AN ADDITIONAL REMARK ON SELF-CONJUGATE FUNCTIONS ON BOOLEAN ALGEBRAS

THOMAS A. SUDKAMP

In this note I add several remarks to my paper [1]. Let f be a self-conjugate function on a Boolean algebra, in [1] it was shown that if $f^{n}=$ id and $f \neq \mathrm{id}$, then n is even and $f^{2}=\mathrm{id}$. Necessary and sufficient conditions for a self-conjugate function f to have the property $f^{2}=f$ were given. Here we extend results of this type. The references in the proofs are from [1]. Let

$$
\mathfrak{M}=\langle A,+, \cdot,-, 0,1\rangle
$$

be a BA.
Lemma If $f: A \rightarrow A$ is self-conjugate, then

$$
x \leqslant f^{2}(x) \leqslant f^{4}(x) \leqslant \ldots \leqslant f^{2 n}(x) \leqslant \ldots
$$

and

$$
f(x) \leqslant f^{3}(x) \leqslant f^{5}(x) \leqslant \ldots \leqslant f^{2 n+1}(x) \leqslant \ldots
$$

for any $x \in A$, and all $n>0$.
Proof: By replacing x by $f(1)$ and y by $f^{n}(x)$ in 1.2 (iii) we obtain

$$
f^{n}(x)=f(1) \cdot f^{n}(x) \leqslant f\left(1 \cdot f^{n+1}(x)\right)=f^{n+2}(x)
$$

for any $n>0$. Now if we show that $x \leqslant f^{2}(x)$ we are done. Let $c=x-f^{2}(x)$. By 1.1, 1.3, and 1.5,

$$
f^{2}(x) \cdot c=0 \leftrightarrow f(x) \cdot f(c)=0 \leftrightarrow f(c)=0 \leftrightarrow c=0 .
$$

Hence $x \leqslant f^{2}(x)$ as desired.
Theorem If $f: A \rightarrow A$ is self-conjugate, $f^{n}=f^{m}, n<m$ and for $i \leqslant n, j<m$, $f^{i} \neq f^{j}$, then
(i) $m=n+2$, if n, m have the same parity,
(ii) $m=n+1$, if n, m have different parities.

Proof: (i) By lemma

$$
f^{n}(x) \leqslant f^{n+2}(x) \leqslant \ldots \leqslant f^{m}(x)
$$

Hence, $f^{n}(x)=f^{n+2}(x)$, for all $x \in A$, and therefore $m=n+2$.
(ii) Again by the lemma we get $f^{n}(x) \leqslant f^{m-1}(x)$. So $f^{n+1}(x) \leqslant f^{m}(x)=f^{n}(x)$. Hence, by $1.4, f^{n}(x)=f^{n+1}(x)$ and $m=n+1$.

We have now established some conditions for which occur when powers of self-conjugate functions start repeating. We show that these results are the best possible. Let

$$
\mathfrak{A}=\left\langle A, \cup, \cap,-, 0,1, c_{i j}\right\rangle_{i, j<\omega, i<j}
$$

where A is the power of ${ }^{\omega} U$, where U is a countably infinite set, U, \cap, and are the standard set-theoretic operations and, for each $i<j, c_{i j}$ is a unary function on A defined as follows:
$c_{i j}(X)=\left\{y \in A:\right.$ for some $x \in X$ we have $x_{i}=y_{j}, y_{i}=x_{j}$ and $x_{k}=y_{k}$ for $\left.k \neq i, j\right\}$ for any $X \in A$.

By $1.25, c_{i j}$ is self-conjugate for each i, j. Let

$$
f_{n}=\mathrm{id}+\sum_{i, j<n} c_{i j} .
$$

f_{n} has the property that $f_{n}^{i} \neq f_{n}^{j}$ for $i \leqslant n, j<n$, and $f_{n}^{n}=f_{n}^{n+1}$.
For a self-conjugate function f such that $f^{i} \neq f^{j}$, for $i \leqslant n, j<n+2$, and $f^{n}=f^{n+2}$, the function $f=\left\langle f_{n}, c_{01}\right\rangle$ on $\mathfrak{A} \times \mathfrak{A}$ suffices.

REFERENCE

[1] Sudkamp, T. A., "Self-conjugate functions on Boolean algebras," Notre Dame Journal of Formal Logic, vol. XIX (1978), pp. 504-512.

Seminar in Symbolic Logic
University of Notre Dame
Notre Dame, Indiana

