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A NOTE ON IMPLICATIVE MODELS

E. L. MARSDEN

1. Introduction. Implicative models were first considered by Leon Henkin
who explored the relation between certain formal (logical) systems and
certain algebraic structures. More precisely, implicative models cor-
respond to a logical system whose only logical connective is implication
and whose laws are satisfied by classical, intuitionistic and modal logics.

Several examples of implicative models are Boolean lattices, Brou-
werian semi-lattices, and closures algebras. Henkin's definition of an
implicative model has been dualized to conform with common notation for
Brouwerian semi-lattices. In this note it is shown that several significant
results for Brouwerian semi-lattices also obtain in the setting of implica-
tive models.

2. Implicative Models. An implicative model [2] is an algebraic system
(X, *, 1) where X is a set, 1 is an element of X, and * is a binary operation
satisfying the axioms listed below. It is convenient to use the relation ^
defined by# ^y iϊ x * y = 1. The following axioms hold for all x, y, z in X:

Ai y — x * y
A 2 x * (y * z) ^ (x * y) * (x * z)
A3 x^l
A4 x - y when x — y and y ~ x.

Proposition 1.

(i) // 1 ^ Λ:, then 1 = x.
(ii) x * 1 = 1.

(iii) x * x = 1.
(iv) 1 * x = x.
(v) //x ~ y and y — z, then x ^ z.

(vi) (X, ^) is a partially ordered set.

Proposition 2.

(i) If x ~ y, then y * z ^ x * z.
(ii) x * (3; * z) = y * (x * z).
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(iii) x * (y * z) = (x * y) * (x * z).
(iv) x * ( y * z) = x * [(x * y) * 2].
(v) / / # ̂  y * 2, £&£?2 3; ̂  ΛΓ * ^.

(vi) If x ~ y, then z * x ^ z * y.

The above propositions and the following two propositions are easily

proved. Some of the arguments are contained in [2]; also some similar

arguments are in [5]. The key computational facts used in this note are

contained in Propositions 2 and 3.

Proposition 3.

(i) If x ~ z and x ^ z * y, then x — y.

(ii) If x — y, then x*(y*z)=x*z.

(iii) If either of z Λ (Z * y) or z*y exists, then both exist and they are

equal.

(iv) If XA y exists, then x * ( y * z) ^ (x*y) * z.

Let 0 e X be a zero of the partially ordered set (X, —). An implicative

model with such an element will be called bounded. Define *: X—• Xhy

#* = x * 0. Let X* be the image of the mapping *. For the remainder of

this section, let X denote a bounded implicative model.

Proposition 4.

(i) 1* = 0αwrf0*= 1.

(ii) Ifx^y, then y* =£ #*.

(iii) x ^ # * * .

(iv) ΛΓ* = * * * * .

L e m m a 5. For xeX and ye X*, (y * 0) *x ^ (Λ: * 0) * y. Hence, if x,yeX*,

then y * x = ΛΓ* * y*.

Proof. Since y e X * , then y = y* * 0. Thus [( y * 0) * x] * [(ΛΓ * 0) * y] =

[3;* * x] * {Λ:* * [y* * O]} = ΛΓ* * {[3;* * x] * [ y* * θ]} = ΛΓ* * {y* * [Λ: * θ]} =
X* * {3;* * x*} = 1.

T h e o r e m 6. .For #,;yeX*, Λ: * yeX*.

Proof. We show that [(x * y) * 0] * 0 — x * y. Now ^ * 0 — Λ Γ * ( ^ * O ) =

Λ: * [ ( Λ : * ^ ) * O] = {[(x*y) * 0] * 0} * (x * 0). Thus [(# * y) * 0] * 0 ^ (3; * 0) *

(x * 0) = x * y.

Propos i t ion 7.

(i) For x, z e X*, x* ^ z if and only if x * z = z.
(ii) For x,y,z e X* with x* ^ z, (x * 3;) * z = x * (3; * z) = y * z*

Proof, (i) (<#=) x* ^ z* * x* = x * z = z.
( = H We f i rs t show that Λ:* * # = x. H e r e (ΛΓ* * x) * ΛΓ = (Λ:* * #) *

(x* * 0) = x* * (ΛΓ * 0) = 1. In genera l , if x* ^ 2, then Λ Γ ^ ^ * Λ ; ^ Λ Γ * * Λ : = ΛΓ.

(ii) (x * 3;) * z = (x * 3;) * (x * 2) = x * (3; * z) = y * (# * z) = y * £.
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Theorem 8.

(i) For x,y e X*, the infimum in X* or in X of {x, y}, exists and x Λ y =
(x * 3;*)*.

(ii) For x,ye X*, the supremum in X* of{x, y} is x v y = #* * 3;.
(iii) For 3; e X*, 3;* zs α complement in X* 0/3;.

Proo/^ (i) (x * ^*)* - 3> since y* ̂  (x * 3;*). Since # * 3;* = y * #*, then
(x * 3;*)* ^ ΛΓ. Now suppose that ze X* and z ^ {x, 3/}. The statement z ^
(AT * 3;*)* is equivalent to z * (x * 3;*)* = 1. But £ * (x * 3;*)* = (ΛΓ * 3>*) *£* =
3;* * £* = 1 by Proposition 7. Notice that if z e X with z ^ {x, y} then 2 ^
2** ^ (# * y*)*.

(ii) follows from (i) by the de Morgan laws.
We have now shown that (X*, ̂ , *, 0, 1) is an orthocomplemented

lattice. In proving the following theorem we use the fact that an orthocom-
plemented lattice in which complements are unique is a Boolean lattice
(see [3], Theorem 4).

Theorem 9. (X*, ̂ , *, 0, 1) is a Boolean lattice.

Proof, The computation x v 3̂  = (3; * 0) * x of Theorem 8 makes it clear that
x v y = 1 if and only if 3?* ^ x. Suppose x, y e X* and x is a complement of y .
Since x v y = 1, then 3;* — x. Also since x Ay = 0, then #* V3;* = 1, so x — 3̂ *.
This shows that each member of X* has a unique complement.

3. Brouwerian Semi-Lattices. A Brouwerian semi-lattice is a semi-lattice
with unit (X, *, 1, Λ) on which * is a binary operation such that w ^ x * y if
and only if x MV ^y% Proposition 10 below indicates that any Brouwerian
semi-lattice is an implicative model. Conversely, Carol Karp has proved
that any implicative model can be embedded, via the filters of Section 4 be-
low, in a complete Brouwerian lattice. This embedding preserves certain
logical infima and any suprema which exist in the implicative model. It is
convenient to include in this section an example of an implicative model
which is markedly non-Brouwerian.

Proposition 10. A Brouwerian semi-lattice is an implicative model.

Proof. A useful computational fact in a Brouwerian semi-lattice is that
XA(X * 3;) = XΛy. To check that condition A2 is satisfied, note that the
following statements are equivalent: x * (3̂  * z) ~ {x * y) * (x * z), (x * y)λ
[x*(y *x)] — x * z, x λ(x*y)Λ[x * ( 3 / * ^ ) ] — z, Λ T Λ ^ Λ ^ * z) — z,x Λ y Λ Z — Z .

Example. Let (P, ^ , 1) be any part ia l ly o r d e r e d set with unit. Define *:

P x P ->p b y * *;y=;y if # ^ ; y , and x*y = liϊx^y. Then ( P , *, 1) i s an

implicat ive model .

Theorem 11. Let X be an implicative model in which any two elements have
an infimum. The following conditions are equivalent.

(i) X is a Brouwerian semi-lattice.
(ii) For x,y, ze X, (xΛy) * z = x * (y * z).
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(iii) For x, y,z e X with z —y, then x Λy—z if and only if x — (y *x).

(iv) For x,yeX, x — y * (xAy),

(v) For x,y,z e X, x * (3^,2) = (x * 3;) Λ (X * z).

Proof. (i)=#>(ii). By the definition of a Brouwerian semi-lattice, these are
equivalent: w^x*(y*z),XΛw^(y*z),XΛyΛw^z,w^(xΛy) * z.

(ii) =#> (iii). Condition (iii) may be read as (x*y) * z = 1 if and only if
x * (y * z) = l.

(iii) ==> (iv). Apply (iii) with z = XΛ y.

(iv) =Φ (v). It i s sufficient to show that (x * 3;) Λ (X * z) ^ x * (y Λ Z). By

Proposi t ion 3 (iv), [(x * 3;) Λ (A; * 2)] * [# * (y*z)] > (x * y) * {(x * s) *

[Λ: * (3̂  Λ £)]} = (A; * y) * {x * [z * (3? Λ 2)]}. F u r t h e r 2 * (3? Λ Z) ^ 3;, so (A: * 3;) *

{x * [z * (3; Λ *)]} ̂  (A? * 3;) * (x * 3;) = 1.

(v) =Φ> (i) Observe that XAW^y implies w ^ x * y s ince w ^ x * w =

(Λ: * w) Λ (ΛΓ * x) = x * (w; Λ X) — x * y,

4. Filters in Implicatiυe Models. A filter in an implicative model (X, *, 1)
is a non-empty subset F of X for which (i) 3; e F when xeJ7 and x * y e F, and
(ii) 3/eF when xe F and # ̂  3;. Notice that (ii) may be replaced by (ii)' 1 e F.

Theorem 12.

(i) Let F be a filter in X and let x ~ y when x * ye F and y * x e F. Then ~
is a congruence relation on X, and the kernel of ~ is F.

(ii) For any congruence relation ~ on X, ker ~ is a filter in X.

Proof, (i) It is immediate that ~ is reflexive and symmetric. To confirm
that ~ is transitive we suppose x ~ y and y ~ z. By symmetry it is
sufficient to show that x * ze F, Since' x * y, y * ze F, and y * 2 ^ x *
(3; * £) = (# * 3;) * (x * £), then x * z e F.

The justification that ~ is preserved by * is separated into three cases.

Case 1. If x ~ y, then u * x ~ u * y. The computation (u * x) * (u * 3;)=
M * (ΛΓ * 3;) ̂  (Λ: * 3;) indicates that (u * #) * (u * 3;) e F.

Case 2. If ^ ^ 3;, then A; * z - 3; * 2. We shall show that (x * z) *
(3> * #) e i7. Observe that y * xe F and (3; * Λ;) * [(ΛΓ * z) * (3; * ^)] = (x * £) *
[(3; * AT) * (3; * z)] = (x * z) * [3; * (A; * z)] = 1. The conclusion follows.

Case 3. If # ~ 3; and u ~ v, then # * M ~ y * v. This follows from the
two previous cases and the transitivity of ~.

(ii) First leker(~) ={xeX\x ~ l}. Suppose that AT, A; *3;eker(-). It
follows that 3>=l*;y ~ x * y ~ I, and thus yeker(~).

Let (X, *, 1) and {Z, +, 1) be implicative models. A function/ : X —* Z
is called a homomorphism providing f(x * 3;) =/M +/(;y) for all x,ye X. It
is convenient to incorporate several basic properties of homomorphisms
into the following:

Proposition 13. Let f be a homomorphism from (X, *, 1, 0) to (Z, +, 1, 0).

(i) /(I) = 1.
(ii) If x ^ y inX, then f(x) =s f(y) in z,

(iii) ker(/) = {xe x\f{x) = 1} is a filter in X.



A NOTE ON IMPLICATIVE MODELS 143

(iv) /// is an epimorphism, then X/ker(f) and Z are isomorphic implica-
tiυe models.

(v) Let /(0) = 0. IfxeX*, then f(x) e Z*. Also, ifzeZ* and z =/(#), then
z =f(x**).

(vi) If f is an epimorphism andfx is the restriction of f to X*, then /x :
X* _* %* is an epimorphism of Boolean lattices.

Theorem 14. Let{X, *, 1, 0) be a bounded implicative model, let X* be the
Boolean lattice of closed elements of X, and let D = {χe X\x** = 1} be the
set of dense elements of X. Then D is a filter inX, and X/D and X* are
isomorphic as Boolean lattices.

Proof. Let/ :X -* X* be the closure mapping f(x) = x**. We claim that/
is a homomorphism. Since x** * 3;** = x* v y** in X*, we wish to show that
for x,ye X, (x * y)** = x* v y**. First y** — (x * y)** since y — x * y, and
#* < (x * j ;)** since x* = x * 0 ~ x * y. Suppose that ue X* is an upper
bound of {x*, 3;**}. To prove that (x * 3;)** ̂  u it is sufficient to prove that
(x * y) * u = 1. By Proposition 2 (ii) x * ( y* * 0) =3> * * (x * 0), and hence
[x * <y]* > [Λ: * (<y* * 0)]* = [ y* * (x * 0)]* = [ y** VΛ;*]*. Again by Proposition
2 (ii), (# * 3;) * u = (x * 3;) * [w* * 0] = M* * [(# * 3;) * 0] ^ w* * b * * v^*]* =
[3;**VΛ;*] * M = 1. Since ker(/) = D, then Z) is a filter in X and furthermore
X/D andX* are isomorphic implicative models.

By Proposition 13 (vi), for the natural isomorphism g :X/D ->X*, the
restriction of^ to (X/D)* is an isomorphism onto X** = X*. Since g is an
injection, it must be that all elements oίX/D are closed.

The previous theorem generalizes a theorem of Glivenko which is
contained in [1], Chapter V.ll . The following corollary completes the
details of the generalization.

Proposition 15. If the implicative model X is a Brouwerian semi-lattice,
then the filters in X are semi-lattice filters.

Proof. Let F be a filter in X, and let x, yeF. We compute x* (x*y) =
(x * x) A(X * y) = x * y ^ y. Thus χ,χ * (xA y) e F imply x^yeF. Conversely,
s u p p o s e t h a t F i s a s e m i - l a t t i c e f i l t e r a n d t h a t x,x *yeF. S i n c e x*y =

x A (x * y) e F and x A y ^ y, then y e F.

Corollary 16. Let (X, *, 1, 0, Λ) be a bounded Brouwerian semi-lattice.
For x,y eX, x** = 3 ; * * if and only if x Ad = y Ad for some (dense) deX with
d** = 1.

Proof. (=>) Since # * * = 3/** = 1, then x * y, y * x e D = {w I w** = l} . By
Theorem 14 and Proposi t ion 15, d = (x * y) A (y *x)eD. Moreover XAd -
x A (x * 3;) Λ (3; * x) = x A (x * y) = x A y = y A d.

(«#=) If XAd =yAd for deD, then (XAd)* = (y*d)*. H o w e v e r , by

Theorem 11 (ii), x* =χ * 0 = x * (d * 0) = (xAd) * 0 = (x A<i)* = (y Ad)* = y*.
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