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RESOLUTION AND THE CONSISTENCY OF ANALYSIS

PETER B. ANDREWS

§1. Introduction.* In [2] we formulated a system /?, called a Resolution
system, for refuting finite sets of sentences of type theory, and proved that
<R is complete in the (weak) sense that every set of sentences which can be
refuted in the system 27 of type theory due to Church [5] can also be refuted
in <R. The statement that R is in this sense complete is a purely syntactic
one concerning finite sequences of wffs. However, it is clear that there can
be no purely syntactic proof of the completeness of <%, since the complete-
ness of R is closely related to Takeuti's conjecture [9] (since proved by
Takahashi [8] and Pravitz [7]) concerning cut-elimination in type theory.
As Takeuti pointed out in [9] and [10], cut-elimination in type theory
implies the consistency of analysis. Indeed, Takeuti's conjecture implies
the consistency of a formulation of type theory with an axiom of infinity; in
such a system classical analysis and much more can be formalized. Hence,
to avoid a conflict with Gόdel's theorem, any proof of the completeness of
resolution in type theory must involve arguments which cannot be formal-
ized in type theory with an axiom of infinity. Indeed, the proof in [2] does
involve a semantic argument. Nevertheless, it must be admitted that
anyone who does not find the line of reasoning sketched above completely
clear will have difficulty finding a unified and coherent exposition of the
entire argument in the published literature. We propose to remedy this
situation here.

We presuppose familiarity with §2 (The Systemϋ) and Definitions 4.1
and 5.1 (The Resolution System Si) of [2], and follow the notation used
there. In particular, D stands for the contradictory sentence Vpopo. To
distinguish between formulations of Z> with different sets of parameters, we
henceforth assume ZJ has no parameters, and denote by CίA1, . . ., Aw) a
formulation of the system with parameters A1, . . ., Aw. If J/ is a set of
sentences, J4^~g B shall mean that B is derivable from some finite subset of
J4 in system £. The deduction theorem is proved in §5 of [5]. We shall
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incorporate into our argument Gandy's results in §3 of [6] with some minor
modifications. We also wish to thank Professor Gandy for the basic idea
(attributed by him to Turing) used below in showing the relative consistency
of the axiom of descriptions. (This idea is mentioned briefly at the top of
page 48 of [6].) We shall have occasion to refer to the following wffs:

The set ί of axioms of extensionality:

E°: VpoVqo-Po^(lo^-Po = qo'

E { a β ) : VfaβVgaβ ' VXβifaβXβ = gaβXβ] ^.faβ= §aβ •

The axiom of descriptions for type a:

Dα: V/oα * 3 iXafoatXa D foci Moα) foa] .

An axiom of infinity for type of:

Jα*. ?roaaVxaVyaVZct ' 3^anaaXa^a Λ

~ VoacfXaXa Λ ~ ^oaaXaVa v ~ ^oαα-Vα^α v Ύoaaxazoe

We let c4 denote the system obtained when one adds to C(ι t(ot)) the
axioms ί, ΏL, and JL. (Description operators and axioms for higher types
are not needed, since Church showed [5] that they can be introduced by
definition. This matter is also discussed in [3]).

In §4 we shall show how the natural numbers can be defined, and
Peano's Postulates can be proved, in cA. The basic ideas here go back to
Russell and Whitehead [11], of course, but our simple axiom of infinity is
not that of Principia Mathematica, but is due to Bernays and SchOnfinkel
[4]. The natural numbers can be treated in a variety of ways in type theory
(e.g., as in [5]), but we believe that the treatment given here has certain
advantages of simplicity and naturalness. The simplicity of the axiom of
infinity J f is essential to our program in §3.

Once one has represented the natural numbers in cA, one can easily
represent the primitive recursive functions. (With minor changes in type
symbols, the details can be found in Chapter 3 of [l].) Syntactic statements
about wffs can be represented in the usual way by wffs of cA via the device
of GOdel numbering. Thus there is a wff Consis of <A whose interpretation
is that σl is consistent, and by GδdeΓs theorem it is not the case that \-j
Consis. Nevertheless, much of mathematics can be formalized in cA.

The completeness theorem for <R (Theorem 5.3 of [2]) is also a purely
syntactic statement, and hence can be represented by a wff R of cA. After
preparing the ground in §2 with some preliminary results, in §3 we shall
show that by using the completeness of <R we can prove the consistency of
cA. This argument will be purely syntactic, and could be formalized in cA,
so y-j[R Ό Consis]. Thus it is not the case that ^R, so any proof of the
completeness of resolution in type theory must transcend the rather
considerable means of proof available in cA. Of course such a proof can be
formalized in transfinite type theory or in Zermelo set theory.

§2. Preliminary Definitions and Lemmas. We first establish some pre-
liminary results which will be useful in §3. The reader may wish to
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postpone the proofs of this section and proceed rapidly to §3. In presenting
proofs of theorems of ZJ (and extensions of ZJ), we shall make extensive use
of proofs from hypotheses and the deduction theorem. Each line of a proof
will have a number, which will appear at the left hand margin in
parentheses. For the sake of brevity, this number will be used as an
abbreviation for the wff which is asserted in that line. At the right hand
margin we shall list the number(s) of the line(s) from which the given line
is inferred (unless it is simply inferred from the preceding line). We use
"hyp" to indicate that the wff is inferred with the aid of one or more of the
hypotheses of the given line. Thus in

(.1) HA
(.2) BhB hyp
(.3) BkC .1, .2
(.4) D H C .1, hyp

the hypothesis B is introduced in line .2, and C is inferred from B and the
theorem A in line .3; C is also inferred from A and a different hypothesis D
in line .4. However, if the wffs B and C are long, we may write this proof
instead as follows:

(.1) H A

(.2) .2KB hyp
(.3) .2hC .1, .2
(.4) D H . 3 .1, hyp

A generally useful derived rule of inference is that if J/ is a set of
hypotheses such that J4 κ-3xA and J4, A HB, where x does not occur free in
B or any wff of J4, then M ι- B. We shall indicate applications of this rule in
the following fashion:

(.17) J/H3XA
(.20) Jf, .20 h A choose x (.17)
(.23) M, .20 f-B
(.24) J / h B .17, .23

If the wff A is long, we might write step (.17) as follows:

(.17) J4 H3X.20

We shall present only abstracts of proofs, omitting many steps and
using familiar laws of quantification theory, equality, and λ-conversion
quite freely. We shall usually omit type symbols on occurrences of
variables after the first.

Definition. For each wff A oΐZJ{ιOL(o(θί))), let #A be the wff of ZJ which is the
result of replacing the primitive constant ιoί(o(o0) everywhere by the wff

[λfo(oi)λZι =i#o t . fo(oι)XθL Λ^o t2ί]

Lemma 1. E°, E ^ h ^ D 0 1 .

Proof: First note that #Dot conv V/O(ot) 3ιXOLfx^f[λzL. 3xOi fxsxz\
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(.1) Ah-B^oJoio^XoL hyp

(.2) .1, .2 H/o(θi)Λ:O(A VUQL. fu ^ u = x choose x(Λ)

(.3) .1 , .2\-%oιZι = 3XOL . fo(oι)X*XZ .2

(.4) E°, .1 , .2 HV£t .xoιzt = 3xOί . / o ( o ( ) ^ i 2 .3, E°

(.5) E°, E°S .1 , 2 K ί O ί = [λ* t . Ξx o ι ./ o ( o t ) jCA^] .4, E o t

(.6) E°, E o t , . 1 , . 2 h / o ( o t ) [λzL. 3xOL.fxΛXz] .2, .5

(.7) E°, E o t , . l h . 6 . 1 , .6

(.8) E°, EOί\-ϋΏOί .7

Lemma 2. JL h J O ί

Proof: We assume J \

(. 1) .It- V% Vyt V>st. Ξ3 wLrouxw Λ ~ rxrΛ . ~ r̂ cv v ~ rj;>ε v rxz choose rou

L e t KO(OL)(OL) b e

We shall establish in lines (.11), (.16) and (.31) that K has the

properties necessary to establish JOL. To attack (.11) we consider two

cases, (.2) and (.5).

(.2) .2 H ~3sLXoιS h y p ( c a s e 1)

(.3) .2 h KΛΓ o ι [λί t . tL =tc] . 2 , d e f . of K

(.4) .2 h3wOLKxOLiv .3

(.5) . 5 h 3 s t x O ( s t hyp (case 2)

(.6) .5, .6 \- XOLSL choose s (.5)

(.7) .1 , .5, .6, .ΊhrOilsLιVt choose wL (.1)

(.8) .1 , .5, .6, .7 \-Kxoι[\tlm wL = tL] .6, .7, def. of K

(.9) .1 , .5, .6, .1 ̂ -3wOiKxOLw .8

(.10) .1, .5 h.9 .9, . 1 , .5

(.11) . lκ3zι> o t K* o ^ .4, .10

Next we attack (.16). The proof is by contradiction.

(.12) Λ2hKxOίxOL hyp

(.13) .12 h3st. xOLSA\ftL. xt D roust .12, def. of K

(.14) .12 κ 3 s t r o α s s .13 (instantiate t with s)

(.15) .1 h V5t ~rouss .1

(.16) .1 H-KxotΛ:Oί .14, .15

Finally we attack (.31).

(.17) ΛΊ^KxOίyOLA KyoiZoi hyp

(.18) .17 h BtcyottA 3tLzOίt .17, def. of K

(.19) .17 v-~3sLxOLs v 3 s t . ΛΓS Λ VqL. yOLq ^ rOLίsq .17, def. of K

In (.20) and (.21) we consider the two possibilities set forth in (.19).

(.20) .17, ~3stxols hKxOίzOί .18, hyp, def. of K

(.21) .17, .21 h 3 s ( . xoιs ΛVq t. yoίq ^ rOίίsq hyp

(.22) .17, .21, .22 \-xOLsL Λ V ^ . yOiq 3 r o α s # choose s (.21)
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(.23) ΛΊ\-3qL.24 .17, .18, def. of K

(.24) .17, .24h yOLqL Λ VtL. zOLt => rouqt choose q (.23)

(.25) .17, .21, .22, .24, zOLtL v-rousLqL *rqtL hyp, .22, .24

(.26) . 1 , .17, .21, .22, .24, zOctL hrOuSLtL . 1 , .25

(.27) .1, .17, .21, .22, .24hVtL. zOίt ^ rousj .26

(.28) .1, .17, .21, .22, .24 \-Kxoιzoι .18, .22, .27, def. of K

(.29) .1, .17, .21 h.28 .23, .21, .28

(.30) .1, .17 h.28 .19, .20, .29

(.31) .1 h- ~KxOίyOι v~KyzOL vKxz .30

(.32) . l h J o t .11, .16, .31

(.33) J ι h J o t .32

We next repeat Gandy's definitions in [6] with some minor modifica-

tions .

Definition. By induction on γ, we define wffs Modoyand M o y yfor each type

symbol y.

Ay = By stands for MoyyAyBy.

Modoκ stands for [λxκ ^PoPo] for K = o, i.

Mo o o stands for [λpoλqo. po

 Ξ qo]>

M o α s tands for [λxLλyL. xL = yL].

Modo(α/3) s tands for [λfaβ. VxβVy3. MoόoβxβΛ tλoόoβyβ AXβ = yβ D. N\odoa[faβxβ]A.

faβXβ £ faβyβ\> M

MoiaβHaβ) s tands for [λfaβλgaβ . V ^ . ModoβΛΓβ =5. faβχβ = gaβxβ].

L e m m a 3. v-vxa = xaΛ.xa = ya

 D za - χa =• Za = Va>

Proof: By induction on a.

Definition. For each wff A of 75, Aτ is the result of replacing Π o ( o α ) by

[λfoa- V#α. Modoαxα ^foaXa] everywhere in A.

Lemma 4. If A1, . . ., Aw, and B αr£ sentences of V such that A1? . . .,

Aκ h^B, ίfeew (A1)1", . . ., (Aw)τ H ^ B 1 .

Proof: This is an immediate consequence of Theorem 3.26 of [6], since

Gandy's full translation CF of C is C τ when C is a sentence. Our modifica-

tions of Gandy's definitions do not injure the proof.

Lemma 5. \-Ό Mod[Moαα£α].

Proof: Mod[MoααzJ is equivalent to

V#αV}4Mod xa Λ Mod ya*x = y ^ . Moό[Moaazaxa] Λ Moaazaxa = ^λoaazaya].

This is readily proved using the definition of Modoo and Lemma 3.

Lemma 6. h^(E y ) τ for each Eγ in ί.

Proof: (E°)τ is equivalent to

V£,[Mod po D Vqo. Mod qo ^.[Po^ Qo\ ^ V/oo. Mod foo 3 . /OOJ^O D / O O ^ O ] ,

which is easily proved using the definition of Mod foo. (E°^)τ is equivalent to
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V/^tMod/ D V ^ . Moόg 3 . VΛ:β[Mod^ 3 V/*oα. Mod ΛD. &[/#] 3 h.gx]
3 V&o(αβ). Mod £ 3 . fc/ D kg],

which we prove as follows:

(. 1) . 1 h Mod / α β Λ Mod g α/3 hyp
(.2) .2 h VΛrβ[Mod x 3 V/zoα. Mod A 3 .h[fx] 3 /*.£•#] hyp

(.3) .3 y-tλoό ko(aβ) hyp
(.4) t-Mod(oίZ) . tλoaa faβXβ L e m m a 5
(.5) .2, Mod Xβ h [M o α α . faβXβ] [faβXβ] 3 . [M o α α . /αβΛΓβ] .^ΛΓβ

.2, .4 (instantiate hoawϊth tλ[fx])
(.6) h Moαα[faβXβ] [faβXβ] L e m m a 3
(.7) .2, MoόXβhfaβXβ M ^ α β ^ β .5 , .6
(.8) . 2 h / f l β S ^ .7, def. of MoiaβHaβy
(.9) . 1 , .2, .3 h ko(aβ)faβ= ko{aβ)gaβ . 3 , def . Of Mod fco(α/3), . 1 , .8
(.10) HEaβ)Ί .9

L e m m a 7. H ^ Mod r o α .

Proof: Mod 20t is equivalent to

VΛΓt V;yt[Mocl#ι Λ Mod y t ΛΛΓέ = ̂ t 3 . Mod[2oιΛΓt]Λ. 2OiΛΓt Ξ «o ιy£]

s o h V 2 o t Mod 2 o t . Mod r O ί ί i s equivalent to

VΛΓί V^^Mod^ί Λ Mod yL*xL = 3̂ t 3 . Mod[roαΛΓt]Λ Vwί# Mod wt 3 .

which is easi ly proved.

Lemma 8. JL^V(JL)J.

Proof: (JLΫ is equivalent to

3 r o α [ M o d r o αΛVλr t . Mod xL 3 VyL. Mod y t 3 V* t. Mod 2 t 3 .
3^i[Mod wLΛrouxιwL]A~rouxιxLA. ~rouXιyι v ^ r o α ^ ^ vrouxLzL].

This is easily derived from J6 with the aid of Lemma 7.

Definition: Let θ be the substitution y ^ ι i φ ^ , i.e., the simultaneous

substitution of A* for all free occurrences of x* for 1 ^ i ^ n9 where
x1, . . ., xw are distinct variables and A* has the same type as x* for
l^i^n. If B is any wff, we let θ * B denote ^[[λx1 . . . λxwB] A1 . . . Aw]. If
θ is the null substitution (i.e., n = 0), then θ *B denotes 77B.

Note that if xα and y^ are distinct variables, [[λxαλyβB]AQC^] conv
[[λyβλxαB]CβAα], so the definition above is unambiguous. Clearly, if there
are no conflicts of bound variables, Θ*B is simply 77 ΘB, the η-normal form
of the result of applying the substitution θ to B. From the definition it is
evident that if B conv C, then θ * B = θ * C .

§3. The Consistency of <A.

Theorem. cA is consistent.
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Proof: The proof is by contradiction, so we suppose c4 is inconsistent.
Thus

(I) J4, £ , D ' h P ( £ £ ( o ι ) ) D .
(2) j " , ε,D-^iίoί{o(oί)))π.

Proof: Replace the type symbol i by the type symbol (OL) everywhere in
the sequence of wffs which constitutes a proof of D whose existence is
asserted in step 1. By checking the axioms and rules of inference of ZJ one
easily sees that a proof of D satisfying the requirements of step 2 is
obtained.

(3) JOί, ε,$ΌOίϊ-υΠ.

Proof: The replacement of A by IA everywhere in the proof whose
existence is asserted in step 2 yields a proof satisfying step 3, possibly
after the insertion of a few applications of the rule of alphabetic change of
bound variables.

(4) JO ί, €t-υΠ by Lemma 1.
(5) J% €\-vΏ by Lemma 2.
(6) ( J ι ) τ , { ( E y ) T | E y e £ W D

Proof: By Lemma 4, since i-^Π1 D •.

(7) (j')T \-υΠ by Lemma 6.
(8) JLhϋΠ by Lemma 8.

We next introduce parameters rou and ~gu. Let:

J = {VxLrOLLxL[guxL]y VxL ~rOίixLxL, VxLVyLVzL.~rouxLyLv ~rOilyLzLvrouxLzL}.

Proof: JL \-VCrrg) D by (8), and ) *-C(7fg) J ' .

(10) ^ D

Proof: This follows from (9) by the completeness of resolution in type
theory, i.e., Theorem 5.3 of [2], The proof of this theorem is the one
non-syntactic step in our present proof of the consistency of cA.

(II) It is not the case that } \-# D.

Proof: An 77-wff of the form ~rouΔLBι will be called positive if the number
of occurrences of gu in A< is strictly less than the number of occurrences
of gu in Bt, and otherwise negative. An 77-wff of the form ~rou A^B, will be
called positive iff rouΔLBL is negative, and negative iff roubLBL is positive.
Let 9 be the set of wffs G having one of the following six forms:

(a) Vx, r x[gx]
(b) Vxt ~rxx
(c) VXiVŷ VZt [~rχy v ~ryz vrxz] where x o γ t, and zt are distinct
variables.
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(d) Vy^Zi [~r Aty v ~ryz vf Atz] where yt and z t are distinct from one
another and from the free variables of AL.
(e) VZί [~r A£Bι v ~ r B ( z vrA ( z] where zL is distinct from the free vari-
ables of At and of B t .
(f) G is a disjunction of wffs, each of the form r A<Bί or ~ r AB, at least
one of which is positive.

Let C be the set of wffs C such that for each substitution 0, 0*C is in
9. We assert that if } t-^C, then Ce C. Clearly β c C, so it suffices to
show that C is closed under the rules of inference of <#. For each rule of
inference of <% and any substitution θ, we show that θ *E e 9 for any wff E
derived from wff(s) of C by that rule.

Suppose MvA and Nv~A are in C> and M v N i s obtained from them by
cut. Then 0*[MvA] and 0*[Nv~A] must each have form (f). (For
#*[Nv~A] = [(#*N) v~(#*A)] ; even if N is null, this cannot have any of
the forms (a)-(e), so 0* A must have the form rB t Ct.) 0*[M v A] = [(0*M) v
0* A]; if #*A is negative, θ*bΛ must contain a positive wff (so M cannot be
null), so 0*[MvN] does also. If 0*A is positive, then #*[~A] is negative,
so 0*N must contain a positive wff, so 0*[M vN] does also, and hence has
form (f).

Suppose D is in C, and [λxαD]Bα is obtained from D by substitution.

B α , and let θ°p be the substitution which is the

composition of θ with p (i.e., (0°p)*C = #*(p*C) for each wff C). Then
0*[[λXαD]Bj = θ*η[[λXaD]Ba] = #*(p*D) = ( 0 ° p ) * D e J since ΌeC, so
[[λxαD]Bα]e£.

Suppose D € C and E is derived from D by universal instantiation. Thus
D has the form Mv Πo(oα)Aoα, where M may be null. By considering the null
substitution we see that ηDe 9, so D has the form Πo(Oi)Aot and E has the
form AoιXt. It is easily checked by examining forms (a)-(e) that if H is any
wff obtained from a wff of 9 by universal instantiation, then (0*H) e 9. But
(η AOL)xL is obtained from ηD by universal instantiation, so 0*E =
θ*[(η Aoι)x t] is in 9.

The verification that C is closed under the remaining rules of
inference of β is trivial, so our assertion is proved. Now D is not in C, so
it is not the case that β h ^ Π

(12) The contradiction between (10) and (11) proves our theorem.

§4. The Natural Numbers in cA. We shall define the natural numbers to be
equivalence classes of sets of individuals having the same finite car-
dinality. We let σ denote the type symbol (o(oι)). σ is the type of natural
numbers.

Definitions:

O σ s tands for [λpOί VxL ~pOLxL].

Sσσ s tands for [λno(oι)λpOι. 3xt. PoiXi* no(Oί)[λtL. tL Φ xL hpOLtL}}.

N o σ s tands for [λnσVpoσ. [ρoσθσrtxσ. poσxσ => Poσ%σ^σ\ D Poo^X
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VxσA stands for VΛΓσ[Noσ*σ D -4].

3xσA stands for 3xa[Noaxa*A].

Thus zero is the collection of all sets with zero members, i.e., the collec-

tion containing just the empty set [λΛΓίΠ]. S represents the successor

function. If ft(o(o0) is a finite cardinal (say 2), then a set pOL (say {a, b, c})

is in Sn iff there is an individual (say c) which is in pOί and whose deletion

from pOL leaves a set ({a, b}) which is in n. N o σ represents the set of

natural numbers, i.e., the intersection of all sets which contain O and are

closed under S.

We now prove Peano's Postulates (Theorems 1, 2, 3, 4, and 7 below.)

In this section \-B means B is a theorem of <?4.

1 t-N o σO σ by the def. of N

2 h Vxσ. Noσxσ 3 No σ. Sσσxσ

Proof:

(.1) Nxσ, . I H ^ O Λ V V px -Dp. Sx hyp

(.2) Hxσ, Λv-poσχσ .1, hyp, def. of N
(.3) Nxσ, Λhpoσ. Sxσ .1, .2

(.4) NΛΓσhN. Sxσ .3, def. of N

3 The Induction Theorem:

^-V ôσ. \poσOσA\fxσ. poσxσ D poσ. Sσσxσ] ^ Vxσpoσxσ

Proof: Let P o σ be [λtσ. Nt*poσtl

(.1) .lh/)oσθΛVΛrσ. UxD.px Όp. Sx hyp

(.2) N;yσ h [ P O ΛVΛΓσ. PΛΓ=) P. Sx] 3 Vyσ hyp, def. of N

(.3) . l h P O def. of P, .1, Theorem 1

(.4) .1 i-Varσ. PΛ: => P. SΛ: def. of P, .1, Theorem 2

(.5) Λ9Hyσ\-Vya .2, .3, .4

(.6) Λ*-Vyσpyσ .5, def. of V, P

4 \-Vnσ. SσσnσΦθσ

Proof by contradiction:

(.1) Λ\-Snσ=O hyp

(.2) hOαtλΛΓ.D] def. of O

(.3) ΛhSnσ[λxLD] .1, .2

(.4) Λ\-3χtΠ .3, def. of S

(.5) h S n σ ^ O .4

(.6) i- Vwσ. Sn Φ O .5, def. of V

Our first step in proving Theorem 7 is to show that if we remove any

element from a set of cardinality Sn we obtain a set of cardinality n.
5 ^-VnσVpOi. ~pOLwL ASσσn<\\tL. tL = wtvpOLtL] 3 nσpOL

The proof is by induction on n. First we treat the case n = O.
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(.1) .1 h~pOLwL ASθ[λtL Λ =w vpt] hyp

(.2) .lh-3Λrt.3 .1 , def. of S

(.3) .1 , .3 i- [xt = wL vpOix]* θ[λtL. t Φ XΛ. t = wvpt] choose x (.2)

(.4) . 1 , . 3 ι — . w L Φ xL A . W = wvpOLwL .3, def. of O

(.5) .1 , .3\-wL = xL A

(.6) . 1 , . 3 h V ί t . pOit= JΦxtΛ.t= wLvpt . 1 , .5

(.7) . 1 , . 3 h / > o t = [λtL. tΦxtΛ.t= wLvpt] .6, E°, EOL

(.8) Λ,.3\-θpOL .3 , .7

(.9) hV/)ot. ~pOLwL*SO[xtt. t= wvpt] ^>Op .2, .8

Next we treat the induction step

(.10) . I O H N ^ Λ V & H . ~pwL*Sn[\tL. t= wvpt] => np (inductive) hyp

(.11) Λl'\-~pOLWι*[SSnσ][λtι. t=wvpt] hyp

(.12) .11 h 3^.13 .11, def. of S

(.13) .11, .13 \-[xL = wL vpOLx]Λ.Snσ[λtι. tΦ XΛ. t= wvpt] choose x (.12)

From (.11) we must prove [S ]̂/>. We consider two cases in (.14) and

(.17).

(.14) Λ4\-xL = wL hyp (case 1)

(.15) .11, .13, Λ4h-pOί = [\tt. tΦxι*.t= wtvpt] .11, .14

(.16) .11, .13, Λ4h[Snσ]pOi .13, .15

In case 2 we shall use the inductive hypothesis.

(.17) .17 v- xL Φ wL hyp (case 2)

(.18) .17 t-[\tt. tΦ X I Λ J = wLvpott] = [λtL. t= wtv.tΦ Xι ΛpOLt] .17

(.19) . 1 1 , . 1 3 , .17 \-Snσ[λtL. t=wLv.tΦxL ApOLt] . 1 3 , .18

(.20) .10, .11, .13, .17 \-nσ[\tL. tφ xL *pOit] .10, .11, .19

(.21) .11, .13, Λl\-poιxL .13, .17

(.22) .10, .11, .13, .17 h [Snσ]pOί def. of S, .20, .21

(.23) .10, Λlh[snσ]pOL .16, .22, .12

(.24) .10 HVfO(. ~pwtA[SSna][\tL .t = wvpt]^ [Snσ]p .23

This completes the induction step. The theorem now follows from .9 and

.24 by the Induction Theorem.

It will be observed that so far in this section we have not used the

axiom of infinity J6. We shall use it in proving the next theorem, which will

also be used to prove Theorem 7.

6 t-Vwσ. Uopoi => 3WL ~PoιU)ι

(.1) . I t - VxLVyL V£t. 3wLrouxw Λ ~rxx Λ. ~rxy v ~ryz v rxz choose r (j')

Let P o σ be [λnσVpOL. np o 3zLVwL. rouzw => ~pw].

We may informally interpret rzw as meaning that z is below w. Thus P n

means that if p is in w, then there is an element z which is below no

member of p. We shall prove Vnσ P n by induction on n.

(.2) OPOI±-~POIWL def. of O

(.3) HPO .2, def. of P
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Next we treat the induction step.

(.4) .4HNwσΛPw (inductive) hyp

(.5) .5\-SnσpOί hyp

(.6) .5 h3xL .7 .5, def. of S

(.7) .5, .7 \-poιXιΛnσ[λtι. t ΦXΛpt] choose x (.6)

(.8) .4, .5, .7 \-3zL .9 .4, def. of P, .7

(.9) .4, .5, .7, .9 HVM/t. rouzLw^>. w = xL v~p0Lw chooser (.8)

Thus from the inductive hypothesis we see that there is an element z which

is under nothing in p - {x}. We must show that there is an element which is

under nothing in p. We consider two cases, (.10) and (.14).

(.10) .10 ^~rouzLxL hyp (case 1)

(.11) .4, .5, .7, .9, .10 y-rouzLwL D w Φ xL .10

(.12) .4, .5, .7, .9, .10 ί-Vκ;(. rouzLw^ ~pOLw .9, .11

(.13) .4, .5, .7, .9, Λ0h3zt .12 .12

Next we consider case 2, and show that A: is under nothing in p.

(.14) Λ4\-rOίizixL hyp (case 2)

(.15) . 1 , .14, rouxLwL v-rOuZLwL .14, hyp, .1

(.16) . 1 , .4, .5, .7, .9, .14, rouxLwL \-wL =xL v - p O L w .9, .15

(.17) \-wL =Xι D. rouxw 3 rxx

(.18) . l ι — r o u x t x .1

(.19) .1, .4, .5, .7, .9, .14 HVw£. rouxLw z> ~£O ίw .16, .17, .18

(.20) .1 , .4, .5, .7, .9, .14 \-3zLVwL. rouzw => ~AuW .19

(.21) .1, .4, .5 h.20 .13, .20, .8, .6

(.22) .lHNttσΛ Pw^ PSw .21, def. of P

(.23) .lhVwσPwσ .3, .22, Theorem 3

Having finished the inductive proof, we proceed to prove the main

theorem.

(.24) .24 \-HnσAnpOί hyp

(.25) .1, .24 \-3ztVwt. rouzw 3 ~poιw .23, .24, def. of P

(.26) Λ\-VzL3wtrouzw .1

(.27) .1, .24 h3wL -POLWL .25, .26

(.28) .1 I- Vwσ . npOί ^3wL ~potwL .27

(.29) H.28 Jι

7 f-VnσVmσ. Sσσnσ= Sσσmσ^ nσ= mσ

Proof:

(.1) .1 HNwσΛ NmσASn = Sm hyp

(.2) .2hnσpOί hyp

(.3) .1, .2, h 3 ^ ( ~POIWL .1, 2, Theorem 6

(.4) .1, .2, .4 h~pOiwL choose w (.3)

(.5) .1, .2, . 4 h ί o ι = [ λ ί t . ί Φwt Λ. ί= ^vpί] .4, E°, EOί

(.6) . 1 , .2, Λv-nσ[\tL.t ΦwtΛ.t= wvpOLt] .2, .5

(.7) . 1 , .2, .4 H Snσ[λtL Λ =wL v A,eί] .6, def. of S
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(.8) .1 , .2, AhSma[\tt. t= wLvpOίt] .1, .7

(.9) . 1 , .2, A \-mσpOί .1, .4, .8, Theorem 5

(.10) Λhnapoc D mσp .3, .9

(.11) .1 \-mσpOi ^ YtoP proof as for .10

(.12) ΛhVpOL. nσp= map .10, .11

(.13) Λhnσ= mσ .12, E°, EO £
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