COMBINATORY AND PROPOSITIONAL LOGIC

DAVID MEREDITH

The relationship between combinatory and propositional logic is dealt with at length in [1] and tangentially in [2]. The present paper adds nothing essentially new to previous results. It does, however, offer a straightforward procedure, which for any λ-expression in normal form will either lead to its propositional correspondent or determine that this is null. Section 1 presents the hypothesis upon which the correspondence between λ-expressions and propositional formulae is based; our translation procedure is described in section 2, and illustrated in section 3.

1 Hypothesis. In dealing with λ-expressions we assume Church's rules and conventions as given in [3]. With respect to propositional formulae, ' Λ ' denotes the null class of formulae, and ' Γ ' is used for C. A. Meredith's operator $\mathrm{D}: ~ ' ~ \Gamma P Q$ ' denotes the most general result that can be obtained when Modus Ponens is applied with P, or some substitution in it, as major premiss, and Q, or some substitution in it, as minor premiss. ' \sim ' denotes correspondence between a λ-expression and a propositional formula. Our basic hypothesis is the following.

Hypothesis Where L, M and N are λ-expressions, P, Q and R are propositional formulae, and Σ is an operation under the substitution rule which may be null.

1. Let $L \sim P$, then for M with no free variables in common with L, and all N, Q, R. If $M \sim Q, L M=N$, and $N \sim R$, then either $\Gamma P Q=\Sigma R$ or $\Gamma P Q=\Lambda$.
2. Let $N \sim \Lambda$, then for L, M with no free variables in common, and all P, Q. If $L \sim P, M \sim Q$, and $L M=N$, then $\Gamma P Q=\Lambda$.

The need for the two cases under the first section

$$
\begin{align*}
L \sim & P, M \sim Q, L M=N \text { and } \Gamma P Q=\Sigma R \text { for } \Sigma \text { non-null } \tag{a}\\
& L \sim P, M \sim Q, L M=N, N \sim R \text { and } \Gamma P Q=\Lambda \tag{b}
\end{align*}
$$

is unfortunate but unavoidable. With respect to (a): if for $L \sim P$ we take

$$
\lambda a b c d . a c(b d) \sim C C p C q r C C s q C p C s r
$$

and for $M \sim Q$ we take

$$
\lambda a b . a \sim C p C q p
$$

then while for N we have

$$
\lambda a b c . b \sim C r C p C q p
$$

$\Gamma P Q$ gives us

$$
\Gamma P Q=C C q r C p C q p .
$$

With respect to (b): if for $L \sim P$ we take

$$
\lambda a b . a(a b) \sim C C p p C p p
$$

and for $M \sim Q$ we take

$$
\lambda a b . a \sim C p C q p
$$

then while for N we have

$$
\lambda a b c . a \sim C p C q C r p
$$

$\Gamma P Q$ gives us

$$
\Gamma P Q=\Lambda .
$$

2λ-Translation Procedure. Our procedure requires three definitions and a set of derivation rules.

Definition 1 Let $E=\lambda x_{1} x_{2} \ldots x_{n} . X_{1} X_{2} \ldots X_{m}$ or $E=X_{1} X_{2} \ldots X_{m}(n, m \geqslant 1)$ be a λ-expression in principal normal form; let $F=\lambda y_{1} y_{2} \ldots y_{p} . Y_{1} Y_{2} \ldots Y_{q}$ ($p, q \geqslant 1$) be a well-formed component of E : then each part of E yields a result and an equality determined as follows.

1. For $\lambda x_{1} x_{2} \ldots x_{n}$. or the null prefix, and for E, P_{k} is the result of $\lambda x_{1} x_{2} \ldots x_{n}$. or the null prefix, P_{l} is the result of E, and $P_{l}=C x_{1} C x_{2} \ldots$ $C x_{n} P_{k}$ or $P_{l}=P_{k}$.
2. For $\lambda y_{1} y_{2} \ldots y_{p}$. and for F, P_{k} is the result of $\lambda y_{1} y_{2} \ldots y_{p}, P_{l}$ is the result of F, and $P_{l}=C y_{1} C y_{2} \ldots C y_{p} P_{k}$.
3. For $Z_{i} Z_{j}$ any well-formed component of E such that $Z_{i} Z_{j} \neq X_{m-1} X_{m}$ and $Z_{i} Z_{j} \neq Y_{q-1} Y_{q}:$
a. If Z_{i} and Z_{j} are both elementary, P_{k} is the result, and $Z_{i}=C Z_{j} P_{k}$.
b. If Z_{i} is elementary, and Z_{l} is not elementary, P_{k} is the result, and $Z_{i}=C P_{l} P_{k}$ where P_{l} is the result of Z_{j}.
c. If Z_{i} is not elementary, and Z_{j} is elementary, P_{k} is the result, and $P_{l}=C Z_{j} P_{k}$ where P_{l} is the result of Z_{i}.
d. If Z_{i} and Z_{j} are neither of them elementary, P_{k} is the result, and $P_{l}=C P_{m} P_{k}$ where P_{l} and P_{m} are the results of Z_{i} and Z_{j} respectively.
4. For $Y_{q-1} Y_{q}$ where P_{k} is the result of $\lambda y_{1} y_{2} \ldots y_{p}$:
a. If Y_{q-1} and Y_{q} are both elementary, P_{k} is the result, and $Y_{q-1}=C Y_{q} P_{k}$.
b. If Y_{q-1} is elementary and Y_{q} is not elementary, P_{k} is the result, and $Y_{q-1}=C P_{l} P_{k}$ where P_{l} is the result of Y_{q}.
c. If Y_{q-1} is not elementary and Y_{q} is elementary, P_{k} is the result, and $P_{l}=C Y_{q} P_{k}$ where P_{l} is the result of Y_{q-1}.
d. If Y_{q-1} and Y_{q} are neither of them elementary, P_{k} is the result, and $P_{l}=C P_{m} P_{k}$ where P_{l} and P_{m} are the results of Y_{q-1} and Y_{q} respectively.
5. For $Y_{q}(q=1)$ elementary, where P_{k} is the result of $\lambda y_{1} y_{2} \ldots y_{p}, P_{k}$ is the result, and $Y_{q}=P_{k}$.
6. For $X_{m-1} X_{m}$ where P_{k} is the result of $\lambda x_{1} x_{2} \ldots x_{n}$. or the null prefix:
a. If X_{m-1} and X_{m} are both elementary, P_{k} is the result, and $X_{m-1}=C X_{m} P_{k}$.
b. If X_{m-1} is elementary and X_{m} is not elementary, P_{k} is the result, and $X_{m-1}=C P_{l} P_{k}$ where P_{l} is the result of X_{m}.
c. If X_{m-1} is not elementary and X_{m} is elementary, P_{k} is the result, and $P_{l}=C X_{m} P_{k}$ where P_{l} is the result of X_{m-1}.
d. If X_{m-1} and X_{m} are neither of them elementary, P_{k} is the result, and $P_{l}=C P_{m} P_{k}$ where P_{l} and P_{m} are the results of X_{m-1} and X_{m} respectively.
7. For $X_{m}(m=1)$ elementary, where P_{k} is the result of $\lambda x_{1} x_{2} \ldots x_{n}$. or the null prefix, P_{k} is the result, and $X_{m}=P_{k}$.

Our derivation rules are the normal rules governing identity, together with three special rules.

Rule 1. Where $I, J, K, L, M \neq \Lambda$, if $I=C J K$ and $I=C L M$, then $J=L$ and $K=M$.

Rule 2. Where I occurs in J, if $I=J$, then $I=\Lambda$.
Rule 3. Where I and J occur in K, if $I=\Lambda$, then $J=\Lambda$ and $K=\Lambda$.
Definition 2 The equality set belonging to a λ-expression ${ }_{d j}$, the union of the set of equalities which the expression yields, and the set of equalities derivable from that set.
Definition 3 The expanded result of a λ-expression $=_{d f} J$, where for the result I of the expression, $I=J$ is a member of the equality set belonging to the expression, and either J is null, or the set contains no equality $I=K$ where K is longer than J or is of the same length as J and has fewer distinct arguments.

If the expanded result of a λ-expression is null, the expression has no propositional correspondent. If this result is non-null, the desired correspondent is obtainable by relettering.

3 Illustrations In illustrating our procedure we make use of the following conventions:
A. ' Q ' ' R '... are always used to denote the results of λ-prefixes, of $Y_{q-1} Y_{q}$, of Y_{q}, of $X_{m-1} X_{m}$, and of X_{m}.
B. ' Φ ' ' Ψ '. . . are always used to denote the results of well-formed expressions commencing with a λ-prefix.
C. ' P_{1} ' ' P_{2} ' . . . are always used to denote the results of $Z_{i} Z_{j}$.
D. An asterisk marks the first derived equality.

In addition, for equalities yielded by an expression under Definition 1, the section of the definition in virtue of which the quality obtains is noted to its right.

Ex. 1

$$
\lambda a b c . a(b c)
$$

$$
\begin{align*}
\Phi & =C a C b C c Q \tag{1}\\
a & =C P_{1} Q \tag{6b}\\
b & =C c P_{1} \tag{3a}\\
*_{\Phi} & =C C P_{1} Q C C c P_{1} C c Q \sim C C q r C C p q C p r
\end{align*}
$$

Ex. 2

$$
\begin{align*}
& a(b c) \\
& \Phi=Q \tag{1}\\
& a=C P_{1} Q \tag{6b}\\
& b=C c P_{1} \tag{3a}\\
& *_{\Phi}=Q \sim p
\end{align*}
$$

The expanded result of an expression with no bound variables will always be either elementary or null.

Ex. 3

$$
\begin{align*}
\lambda & a \cdot a(b b) \\
\Phi & =C a Q \tag{1}\\
a & =C P_{1} Q \tag{6b}\\
b & =C b P_{1} \tag{3a}\\
* b & =\Lambda \\
\Phi & =\Lambda
\end{align*}
$$

The effect of derivation Rule 3 is that the occurrence of a single equality of the form $I=\Lambda$ in the equality set belonging to a λ-expression, ensures that the expanded result of the expression is null.

Ex. 4

$$
\lambda a b . a(a b)
$$

Ex. 5

$$
\begin{align*}
\Phi & =C a C b Q \tag{1}\\
a & =C P_{1} Q \tag{6b}\\
a & =C b P_{1} \tag{3a}\\
* b & =P_{1} \\
Q & =P_{1} \\
a & =C P_{1} P_{1} \\
\Phi & =C C P_{1} P_{1} C P_{1} P_{1} \sim C C p p C p p
\end{align*}
$$

$$
\lambda a b . a(b(\lambda c . a))
$$

$$
\begin{align*}
\Phi & =C a C b Q \tag{1}\\
a & =C P_{1} Q \tag{6b}\\
b & =C \Psi P_{1} \tag{3b}\\
\Psi & =C c R \tag{2}\\
a & =R \tag{5}\\
* R & =C P_{1} Q
\end{align*}
$$

```
\(\Psi=C c C P_{1} Q\)
\(b=C C c C P_{1} Q P_{1}\)
\(\Phi=C C P_{1} Q C C C c C P_{1} Q P_{1} Q \sim C C p q C C C r C p q p q\)
```

Ex. 6

$$
\lambda a b . a(\lambda c d . c(b d))
$$

$$
\begin{align*}
\Phi & =C a C b Q \tag{1}\\
a & =C \Psi Q \tag{6b}\\
\Psi & =C c C d R \tag{2}\\
c & =C P_{1} R \tag{4b}\\
b & =C d P_{1} \tag{3a}\\
* \Psi & =C C P_{1} R C d R \\
a & =C C C P_{1} R C d R Q \\
\Phi & =C C C C P_{1} R C d R Q C C d P_{1} Q \sim C C C C q r C p r s C C p q s
\end{align*}
$$

Ex. 7

$$
\lambda a b c . b(a b c)
$$

$$
\begin{align*}
\Phi & =C a C b C c Q \tag{1}\\
b & =C P_{1} Q \tag{6b}\\
a & =C b P_{2} \tag{3a}\\
P_{2} & =C c P_{1} \tag{3c}\\
* a & =C C P_{1} Q C c P_{1} \\
\Phi & =C C C P_{1} Q C c P_{1} C C P_{1} Q C c Q \sim C C C p q C r p C C p q C r q
\end{align*}
$$

REFERENCES

[1] Curry, Haskell B., and Robert Feys, Combinatory Logic, Vol. I, North-Holland Publishing Co., Amsterdam (1958).
[2] Meredith, C. A., and A. N. Prior, "Notes on the axiomatics of the propositional calculus,'" Notre Dame Journal of Formal Logic, vol. IV (1963), pp. 171-181.
[3] Church, Alonzo, The Calculi of Lambda-Conversion, Princeton University Press (1941).

RCA Corporation
Dayton, New Jersey

