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FOR SO MANY INDIVIDUALS

KIT FINE

In [2], Tarski introduces the numerical quantifiers. These are

expressions (3kx) which mean ' 'there are at least k individuals x such

that", where k is any nonnegative integer. Thus (3i#) is the ordinary

quantifier (3ΛΓ). The numerical quantifiers may be defined in terms of the

ordinary quantifier and identity as follows:

(30#) A for A -» A

(lk+1x)A for {\x) (3j/) (-(# = y) &A & A(y/x)),

where y is the first variable which does not occur in A and A(t/x) is the

result of substituting a term t for all free occurrences of x in A.

Because of their definability, the numerical quantifiers have rarely

been considered on their own account. However, in this paper I consider a

predicate logic without identity which is enriched with numerical quan-

tifiers as primitive. In section 1, I present the syntax and semantics for

this logic; and in sections 2 and 3, I establish its completeness.

1. The Logic L.

Syntax

Formulas These are constructed in the usual way from relation letters of

given degree, (individual) constants, (individual) variables, the truth-

functional connectives v and -, the quantifier (x) and the quantifiers

(3&Λ;), k = 2, 3, . . . . We use (lox) A to abbreviate A-* A and {l1x) A to

abbreviate (3#) A, i.e. -(x) -A. Also we suppose that there are a denumer-

able number of individual variables and at least one predicate letter.

Axioms (where k = 2, 3 . . ., and I = 1, 2, . . .)

1. All tautologous formulas

2. (x) A -* A (t/x), t free for x in A

3. (x) ( A - 5 ) - (MA - (x)B)

4. A —* (x) A, x not free in A

5. {\x)A - (3/*)A, I <k

6. (3fe#) A<r+ V/=o (liX) (A8zB) & (3A.^) (A & -5)
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7. (*) (A - B) - ((3**) A - (lkx)B)
8. (3fê ) A —> {3k,y) A(y/x), y free for x in A and not free in A

Rules of Inference

Modus Ponens. From A, A —» B infer B.
Generalisation. From A infer (x)A.

Semantics

A structure SI for a language 8 consists of:
(a) a non-empty domain |Sί|
(b) an assignment of an w-adic relation SI (#) on |Sl| to each n-th place

relation letter in 8
(c) an assignment of an element SI (a) of I SI I to each constant in 8.

We may extend our language 8 to a language 8' by adding each element
of ISI I as a constant to 8. We may then define the truth of a sentence (i.e.
closed formula) of 8' in the usual manner. The clause for {\x)> k = 2,
3, . . ., is:

(3kx) A is true in SI if and only if card {ae |Sl I: A(a/x)} ^ k.

Validity and modelhood etc. can then be defined in the usual manner.

2 A Preliminary Result. We say that a theory T has the Henkin property if
whenever (lx) A (x) e T then A (a) e T for some constant a. (I use A (#) for
a formula with at most one free variable x. A (t) is then A (x) (t/x)).

Fix on a consistent and complete theory T with the Henkin property and
in a language 8. As in the standard Henkin completeness proof for the
predicate calculus it suffices to construct a canonical model SI for Γ.
However, we cannot simply let the domain of 31 be the set C of constants in
8. Firstly because several constants may correspond to one individual;
and secondly because one constant may correspond to several individuals.

We say constants a and b are indistinguishable, a ~ b, if for each
formula A(x), A(a)<->A(b)e T. Clearly, ~ is an equivalence relation. So to
overcome the first difficulty we can let the elements of SI be equivalence
classes [a] with respect to ~.

We say A(x) defines [a] if [a] is the one and only member of C/~ such
that A (a) e T. Now [a] corresponds to several individuals if some formula
A (x) defines [a] and (3*#) A (x) e T for some k > 1. So put

/ 1 if no A(x) defines [a]
,r -K _) k if k is the greatest number such that for some A(x),
{[ai) " ) A(x) defines [a] and -(3Λ+1*) A (x) e T

\ω otherwise.

Then d ([a]) gives the number of individuals corresponding to [a]. Then we
may overcome the second difficulty by letting d ([a]) individuals correspond
to each [a]. Put

N (A(x)) =Σ d([a\), for [a] such that A(a) e T.
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Then N(A(x)) gives the number of individuals "satisfying" A{x). Therefore
we require the following lemma:

Lemma. For k > 0, N(A(x)) ^ k if and only if (\x) A(x)e T.

Proof. By induction on k.
k = 1=#>. Suppose N(A(x)) > 1. Then clearly for some a, A(a)e T. But then
by axiom-scheme 2, (Ίx) A (x) e T.

<#=. Suppose (Ix) A(x)e T. Since T has the Henkin property, A(a) e T
for some constant a. So N(A(x)) ^ 1. k > 1=Φ . Suppose N(A(x)) ^ k i.e.

Σ/ d([a\), for [a] such that A(a)e T ^ k. We distinguish two cases:
Case 1 A(x) defines some [a]. So d([a]) ^ k. But then by the definition

of d some B(y) defines [a] and (3&3>) B(y) e T. For by axiom-scheme 5, if
-(3^) £(3;) e T then -(3/3;) 5(3;) e T for all Z > k. Let 2 b e a variable which
does not occur in A(x) or B(y). Then (z) (J5(>ε) —> A(z)) e T. For otherwise
(3s) (B(z) & -AU))e Γ and so by the Henkin property B(b) & -A(b) e T for
some b. Biit then not a ~ b and 5(3;) does not define [a], contrary to
assumption. Now (lkz)B{z)eT by axiom-scheme 8. So {\z)A{z)eThγ
axiom-scheme 7. Hence (3fe#) A(x)e T, by axiom-scheme 8 again.

.Case 2 A(x) defines no [a]. Then there are distinct [a] and [b] such
that A (α), A(b) e T. So there is a formula B{y) such that B(a) e T and B(b)^T.
Let X = {[a] : A(α) e 71}, Y = {[a] : A(a) & B(a) e T} and Z = {[a] : A(a) & -B(a)e
Γ}. Then it is easy to see that {F, Z } is a partition of X. So card X =
card F + card Z and card F, card Z > 0. Hence there are integers I, m > 0
such that l,m<k,l +m = k, N(A(z) & £(*)) ^ Z and iV(AU) & -5(^)) ^ m,
where z is a variable not in A(x) or £(3;).

By the induction hypothesis, (3/z) (A(z) & B(z)), (lmz) (A(z) & -B(z))e
T. So by axiom-scheme 7, (3fez) ACε) e Γ. Therefore ( 3 ^ ) A W e Γ by
axiom-scheme 8.

<#=. Suppose {\x) A(x)e T. Again we distinguish two cases:
Case 1 A(x) defines some [a]. Then by axiom-scheme 5, it should be

clear that d{[a]) ^ k. So N{A(x)) ^ fe.
Case i? A (AT) defines no [α]. A(a) e T for some a by the Henkin property.

So there are distinct [a] and [b] such that A(α), A(b) e T. So A(α) & B(a),
A(b) & -B(b)e T for some formula £(3;). By axiom-scheme 8, (3kz) A(z)e T,
z not in A(x) or 5(3^), and by axiom-scheme 6, (3/^) (A(z) & B(z)), (lk^z)
(A(z) & -B(z))e T for some i = 0, 1, . . ., k. Now (3^) (A(z) &B(z)), ( 3 ^ )
(AU) & -B(z))e T. So by axiom-scheme 2 we may suppose 0 < i < k. But
then by the induction hypothesis N(A(z) & £(*)) - i andiV(A(>ε) & -5(2)) Ξ>
^ - i. Hence JV(A(AΓ)) = iV(A(^)) ^ ^.

3 Completeness. Let Z) = {([α], ΐ) : 0 ^ I < d ([a])}. Extend the language 8
of T to 8' by adding the elements of D as constants. The canonical
structure tl for 8 f is then defined as follows:

(a) \U\=D

(b) «(β) = {«[αi],Z>, . . ., <k],Z»e£> w : flfli . . . ane T} for each relation R
in 8 of degree n

(c) U(e) =e foreeD and $1 (α) = <[α], 0) for a in 8.
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If A is a sentence of 8 f , let Ar be any sentence of 8 obtained by-
replacing each constant ([a], I) in A by a.

Theorem (On the Canonical Model). For any sentence A of %', A is true in
U if and only if A' e T.

Proof. By induction on the length of A. We consider only the main case
when A= (3&#) A{x). Now (lkx) A(x) is true in 91

iff card {([a], ΐ) eD : A(([a], I)) is true in 31} ^ k (by semantical clause
for (3**))

iff card {([a], l)e D:A'(a)eT}> k (by the induction hypothesis)
i£iN(A'(x)) ^ k (by the definitions of d and D)
iff (3**) Af(x) e T (by the lemma).

Since our logic contains the ordinary predicate logic we know that
every consistent set of sentences is contained in a consistent and complete
theory with the Henkin property. So by standard methods we can obtain such
results as the following.

Corollary 1 (Completeness) A is a theorem of % if and only if A is valid.

Corollary 2 Every consistent set of sentences has a model.

Finally, it is worth noting the connection between this and [1]. The
uniform monadic predicate logic with numerical quantifiers is isomorphic,
syntactically and semantically, to S5n. P(x) corresponds to p and (3&#) to
Mk. On the other hand, the predicate logics with several variables
introduce something new, as do the modal logics weaker than S5n.
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