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FOR SO MANY INDIVIDUALS

KIT FINE

In [2], Tarski introduces the numerical quantifiers. These are
expressions (Jx) which mean ¢‘there are at least % individuals x such
that’’, where % is any nonnegative integer. Thus (3,%) is the ordinary
quantifier (3x). The numerical quantifiers may be defined in terms of the
ordinary quantifier and identity as follows:

(Fox) A for A — A
(Apux) A for (Zex) @y) (-(x =) & A & A(/X)),

where v is the first variable which does not occur in A and A (¢/x) is the
result of substituting a term ¢ for all free occurrences of xin A.

Because of their definability, the numerical quantifiers have rarely
been considered on their own account. However, in this paper I consider a
predicate logic without identity which is enriched with numerical quan-
tifiers as primitive. In section 1, I present the syntax and semantics for
this logic; and in sections 2 and 3, I establish its completeness.

1. The Logic L.
Syntax

Formulas These are constructed in the usual way from relation letters of
given degree, (individual) constants, (individual) variables, the truth-
functional connectives v and -, the quantifier (¥) and the quantifiers
(Ix), 2 =2,3,.... We use (3,x) A to abbreviate A — A and (3;%) A to
abbreviate (3x) A, i.e. -(x) -A. Also we suppose that there are a denumer-
able number of individual variables and at least one predicate letter.

Axioms (wherek =2,3...,andl=1,2,...)
1. All tautologous formulas

2. (x) A — A(t/x), t free for x in A

3. %) (A—B) — (¥) A — () B)

4. A— (x) A, x not free in A

5. (Jx)A — (3,x) A, 1<k

6. (ux) A<> Vio (3:%) (A & B) & (I-i%) (A& -B)
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7. (x) (A — B) — ((qex) A — (3rx) B)
8. (Ix) A — (Iy) A(y/x), y free for x in A and not free in A

Rules of Infevence

Modus Ponens. From A, A — B infer B.
Generalisation. From A infer (x)A.

Semantics

A structure ¥ for a language & consists of:

(a) a non-empty domain |9 |

(b) an assignment of an n-adic relation % (R) on |%| to each xn-th place
relation letter in

(c) an assignment of an element U (a) of |% ]| to each constant in €.

We may extend our language & to a language &' by adding each element
of |%]| as a constant to €. We may then define the truth of a sentence (i.e.
closed formula) of @' in the usual manner. The clause for (Ix), & =2,
3, ... 1s:

(3z%) A is true in ¥ if and only if card {ae |%]: A(a/x)} = k.
Validity and modelhood etc. can then be defined in the usual manner.

2 A Preliminary Result. We say that a theory T has the Henkin property if
whenever (3x) A (x)e T then A (a)e T for some constant a. (Iuse A (x) for
a formula with at most one free variable x. A (?) is then A (x) (¢/x)).

Fix on a consistent and complete theory T with the Henkin property and
in a language €. As in the standard Henkin completeness proof for the
predicate calculus it suffices to construct a canonical model % for T.
However, we cannot simply let the domain of ¥ be the set C of constants in
8. Firstly because several constants may correspond to one individual;
and secondly because one constant may correspond to several individuals.

We say constants a¢ and b are indistinguishable, a ~ b, if for each
formula A(x), A(a)<>A(b)e T. Clearly, ~ is an equivalence relation. So to
overcome the first difficulty we can let the elements of % be equivalence
classes [a] with respect to ~.

We say A(x) defines [a] if [a] is the one and only member of C/~ such
that A (a)e T. Now [a] corresponds to several individuals if some formula
A (x) defines [a] and (3;x) A (x) e T for some & > 1. So put

1 if no A(x) defines [a]
a(a) = k if k is the greatest number such that for some A(x),
A(x) defines [a]and -(3,4, %) A (x)e T

w otherwise.

Then d ([a]) gives the number of individuals corresponding to [a]. Then we
may overcome the second difficulty by letting d ([¢]) individuals correspond
to each [a]. Put

N (A(x)) =25 d(a]), for [a] such that A(a)e T.
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Then N(A(x)) gives the number of individuals ‘‘satisfying’’ A(x). Therefore
we require the following lemma:

Lemma. For k> 0, N(A(x)) = k if and only if (%) A(x)e T.

Proof. By induction on Z.
k = 1=>. Suppose N(A(x)) = 1. Then clearly for some a, A(a)e T. But then
by axiom-scheme 2, (3x) A (x)e T.

<=. Suppose (3x) A(x)e T. Since T has the Henkin property, A(a)e T
for some constant a. So N(A(x)) = 1. k> 1=> Suppose N(A(x)) =k i.e.

2> d([a]), for [a] such that A(a)e T = k. We distinguish two cases:

Case 1 A(x) defines some [a]. So d([a]) = . But then by the definition
of d some B(y) defines [a] and (3,y) B(y)e T. For by axiom-scheme 5, if
-(3ky) B(y)e T then -(3;y) B(y)e T for all I > k. Let z be a variable which
does not occur in A(x) or B(y). Then (z) (B(z) — A(2))e T. For otherwise
(3z) (B(z) & -A(2))e T and so by the Henkin property B(b) & -A(b)e T for
some b. But then not a ~ b and B(y) does not define [a], contrary to
assumption. Now (3rz) B(z)e T by axiom-scheme 8. So (3,z) A(z)e T by
axiom-scheme 7. Hence (xx) A(x)e T, by axiom-scheme 8 again.

Case 2 A(x) defines no [a]. Then there are distinct [a] and [0] such
that A(a), A(d) e T. So there is a formula B(y) such that B(a) e T and B(b) ¢ T.
Let X = {{a] : A(@)e T}, Y = {[a] : A(a) & B(a)e T}and Z = {[a] : A(a) & -B(a)e
T} Then it is easy to see that {Y, Z} is a partition of X. So card X =
card Y + card Z and card Y, card Z > 0. Hence there are integersl, m > 0
such that I, m <k,l+m =%, NA(2z) & B(z)) =1 and NA(2) & -B(z)) = m,
where z is a variable not in A (x) or B(v).

By the induction hypothesis, (3;2) (A(z) & B(2)), (Inz) (A(2) & -B(z))e
T. So by axiom-scheme 7, (3;2) A(z)eT. Therefore (3,x) Ax)eT Dby
axiom-scheme 8.

<=. Suppose (Ix) A(x) e T. Again we distinguish two cases:

Case 1 A(x) defines some [a]. Then by axiom-scheme 5, it should be
clear that d([a]) = k. So N(A(x)) = k.

Case 2 A(x) defines no [a]. A(a)e T for some a by the Henkin property.
So there are distinct [a] and [b] such that A(a), A(®)e T. So A(a) & B(a),
A(b) & -B(b) e T for some formula B(y). By axiom-scheme 8, (3,2) A(z)e T,
z net in A(x) or B(y), and by axiom-scheme 6, (3;2) (A(z) & B(z)), (3;_;2)
(A(z) & -B(2))e T for some i=0,1,...,k. Now (3,2) (A(z) & B(z)), (3,2)
(A(z) & -B(z))e T. So by axiom-scheme 2 we may suppose 0 < i < k. But
then by the induction hypothesis N(A(z) & B(z)) =i and N(A(z) & -B(2)) =
k - i. Hence NA(x)) =N(A(z)) = k.

3 Completeness. Let D={[al,l) : 0 =1<d ([a])}. Extend the language &
of T to &' by adding the elements of D as constants. The canonical
structure ¥ for @' is then defined as follows:

(@) |ul=D

® UR) = {a:), 1), . .., {a.),1))eD":Ra, . . . ase T} for each relation R
in @ of degree n

(c) % (e)=eforeeDand ¥ (a) = {[a], O) for a in @.
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If A is a sentence of £' let A’ be any sentence of € obtained by
replacing each constant ([a], ) in A by a.

Theorem (On the Canonical Model). For any sentence A of &', A is true in
U if and only if A'e T.

Proof. By induction on the length of A. We consider only the main case
when A= (3z%) A(x). Now (3,%) A(x) is true in %
iff card {([a], 1) eD : A({[a], 1)) is true in Y} = % (by semantical clause
for (Ipx))
iff card {([a], 1) e D: A'(a@) e T} = % (by the induction hypothesis)
iff N(A'(x)) = & (by the definitions of d and D)
iff (Ix) A'(x)e T (by the lemma).

Since our logic contains the ordinary predicate logic we know that
every consistent set of sentences is contained in a consistent and complete
theory with the Henkin property. So by standard methods we can obtain such
results as the following.

Corollary 1 (Completeness) A is a theovem of @ if and only if A is valid.
Corollary 2 Every consistent set of sentences has a model.

Finally, it is worth noting the connection between this and [1]. The
uniform monadic predicate logic with numerical quantifiers is isomorphic,
syntactically and semantically, to S5n. P(x) corresponds to p and (I,x) to
M. On the other hand, the predicate logics with several variables
introduce something new, as do the modal logics weaker than S5n.
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