A SET-THEORETIC MODEL FOR NONASSOCIATIVE NUMBER THEORY

D. BOLLMAN and M. LAPLAZA

1 Introduction. To our knowledge, the first reference to nonassociative numbers as an independent concept is in a paper of Etherington [3], in which it is related to some situations in biology. Recently, it has been shown in [1] and [7] that a suitable representation of nonassociative numbers can be a useful tool to solve some problems of coherence in the sense of [8]. Moreover, the set of nonassociative numbers is one of the simplest free algebras and can be used to give descriptions of nonassociative free algebras.

Formally, the theory \mathbf{N} of nonassociative numbers bear similarities to those of the theory of natural numbers. In [4], Evans characterized the nonassociative numbers by a set of "Peano-like" axioms. In [2], these axioms were formalized and following a suggestion of Evans, it was shown that N is incomplete and furthermore that it is essentially undecidable. It is natural to ask if and how \mathbf{N} can be formalized within formal set theory, say Zermelo-Fraenkel (ZF). In the present work we do exactly this. Furthermore, by considering variations of this model, we show that the axioms of N are independent.

The representations of N by coordinates in [1] and [7] offer the possibility of constructing other models for N , but they would be more complicated than ours. In this connection we refer to Freyd's Adjoint Theorem [5], one of whose consequences is the existence of free algebras, which therefore also gives a way to construct a model for \mathbf{N}, but this too would be quite sophisticated.

2 A model for nonassociative number theory. In [2], nonassociative number theory is defined to be the first-order theory with equality, \mathbf{N}, having one individual constant 1, three binary function letters corresponding to addition (+), multiplication (•), and exponentiation and whose proper axioms are:
(N1) $x_{1}+x_{2} \neq 1$
(N2) $x_{1}+x_{2}=x_{3}+x_{4} \cdot \supset . x_{1}=x_{3} \wedge x_{2}=x_{4}$
(N3) $x_{1} \cdot 1=x_{1}$
(N4) $x_{1} \cdot\left(x_{2}+x_{3}\right)=x_{1} \cdot x_{2}+x_{1} \cdot x_{3}$
(N5) $x_{1}^{1}=x_{1}$
(N6) $x_{1}^{x_{2}+x_{3}}=x_{1}^{x_{2}} \cdot x_{1}^{x_{3}}$
(N7) (Nonassociative Induction) For any well-formed (wff) $\mathcal{A}(x)$ of \mathbf{N}, $\mathcal{A}(1) \wedge\left(x_{1}\right)\left(x_{2}\right)\left(\mathcal{A}\left(x_{1}\right) \wedge \boldsymbol{d}\left(x_{2}\right) . \supset . \mathcal{A}\left(x_{1}+x_{2}\right)\right) . \supset .\left(x_{1}\right) \mathcal{A}\left(x_{1}\right)$.

Consider the set P defined as follows: Let $P_{1}=\{1\}$ where $1=\phi$ and for each natural number n let $P_{n+1}=P_{n} \cup\left\{\langle a, b\rangle \mid a \in P_{n} \wedge b \in P_{n}\right\}$. Then let $P=$ $\bigcup_{n \in \omega} P_{n}$, where ω denotes the set of positive integers. Also define $a+b=$ $\langle a, b\rangle$ for each $a \in P$ and $b \in P$.

It is easy to see that under this interpretation, axioms (N1) and (N2) is satisfied. It also follows that (N7) is satisfied. For suppose that

$$
\mathcal{A}(1) \cdot \wedge .\left(x_{1} \in P\right)\left(x_{2} \in P\right)\left(\mathcal{A}\left(x_{1}\right) \wedge \mathcal{A}\left(x_{2}\right) \cdot \supset \cdot \mathcal{A}\left(x_{1}+x_{2}\right)\right) .
$$

Then $\mathcal{A}(x)$ for each $x \in P_{1}$. Furthermore, if $\mathcal{A}(x)$ for each $x \in P_{n}$ and if $x \in P_{n+1}$ then $x \in P_{n}$ or $x=\langle a, b\rangle$ for some $a \in P_{n}$ and $b \in P_{n}$. In either case, $\left(x \in P_{n+1}\right) \boldsymbol{A}(x)$. Hence $\left(x \in P_{n}\right) \mathcal{A}(x)$ for each $n \in \omega$ and so $(x \in P) \mathcal{A}(x)$. Thus

$$
\vdash_{\mathrm{ZF}} \mathcal{A}(1)\left(x_{1} \in P\right)\left(x_{2} \in P\right)\left(\mathcal{A}\left(x_{1}\right) \wedge \mathcal{A}\left(x_{2}\right) . \supset . \mathcal{A}\left(x_{1}+x_{2}\right)\right) . \supset .\left(x_{1} \in P\right) \mathcal{A}\left(x_{1}\right) .
$$

To prove that the other axioms are satisfied under the given interpretation we need only prove a theorem of nonassociative recursion in ZF. Informally, we must prove that if $f: x \times x \rightarrow x$ and if $a \in x$ then there exists a unique function $\mathbf{t}: P \rightarrow x$ such that $\mathbf{t}(1)=a$ and $\mathbf{t}(m+n)=f(\mathbf{t}(m), \mathbf{t}(n))$. Formally, we use the notation of Hatcher [6] ($c f$., in particular, page 186): $\mathcal{F}(x)$ is the wff of ZF which says that x is a function, $D(x)$ is the term of ZF which denotes the domain of a function $x, I(x)$ is the term of ZF which denotes the range of a function x, and $x_{1}{ }^{\prime \prime} x_{2}$ is the term of ZF which denotes the image of x_{2} under the function x_{1}.

Theorem of Nonassociative Recursion:

$$
\begin{aligned}
& { }_{\mathrm{ZF}}\left(x_{1}\right)\left(x_{2}\right)\left(\mathcal{F}\left(x_{1}\right) \cdot \wedge \cdot \mathrm{I}\left(x_{1}\right) \times \mathrm{I}\left(x_{1}\right) \subset \mathrm{D}\left(x_{1}\right) \cdot \wedge \cdot\left\{x_{2}\right\} \times \mathrm{I}\left(x_{1}\right) \subset \mathrm{D}\left(x_{1}\right) \cdot \wedge \cdot \mathrm{I}\left(x_{1}\right) \times\left\{x_{2}\right\}\right. \\
& \subset \mathrm{D}\left(x_{1}\right) \cdot \wedge \cdot\left\langle x_{2}, x_{2}\right\rangle \in \mathrm{D}\left(x_{1}\right): \supset \cdot\left(\mathrm{E}!x_{3}\right)\left(\mathcal{F}\left(x_{3}\right) \cdot \wedge . P=\mathrm{D}\left(x_{3}\right) \cdot \wedge \cdot \mathrm{I}\left(x_{3}\right) \times \mathrm{I}\left(x_{3}\right) \subset \mathrm{D}\left(x_{1}\right) .\right. \\
& \wedge \cdot x_{3}^{\prime \prime} 1=x_{2} \cdot \wedge \cdot\left(x_{4}\right)\left(x_{5}\right)\left(\left\langle x_{4}, x_{5}\right\rangle \in P . \supset \cdot x_{3}^{\prime \prime}\left\langle x_{4}, x_{5}\right\rangle\left\langle x_{4}, x_{5}\right\rangle\right. \\
& \left.\left.\left.\quad=x_{1}^{\prime \prime}\left\langle x_{3}^{\prime \prime} x_{4}, x_{3}^{\prime \prime} x_{5}\right\rangle\right)\right)\right) .
\end{aligned}
$$

Proof. Suppose
$\mathcal{F}\left(x_{1}\right) . \wedge . I\left(x_{1}\right) \times \mathrm{I}\left(x_{1}\right) \subset \mathrm{D}\left(x_{1}\right) . \wedge .\left\{x_{2}\right\} \times \mathrm{I}\left(x_{1}\right) \subset \mathrm{D}\left(x_{1}\right) . \wedge . \mathrm{I}\left(x_{1}\right) \times\left\{x_{2}\right\} \subset \mathrm{D}\left(x_{1}\right)$.
^. $\left\langle x_{2}, x_{2}\right\rangle \in D\left(x_{1}\right)$
and let

$$
\begin{aligned}
\mathcal{E}= & \left\{x_{5} \mid x_{5} \in \boldsymbol{P}\left(P \times \mathrm{D}\left(x_{1}\right)\right) . \wedge .\left\langle 1, x_{2}\right\rangle \in x_{5} . \wedge .\left(x_{6}\right)\left(x_{7}\right)\left(x_{8}\right)\left(x_{9}\right)\left(\left\langle x_{6}, x_{7}\right\rangle \in x_{5} .\right.\right. \\
& \left.\left.\wedge .\left\langle x_{8}, x_{9}\right\rangle \in x_{5}: \supset .\left\langle\left\langle x_{6}, x_{8}\right\rangle, x_{1}{ }^{\prime \prime}\left\langle x_{7}, x_{9}\right\rangle\right\rangle \in x_{5}\right)\right\}
\end{aligned}
$$

and

$$
\mathrm{t}=\bigcap_{\varepsilon} .
$$

We first show that $(u)(u \in P \supset(\mathrm{E}!v)(\langle u, v\rangle \in \mathbf{t})$. First suppose that $\langle 1, v\rangle \epsilon$ $\mathbf{t} \wedge v \neq x_{2}$. Let $\mathrm{L}=\{w \mid w \in \mathbf{t} \wedge w \neq\langle 1, v\rangle\}$. Then $\mathrm{L} \subset \mathbf{t} \subset P \times \mathrm{D}\left(x_{1}\right)$. Also, since $v \neq x_{2},\left\langle 1, x_{2}\right\rangle \in \mathrm{L}$. Furthermore, if $\left\langle x_{6}, x_{7}\right\rangle \in \mathrm{L} . \wedge .\left\langle x_{8}, x_{9}\right\rangle \in \mathrm{L}$ then $\left\langle\left\langle x_{6}, x_{8}\right\rangle\right.$, $\left.x_{1}{ }^{\prime \prime}\left\langle x_{7}, x_{9}\right\rangle\right\rangle \in \mathrm{L}$ since $\left\langle x_{6}, x_{8}\right\rangle \neq 1$. Hence $\mathrm{L} \in \mathcal{E}$ and so $\mathbf{t} \subset \mathrm{L}$, which is a contradiction, since $\langle 1, v\rangle \in \mathbf{t}$ and $\langle 1, v\rangle \notin \mathrm{L}$. Hence $\langle 1, v\rangle \in \mathbf{t}$ implies that $v=x_{2}$ and we have thus proved that (E!v) (<1,v> $\in \mathbf{t}$).

Now suppose that $u_{1} \in P . \supset .\left(\mathrm{E}!v_{1}\right)\left(\left\langle u_{1}, v_{1}\right\rangle \in \mathbf{t}\right), u_{2} \in P . \supset .\left(\mathrm{E}!v_{2}\right)\left(\left\langle u_{2}, v_{2}\right\rangle \in \mathbf{t}\right)$, and that $u_{1} \in P . \wedge . u_{2} \in P$. Then $\left(\mathrm{E}!v_{1}\right)\left(\left\langle u_{1}, v_{1}\right\rangle \in \mathbf{t}\right)$ and $\left(\mathrm{E}!v_{2}\right)\left(\left\langle u_{2}, v_{2}\right\rangle \in \mathbf{t}\right)$ and so $\left\langle\left\langle u_{1}, u_{2}\right\rangle, x_{1}{ }^{\prime \prime}\left\langle v_{1}, v_{2}\right\rangle\right\rangle \in \mathbf{t}$. Suppose $\left\langle\left\langle u_{1}, u_{2}\right\rangle, v\right\rangle \in \mathbf{t}$, where $v \neq x_{1}{ }^{\prime \prime}\left\langle v_{1}, v_{2}\right\rangle$. Let $K=$ $\left\{u \mid u \in \mathbf{t} . \wedge . u \neq\left\langle\left\langle u_{1}, u_{2}\right\rangle, v\right\rangle\right\}$. Then $\left\langle 1, x_{2}\right\rangle \neq\left\langle\left\langle u_{1}, u_{2}\right\rangle, v\right\rangle$ and since $\left\langle 1, x_{2}\right\rangle \in \mathbf{t}$, $\left\langle 1, x_{2}\right\rangle \in K$. Suppose $\left\langle x_{6}, x_{7}\right\rangle \in \mathrm{K}$ and $\left\langle x_{8}, x_{9}\right\rangle \in K$. Then $\left\langle\left\langle x_{6}, x_{8}\right\rangle, x_{1}{ }^{\prime \prime}\left\langle x_{7}, x_{9}\right\rangle\right\rangle \in \mathbf{t}$. Futhermore, $\left\langle\left\langle x_{6}, x_{8}\right\rangle, x_{1}{ }^{\prime \prime}\left\langle x_{7}, x_{9}\right\rangle\right\rangle=\left\langle\left\langle u_{1}, u_{2}\right\rangle, v\right\rangle \Rightarrow\left\langle x_{6}, x_{8}\right\rangle=\left\langle u_{1}, u_{2}\right\rangle$ and $x_{1}{ }^{\prime \prime}\left\langle x_{7}, x_{9}\right\rangle=$ $v \Rightarrow x_{6}=u_{1}$ and $x_{8}=u_{2} \Rightarrow\left\langle u_{1}, x_{7}\right\rangle \in \mathrm{K}$ and $\left\langle u_{2}, x_{9}\right\rangle \in \mathrm{K} \Rightarrow x_{7}=v_{1}$ and $x_{9}=v_{2} \Rightarrow$ $x_{1}{ }^{\prime \prime}\left\langle v_{1}, v_{2}\right\rangle=v$, a contradiction. Hence:
$\left\langle\left\langle x_{6}, x_{8}\right\rangle, x_{1}{ }^{\prime \prime}\left\langle x_{7}, x_{9}\right\rangle\right\rangle \neq\left\langle\left\langle u_{1}, u_{2}\right\rangle, v\right\rangle$ and thus $\left\langle\left\langle x_{6}, x_{8}\right\rangle, x_{1}{ }^{\prime \prime}\left\langle x_{7}, x_{9}\right\rangle\right\rangle \in K$. Also $K \subset$ $\mathbf{t} \subset P \times \mathrm{D}\left(x_{1}\right)$ and so $\mathbf{t} \subset \mathrm{K}$. But this is a contradiction since $\left\langle\left\langle u_{1}, u_{2}\right\rangle, v\right\rangle \in \mathbf{t}$ but $\left\langle\left\langle u_{1}, u_{2}\right\rangle, v\right\rangle \notin K$. Hence $\left\langle\left\langle u_{1}, u_{2}\right\rangle, v\right\rangle \in \mathbf{t} \Rightarrow v=x_{1}{ }^{\prime \prime}\left\langle v_{1}, v_{2}\right\rangle$ and we have thus proved $(\mathrm{E}!v)\left(\left\langle\left\langle u_{1}, u_{2}\right\rangle, v\right\rangle \in \mathbf{t}\right)$. Hence by nonassociative induction, $(u)(u \in P$. Ј. $(\mathrm{E}!v)(\langle u, v\rangle \in \mathbf{t})$ and so $\mathcal{F}(\mathbf{t})$.

We also have that $D(\mathbf{t}) \subset P$; by definition of \mathbf{t} and that $P \subset D(\mathbf{t})$, by definition of \mathbf{t} and by nonassociative induction. Hence $P=D\left(x_{3}\right)$. Furthermore, if $u \in I(\mathbf{t})$ then $u=x_{2}$ or $u=x_{1}{ }^{\prime \prime}\left\langle\mathbf{t}^{\prime \prime} x_{6}, \mathbf{t}^{\prime \prime} x_{8}\right\rangle$ for some $\left\langle x_{6}, x_{8}\right\rangle \in P \times P$. Hence
$I(\mathbf{t}) \times \mathrm{I}(\mathbf{t}) . \subset .\left\{\left\langle x_{2}, x_{2}\right\rangle\right\} \cup\left\{x_{2}\right\} \times \mathrm{I}\left(x_{1}\right) \cup I\left(x_{1}\right) \times\left\{x_{2}\right\} \cup I\left(x_{1}\right) \times I\left(x_{1}\right)$
and so $I(t) \times I(t) \subset D\left(x_{1}\right)$. Finally,
$\mathbf{t}^{\prime \prime} 1=x_{2} . \wedge .\left(x_{4}\right)\left(x_{5}\right)\left(\left\langle x_{4}, x_{5}\right\rangle \in P . \supset . \mathbf{t}^{\prime \prime}\left\langle x_{4}, x_{5}\right\rangle=x_{1}{ }^{\prime \prime}\left\langle\mathbf{t}^{\prime \prime} x_{4}, \mathbf{t}^{\prime \prime} x_{5}\right\rangle\right)$
by definition of t and so the theorem is proved.
Now, on the basis of this theorem, we can define operations, • and exp, where $\exp (x, y)=x^{y}$, on P, by means of (N3)-(N4) and (N5)-(N6) respectively. Consequently, we have

Proposition 1: $\langle P,+, \cdot, \exp , 1\rangle$ is a model for \mathbf{N}.

3 Independence.

Proposition 2. The axioms of \mathbf{N} are independent.
Proof. For each of the seven axioms of \mathbf{N}, we exhibit an interpretation of \mathbf{N} in which all of the axioms except the given one hold:
(N1) Let the domain of interpretation be $\{1\}$ and define $1+1=1 \cdot 1=1^{1}=1$.
(N2) Let ω be the domain and define,$+ \cdot$, exp, and 1 as usual.
(N3) Let P be the domain. Define t, exp, and 1 as before and define $x_{1} \cdot 1=1$ and $x_{1} \cdot\left(x_{2}+x_{3}\right)=x_{1} \cdot x_{2}+x_{1} \cdot x_{3}$.
(N4) Let P be the domain. Define + , exp, and 1 as before and define $x_{1} \cdot x_{2}=x_{1}$.
(N5) Let P be the domain. Define + , \cdot, and 1 as before and define $x_{1}^{1}=1$ and $x_{1}^{x_{2}+x_{3}}=x_{1}^{x_{2}} \cdot x_{1}^{x_{3}}$.
(N6) Let P be the domain. Define,$+ \cdot$, and 1 as before and define $x_{1}^{x_{2}}=x_{1}$.
(N7) Let $P \times P$ be the domain, define 1 as $\langle 1,1\rangle,\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle=\left\langle x_{1}+x_{2}\right.$, $\left.y_{1}+y_{2}\right\rangle,\left\langle x_{1}, y_{1}\right\rangle \cdot\left\langle x_{2}, y_{2}\right\rangle=\left\langle x_{1} \cdot x_{2}, y_{1} \cdot y_{2}\right\rangle$, and $\left.\left\langle x_{1}, y_{1}\right\rangle\right\rangle^{\left\langle x_{2}, y_{2}\right\rangle}=\left\langle x_{1}^{x_{2}}, y_{1}^{y_{2}}\right\rangle$,
where the operations indicated within the ordered pairs are those defined in the model $\langle P,+, \cdot, \exp , 1\rangle$ of N . Let $\mathcal{A}(x)$ be the wff $x=1 \vee\left(\mathrm{E} x_{1}\right)\left(\mathrm{E} x_{2}\right)(x=$ $\left.x_{1}+x_{2}\right)$. Then $\mathcal{A}(1)$ and $\left(x_{1}\right)\left(x_{2}\right)\left(\mathcal{A}\left(x_{1}\right) \wedge \mathcal{A}\left(x_{2}\right) \supset \mathcal{A}\left(x_{1}+x_{2}\right)\right)$ but $\sim(x) \mathcal{A}(x)$ since $\sim \mathcal{A}(\langle 1,2\rangle)$.

REFERENCES

[1] Bénabou, J., "Structures Algébriques dans les Catégories," Cahiers de Topologie et Géométrie Différentielle, vol. X (1968), pp. 1-126.
[2] Bollman, D., "Formal Nonassociative Number Theory," Notre Dame Journal of Formal Logic, vol. VIII (1967), pp. 9-16.
[3] Etherington, I. M. H., "Non-Associative Arithmetics," Proceedings of the Royal Society of Edinburg, vol. 62 (1949), pp. 442-453.
[4] Evans, T., "Nonassociative Number Theory," American Mathematical Monthly, vol. 64 (1957), pp. 299-309.
[5] Freyd, P., Abelian Categories, Harper \& Row (1964).
[6] Hatcher, W., Foundations of Mathematics, W. B. Saunders (1968).
[7] Laplaza, M., "Coherence for Associativity not an Isomorphism" (to appear).
[8] MacLane, S., "Coherence and Canonical Maps,"Symposia Mathematica, vol. IV (1970), pp. 231-242.

University of Puerto Rico
Mayagüez, Puerto Rico

