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ON COMPACTNESS IN MANY-VALUED LOGIC. I

PETER W. WOODRUFF

Our purpose in this paper is to formulate and prove a rather general
compactness property for finitely many-valued logics, from which more
familiar forms of compactness are derivable. The proof employs a slight
generalization of Robinson’s Special Valuation Lemma [1], p. 13. Although
other such results are available in the literature,' the present version
shows in an interesting way the effect of many-valuedness on the com-
pactness proof, and also avoids reliance on ‘‘high-powered’’ results such
as Tychonoff’s theorem. Finally, our version makes no assumptions about
the expressive power or designated values of the system.

1 An n-valued logic L, is a system (A, O, M, D) such that (i) 4 is a
(finite or infinite) set of objects called the atomic formulas or atoms of
L,; (ii) O is a finite set of objects, discrete from A, called operations,
with each of which is associated an unique non-negative integer called its
degree; (iii) M contains for each member of O of degree m an unique m-ary
mapping of {I,...,n} into itself,® called the matrix of the operation; and
(iv) D is {1,..., m} for some m <n; the elements of D are called the
designated values of Ly.

The set W of well-formed formulas (wifs) of L, is the least set con-
taining the atoms and such that if p;, ..., ppare elements of W and ok is
an operation of degree k, then the concatenation 0*p, ... pgisin W. If B
is any set of atoms, Wg is the set of wffs formed from B as W is from
A. If p is any wif, p is the least set B of atoms such that p € Wy intuitively,
‘P comprises the atoms which have occurrences in p.

A mapping a of A into {1,...,n} is called an assignment of values
for L,. Each assignment determines an unique intevpretation 1, of W as

1. The most general results are those of [2]; a simplified version of these is avail-
able in [3]. A definition of compactness close to ours appears in [4].

2. The choice of integers as truth-values is for convenience only; any n-element set
would do.
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follows: if p is atomic, lep = ap; otherwise, p is of the form ofp, . . . P
and we may suppose l,p; defined for i < k. Let f be the matrix of of; then
lep = f(lgp1, . . ., 1,p,). It is clear that I, is locally determined, in the

sense that if a|p = B[P, then lop = Igp.

Two wifs are equivalent iff they have the same value on every assign-
ment. As is well known, if B contains % atoms, then a subset of Wp can
contain at most n”k pairwise non-equivalent wffs.

An n-tuple K = (K;, ..., K,) of subsets of W is satisfied by an
assignment o iff for some 7 =z and pe K;, lop =%2. K is valid iff satisfied
by every assignment. K is finite iff each K; is finite; £ =(L;,...,L,)
is a sub-n-tuple of K iff each L; is a subset of K.

Lemma 1.1 K is wvalid iff it contains a valid sub-n-tuple L with the follow-
ing properties: (i) each p eK; is equivalent to some qeL;; (ii) the elements
of L; are paivwise non-equivalent—for all i <n.

Proof: Equivalence is clearly an equivalence relation on W. Let L; consist
of one representative from each equivalence class represented in K;
(using the axiom of choice if K; contains infinitely many non-equivalent
wiffs). The lemma is now immediate.

2 By a partial valuation of a set S in a set U we mean any partial map
from S to U; a total valuation is one whose domain is all of S. We write
as usual D¢ for the domain of ¢ and ¢|T for the restriction of ¢ to T. We
shall require the following lemma, whose proof differs from that of
Robinson’s Special Valuation Lemma only in the minor detail that U may
contain any finite number of elements, rather than just two. Details are
left to the reader.

Lemma 2.1 Let {¢,} be an indexed set of partial valuations of S in a finite
set U, such that for any finite T C S, theve is av such that T c D. Then
there is a total valuation  such that fov each finite T, there is a v with
TcD¢,and Y| T=9¢,lT.

3 We can now state and prove our main result.

General Compactness Theorem: Every valid n-tuple of sets of wffs con-
tains a valid finite sub-n-tuple.

Proof: Suppose no finite sub-n-tuple of K= (K, ..., K,) is valid. By
Lemma 1.1 we may assume without loss of generality that the elements
of K; are pairwise non-equivalent. Let v be any finite set of atoms, and
let L,; = W,NK; for each i < n. Then as previously noted, L ; must be
finite. Hence L,=(L ,, ..., L, isa finite sub-n-tuple of K and there-
fore some assignment o fails to satisfy it (by hypothesis). Set ¢, = alv.
Then {¢,)} is a set® of partial valuations of A in {Z, . . . , n} which satisfies

3. There is a surreptitious but avoidable use of the axiom of choice at this point.
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the antecedent of 2.1, hence there is a total valuation of A in{Z, ..., n}
(i.e., an assignment) o* which coincides with some ¢, on each finite subset
of A. Let p be any element of K;. p is finite, so for some v, pc D¢, = v
and a*|p = ¢,/p. By construction, ¢, = a|v for some assignment & which
fails to satisfy .L,. Since pC v, we have ax|p = ¢’V|F = a|5, and hence
by local determination, lo*p = lgp. Furthermore, since p c v, p ¢ W, and
hence pe W, N K; =L ;, so since a does not satisfy ., lop #%. It follows
that o* fails to satisfy K, so that K is not valid. The theorem now follows
by contraposition.

4 A more usual notion of compactness involves a concept of satisfiability
defined as follows: a set of wiffs is satisfiablep iff some assignment gives
every element of the set a designated value. As a corollary to our general
theorem we have the

Standard Compactness Theorem: If every finite subset of K is satisfiablep,
then K is also.

Proof: Suppose K is not satisfiablep, and set K = (K,, ..., K,), where
ifieD,K; = @, and otherwise K; = K. Then K is clearly valid, so contains

a valid finite sub-n-tuple £ =(L,,...,L,). Let L = l;J L;. Then L is
idD

a finite subset of K, and is not satisfiablep, since any assignment which
satisfied it would ipso facto fail to satisfy L. The theorem follows by
contraposition.

S Extension of the above theorems to quantificational many-valued logics
will be discussed in a sequel to this paper.
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