ $\left[\mathrm{Si}^{\circ}\right.$ ］
$Z 11$ 厄 $N p C p q$ $\left[\mathrm{S} 1^{\circ}\right.$ ］
Z12 厄LpCNpq ［S2］
$Z 13$ 『®NppCpLp ［S2 ${ }^{\circ}$ ］
214 『® $p L q$ 『pq ［S2］
$Z 15$ 〔く厄 $p q r$ 『® $N r L N p L r$ $\left[53^{\circ}\right]$
Z16 〔CMpLq®pLq ［ $\left.\mathrm{S4}^{\circ} ; c f .[3]\right]$
$Z 17$ §CpLpCCMpp®pLp
$[Z 5, p / C p L p, q / C M p p, r / C M p L p, s / 厄 p L p ; Z 8, q / p, p / M p, r / L p ; Z 16, q / p]$
Z18 厄CNpLNqCMqp ［S1 ${ }^{\circ}$ ］
Z19 §CLMLCqLprCLMLpr ［S4 ${ }^{\circ}$ ］
Z20 §CLMLCNpqrCLMLpr $\left[\mathrm{S}^{\circ}{ }^{\circ}\right.$ ］
Z21 §CLMLCNpqCNrLNsCLMLpCMsr［75，p／CLMLCNpqCNrLNs，q／LMLp，$r / C N r L N s, s / C M s r ; Z 20, r / C N r L N s ; Z 18, p / r, q / s]$
$Z 22$ 『®๔ $p L p L p$ ®®Np® $p L p C p L p$
[Z1,v/®๔pLpLp, $q /$ § $p L p, r / p, p / N p, s / C p L p ; Z 14, p / ® p L p, q / p ; Z 13]$
$Z 23$ 〔くく $p L p L p$ 『『 $C p L p$ § $p L p C p L p$
[Z2, $p / N p, q / C p L p, v / ® \S p L p L p, r / ® p L p, s / C p L p ; Z 11, q / L p ; Z 22]$
$Z 24$ 『『厄 $p L p L p C L M L p C p L p$
[Z3, $p /$ §§ $p L p L p, q /$ 『『 $C p L p$ 『 $p L p C p L p, r / C L M L C p L p C p L p$,
s/CLMLpCpLp; Z23; Z19, q/p, r/CpLp; Ł1, p/CpLp]

$\left[Z 1, v / \mathbb{\int} p L p L p, q / \mathbb{S} N p L N p, r / L p, s / L p ; Z 25\right]$

$Z 28$ ©e®pLpLp®eCNpLNp®NpLNpCNpLNp
[Z4, $/ / L p, s / C N p L N p, q / C N p L N p$,
$v /$ ©® $p L p L p, r / \mathbb{S} N p L N p ; Z 12, q / L N p ; Z 11, q / L N p ; Z 27]$
Z29 さく『pLpLpCLMLpCMpp
$[Z 3, p /$ ©く $p L p L p, q /$ 厄§ $C N p L N p$ © $N p L N p C N p L N p$,
$r / C L M L C N p L N p C N p L N p, s / C L M L p C M p p ; Z 28 ; Z 21, q / L N p, r / p$,
$s / p ; Ł 1, p / C N p L N p]$
Z30 『®®pLpLpCLMLp®pLp
[Z6, p/®厄pLpLp, $q / L M L p, r / C p L p, s / C M p p, t / ® p L p ; Z 24 ; Z 29 ; Z 17]$
Ł3 さく『 $p L p L p C L M L p L p$
$[Z 7, p / 厄 p L p, q / L p, r / L M L p ; Z 30]$

Thus，in the field of $S 4:\{\lfloor 1\} \rightarrow\{\lfloor 3\}$ ．Hence，we have proved

$$
\{\mathrm{S} 4.02\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{t} 1\} \rightleftarrows\{\mathrm{S} 4 ; \mathrm{t} 2\} \rightleftarrows\{\mathrm{S} 4 ; Ł 3\} \rightleftharpoons\{\mathrm{S} 4 ; \mathrm{t} 4\}
$$

Remarks：

1 It should be noted that the proof given above is strictly analogous to the deductions which I presented in［5］，pp．366－367，section 1．2．2．${ }^{1}$ Namely，in that paper a logical proof was given of Schumm＇s result，$c f$ ．［1］，which he had obtained metalogically that in the field of S4 the so－called Diodorian modal formulas

N1 secp $p p p C M L p p$
and
M1 さくく $p L p L p C M L p L p$
are inferentially equivalent．Obviously，an analogy existing between the proofs given in［5］and in this note is due to the fact that N1 and M1 have syntactical structures very similar to those which $Ł 1$ and $Ł 3$ possess respectively．

2 Recently，$c f$ ．［2］，Schumm has proved metalogically that，in the field of S3，the formulas $Ł 1$ and $Ł 2$ are inferentially equivalent．It is an interesting open problem whether，in the field of S3，each of the following formulas $Ł 3, 七 4$ and

Ł5 cespLpLpLCLMLpLp

Ł6（5¢๔ $p L p L p L C L M L p p$
is inferentially equivalent to $Ł 1$ ．A similar open problem is also worth investigating．Namely，whether in the field of $S 3$ all the known proper axioms of S4．1 are mutually equivalent．

REFERENCES

［1］Schumm，G．F．，＇＇Solutions to four modal problems of Sobocinski，＇Notre Dame Journal of Formal Logic，vol．XII（1971），pp．335－340．
［2］Schumm，G．F．，＇S3．02＝S3．03，＂＇Notre Dame Journal of Formal Logic，vol．XV （1974），pp．147－148．
［3］Sobociński，B．，＂A note on modal systems，＂Notre Dame Journal of Formal Logic，vol．IV（1963），pp．355－357．
［4］Sobociński，B．，＂A proper subsystem of S4．04，＂Notre Dame Journal of Formal Logic，vol．XII（1971），pp．381－384．

[^0][5] Sobociński, B., "Concerning some extensions of S4," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 363-370.
[6] Sobociński, B., "Modal system S3 and the proper axioms of S4.02 and S4.04," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 415-418.

University of Notre Dame
Notve Dame, Indiana

[^0]: 1．In the paper mentioned here two obvious misprints appear．Viz．，on p．366，line 14，formula $Z 17$ should have the form：$\sqrt[s]{ } q \int \sqrt{s} p r s \mathbb{d} v p q s$ and on the same page，line 28 ，in the line proof of $Z 26$ a condition＂ S 2 ＇，is missing．

