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ON COMPACTNESS IN MANY-VALUED LOGIC. I

PETER W. WOODRUFF

Our purpose in this paper is to formulate and prove a rather general
compactness property for finitely many-valued logics, from which more
familiar forms of compactness are derivable. The proof employs a slight
generalization of Robinson's Special Valuation Lemma [1], p. 13. Although
other such results are available in the literature,1 the present version
shows in an interesting way the effect of many-valuedness on the com-
pactness proof, and also avoids reliance on "high-powered" results such
as Tychonoff's theorem. Finally, our version makes no assumptions about
the expressive power or designated values of the system.

1 An n-υalued logic Ln is a system (A, O, M, D) such that (i) A is a
(finite or infinite) set of objects called the atomic formulas or atoms of
Ln; (ii) O is a finite set of objects, discrete from A, called operations,
with each of which is associated an unique non-negative integer called its
degree; (in) M contains for each member of O of degree m an unique m-ary
mapping of {I, . . . , w} into itself,2 called the matrix of the operation; and
(iv) D is {l, . . . , m) for some m <n; the elements of D are called the
designated values of Ln.

The set W of well-formed formulas (wffs) of Ln is the least set con-
taining the atoms and such that if pl9 . . . , pk are elements of W and o^ is
an operation of degree k, then the concatenation o^pi . . . p^ is in W. If B
is any set of atoms, Wβ is the set of wffs formed from B as W is from
A. If p is any wff, p" is the least set B of atoms such that p e WB intuitively,
7 comprises the atoms which have occurrences in p.

A mapping a of A into {i, . . . ,n) is called an assignment of values
for JLW. Each assignment determines an unique interpretation I α of W as

1. The most general results are those of [2]; a simplified version of these is avail-
able in [3]. A definition of compactness close to ours appears in [4].

2. The choice of integers as truth-values is for convenience only; any n -element set
would do.
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follows: if p is atomic, lαp = αp; otherwise, p is of the form o^Pi . . . p^
and we may suppose \ap{ defined for i < k. Let / be the matrix of ok; then
I<*P = /0αPi , , lαP&) ^ * s c * e a r that '<* i s locally determined, in the
sense that if aϊp = β\~p, then lQp = l βp.

Two wffs are equivalent iff they have the same value on every assign-
ment. As is well known, if B contains k atoms, then a subset of WB can
contain at most nn pairwise non-equivalent wffs.

An n-tuple K = (Kl9 . . . , Kn) of subsets of W is satisfied by an
assignment a iff for some i <n and p e Ki, \aP =i. K is valid iff satisfied
by every assignment. Kis finite iff each Ki is finite; £ = (Lly . . . ,Ln)
is a sub-n-tuple of /C iff each Lf is a subset of #,-.

Lemma 1.1 /(" is valid iff it contains a valid sub-n-tuple -C with the follow-
ing properties: (i) each p e/Q £s equivalent to some qel^; (ii) ί/ze elements
of Li are pairwise non-equivalent—for all i <n.

Proof: Equivalence is clearly an equivalence relation on W. Let Li consist
of one representative from each equivalence class represented in Ki
(using the axiom of choice if Ki contains infinitely many non-equivalent
wffs). The lemma is now immediate.

2 By a partial valuation of a set S in a set U we mean any partial map
from S to U; a total valuation is one whose domain is all of S. We write
as usual Dφ for the domain of φ and φ\τ for the restriction of φ to Γ. We
shall require the following lemma, whose proof differs from that of
Robinson's Special Valuation Lemma only in the minor detail that U may
contain any finite number of elements, rather than just two. Details are
left to the reader.

Lemma 2.1 Let {φu} be an indexed set of partial valuations ofS in a finite
set U, such that for any finite T c S, there is a v such that Γ ς D . Then
there is a total valuation ψ such that for each finite T, there is a v with
T<zDφvandψ\τ=φv\T.

3 We can now state and prove our main result.

General Compactness Theorem: Every valid n-tuple of sets of wffs con-
tains a valid finite sub-n-tuple.

Proof: Suppose no finite sub-n-tuple of K = (KL, . . . , Kn) is valid. By
Lemma 1.1 we may assume without loss of generality that the elements
of Ki are pairwise non-equivalent. Let v be any finite set of atoms, and
let Lvi = Wv Π Ki for each i < n. Then as previously noted, Lyi must be
finite. Hence J£U= (L 19 . . . , Lvn) is a finite sub-n-tuple of K and there-
fore some assignment a fails to satisfy it (by hypothesis). Set φv = a\v.
Then {φu} is a set3 of partial valuations of A in {l, . . . , n] which satisfies

3. There is a surreptitious but avoidable use of the axiom of choice at this point.
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the antecedent of 2.1, hence there is a total valuation of A in{i , . . . , n)
(i.e., an assignment) α* which coincides with some φ v on each finite subset
of A. Let p be any element of K{. ~p is finite, so for some v, ~PQ Dφv = v
and a*\~p = φjp. By construction, φv = a\v for some assignment a which
fails to satisfy -Cv Since p c v, we have α*l~p = φjp" = α Ip", and hence
by local determination, lα*p = lap. Furthermore, since p" c v, peWu and
hence p e WUΠ K{ = Lvi, so since a does not satisfy jQVf \ap Φ i. It follows
that α* fails to satisfy K, so that K is not valid. The theorem now follows
by contraposition.

4 A more usual notion of compactness involves a concept of satisfiability
defined as follows: a set of wffs is satisfiableD iff some assignment gives
every element of the set a designated value. As a corollary to our general
theorem we have the

Standard Compactness Theorem: If every finite subset of K is satisftableD,
then K is also.

Proof: Suppose K is not satisfiable^, and set K = (Kl9 . . . , Kn), where
Hi eD,Ki = 0, and otherwise Ki -K. Then ΛΓ is clearly valid, so contains

a valid finite sub-rc-tuple £ = (Ll9 . . . , ! „ > . Let I = U U. Then L is
UΌ

a finite subset of K, and is not satisfiable^, since any assignment which
satisfied it would ipso facto fail to satisfy ^ . The theorem follows by
contraposition.

5 Extension of the above theorems to quantificational many-valued logics
will be discussed in a sequel to this paper.
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