Notre Dame Journal of Formal Logic Volume XIV, Number 3, July 1973 NDJFAM

ON COMPACTNESS IN MANY-VALUED LOGIC. I

PETER W. WOODRUFF

Our purpose in this paper is to formulate and prove a rather general compactness property for finitely many-valued logics, from which more familiar forms of compactness are derivable. The proof employs a slight generalization of Robinson's Special Valuation Lemma [1], p. 13. Although other such results are available in the literature, the present version shows in an interesting way the effect of many-valuedness on the compactness proof, and also avoids reliance on "high-powered" results such as Tychonoff's theorem. Finally, our version makes no assumptions about the expressive power or designated values of the system.

1 An *n-valued logic* L_n is a system $\langle A, O, M, D \rangle$ such that (i) A is a (finite or infinite) set of objects called the *atomic formulas* or *atoms* of L_n ; (ii) O is a finite set of objects, discrete from A, called *operations*, with each of which is associated an unique non-negative integer called its *degree*; (iii) M contains for each member of O of degree m an unique m-ary mapping of $\{1, \ldots, n\}$ into itself, called the *matrix* of the operation; and (iv) D is $\{1, \ldots, m\}$ for some m < n; the elements of D are called the *designated values* of L_n .

The set W of well-formed formulas (wffs) of L_n is the least set containing the atoms and such that if p_1, \ldots, p_k are elements of W and \mathbf{o}^k is an operation of degree k, then the concatenation $\mathbf{o}^k p_1 \ldots p_k$ is in W. If B is any set of atoms, W_B is the set of wffs formed from B as W is from A. If p is any wff, p is the least set B of atoms such that $p \in W_B$; intuitively, p comprises the atoms which have occurrences in p.

A mapping α of A into $\{1, \ldots, n\}$ is called an assignment of values for L_n . Each assignment determines an unique interpretation I_{α} of W as

^{1.} The most general results are those of [2]; a simplified version of these is available in [3]. A definition of compactness close to ours appears in [4].

^{2.} The choice of integers as truth-values is for convenience only; any n-element set would do.

follows: if p is atomic, $I_{\alpha p} = \alpha p$; otherwise, p is of the form $\mathbf{o}^k p_1 \dots p_k$ and we may suppose $I_{\alpha p_i}$ defined for $i \leq k$. Let f be the matrix of \mathbf{o}^k ; then $I_{\alpha p} = f(I_{\alpha p_1}, \dots, I_{\alpha p_k})$. It is clear that I_{α} is locally determined, in the sense that if $\alpha | \overline{p} = \beta | \overline{p}$, then $I_{\alpha p} = I_{\beta p}$.

Two wffs are *equivalent* iff they have the same value on every assignment. As is well known, if B contains k atoms, then a subset of W_B can contain at most n^{n^k} pairwise non-equivalent wffs.

An n-tuple $K = \langle K_1, \ldots, K_n \rangle$ of subsets of W is satisfied by an assignment α iff for some $i \leq n$ and $p \in K_i$, $|_{\alpha}p = i$. K is valid iff satisfied by every assignment. K is finite iff each K_i is finite; $\mathcal{L} = \langle L_1, \ldots, L_n \rangle$ is a sub-n-tuple of K iff each L_i is a subset of K_i .

Lemma 1.1 K is valid iff it contains a valid sub-n-tuple \mathcal{L} with the following properties: (i) each $p \in K_i$ is equivalent to some $q \in L_i$; (ii) the elements of L_i are pairwise non-equivalent—for all $i \leq n$.

Proof: Equivalence is clearly an equivalence relation on W. Let L_i consist of one representative from each equivalence class represented in K_i (using the axiom of choice if K_i contains infinitely many non-equivalent wffs). The lemma is now immediate.

2 By a partial valuation of a set S in a set U we mean any partial map from S to U; a total valuation is one whose domain is all of S. We write as usual $D\phi$ for the domain of ϕ and $\phi \mid T$ for the restriction of ϕ to T. We shall require the following lemma, whose proof differs from that of Robinson's Special Valuation Lemma only in the minor detail that U may contain any finite number of elements, rather than just two. Details are left to the reader.

Lemma 2.1 Let $\{\phi_{\nu}\}$ be an indexed set of partial valuations of S in a finite set U, such that for any finite $T \subseteq S$, there is a ν such that $T \subseteq D$. Then there is a total valuation ψ such that for each finite T, there is a ν with $T \subseteq D \phi_{\nu}$ and $\psi \mid T = \phi_{\nu} \mid T$.

3 We can now state and prove our main result.

General Compactness Theorem: Every valid n-tuple of sets of wffs contains a valid finite sub-n-tuple.

Proof: Suppose no finite sub-*n*-tuple of $K = \langle K_1, \ldots, K_n \rangle$ is valid. By Lemma 1.1 we may assume without loss of generality that the elements of K_i are pairwise non-equivalent. Let ν be any finite set of atoms, and let $L_{\nu i} = W_{\nu} \cap K_i$ for each $i \leq n$. Then as previously noted, $L_{\nu i}$ must be finite. Hence $\mathcal{L}_{\nu} = \langle L_{\nu 1}, \ldots, L_{\nu n} \rangle$ is a finite sub-*n*-tuple of K and therefore some assignment α fails to satisfy it (by hypothesis). Set $\phi_{\nu} = \alpha | \nu$. Then $\{\phi_{\nu}\}$ is a set³ of partial valuations of A in $\{1, \ldots, n\}$ which satisfies

^{3.} There is a surreptitious but avoidable use of the axiom of choice at this point.

the antecedent of 2.1, hence there is a total valuation of A in $\{1,\ldots,n\}$ (i.e., an assignment) α^* which coincides with some ϕ_{ν} on each finite subset of A. Let p be any element of K_i . \overline{p} is finite, so for some ν , $\overline{p} \subseteq D\phi_{\nu} = \nu$ and $\alpha^*|\overline{p} = \phi_{\nu}|\overline{p}$. By construction, $\phi_{\nu} = \alpha |\nu|$ for some assignment α which fails to satisfy \mathcal{L}_{ν} . Since $\overline{p} \subseteq \nu$, we have $\alpha^*|\overline{p} = \phi_{\nu}|\overline{p} = \alpha |\overline{p}$, and hence by local determination, $\mathbf{I}_{\alpha}^*\mathbf{p} = \mathbf{I}_{\alpha}\mathbf{p}$. Furthermore, since $\overline{p} \subseteq \nu$, $\mathbf{p} \in W_{\nu}$ and hence $\mathbf{p} \in W_{\nu} \cap K_i = L_{\nu i}$, so since α does not satisfy \mathcal{L}_{ν} , $\mathbf{I}_{\alpha}\mathbf{p} \neq i$. It follows that α^* fails to satisfy K, so that K is not valid. The theorem now follows by contraposition.

4 A more usual notion of compactness involves a concept of satisfiability defined as follows: a set of wffs is $satisfiable_D$ iff some assignment gives every element of the set a designated value. As a corollary to our general theorem we have the

Standard Compactness Theorem: If every finite subset of K is satisfiable D, then K is also.

Proof: Suppose K is not satisfiable D, and set $K = \langle K_1, \ldots, K_n \rangle$, where if $i \in D$, $K_i = \emptyset$, and otherwise $K_i = K$. Then K is clearly valid, so contains a valid finite sub-n-tuple $\mathcal{L} = \langle L_1, \ldots, L_n \rangle$. Let $L = \bigcup_{i \notin D} L_i$. Then L is a finite subset of K, and is not satisfiable D, since any assignment which satisfied it would *ipso facto* fail to satisfy \mathcal{L} . The theorem follows by contraposition.

5 Extension of the above theorems to quantificational many-valued logics will be discussed in a sequel to this paper.

REFERENCES

- [1] Robinson, A., Introduction to Model Theory and to the Metamathematics of Algebra, Amsterdam (1965).
- [2] Chang, C. C., and H. J. Keisler, Continuous Model Theory, Princeton (1966).
- [3] Van Fraassen, B. C., Formal Semantics and Logic, New York (1971).
- [4] Rousseau, G, "Sequents in many-valued logic I," Fundamenta Mathematicae, vol. 60 (1967), pp 23-33.

University of California, Irvine Irvine, California