Notre Dame Journal of Formal Logic Volume XIX, Number 4, October 1978 NDJFAM

AN ADDITIONAL REMARK ON SELF-CONJUGATE FUNCTIONS ON BOOLEAN ALGEBRAS

THOMAS A. SUDKAMP

In this note I add several remarks to my paper [1]. Let f be a self-conjugate function on a Boolean algebra, in [1] it was shown that if $f^n = id$ and $f \neq id$, then n is even and $f^2 = id$. Necessary and sufficient conditions for a self-conjugate function f to have the property $f^2 = f$ were given. Here we extend results of this type. The references in the proofs are from [1]. Let

$$\mathfrak{A} = \langle A, +, \cdot, -, 0, 1 \rangle$$

be a BA.

Lemma If $f: A \rightarrow A$ is self-conjugate, then

$$x \leq f^{2}(x) \leq f^{4}(x) \leq \ldots \leq f^{2n}(x) \leq \ldots$$

and

$$f(x) \leq f^{3}(x) \leq f^{5}(x) \leq \ldots \leq f^{2n+1}(x) \leq \ldots$$

for any $x \in A$, and all n > 0.

Proof: By replacing x by
$$f(1)$$
 and y by $f'(x)$ in 1.2(iii) we obtain

 $f^{n}(x) = f(1) \cdot f^{n}(x) \leq f(1 \cdot f^{n+1}(x)) = f^{n+2}(x)$

for any n > 0. Now if we show that $x \le f^2(x)$ we are done. Let $c = x - f^2(x)$. By 1.1, 1.3, and 1.5,

$$f^{2}(x) \cdot c = 0 \longleftrightarrow f(x) \cdot f(c) = 0 \Longleftrightarrow f(c) = 0 \Longleftrightarrow c = 0.$$

Hence $x \leq f^2(x)$ as desired.

Theorem If $f: A \to A$ is self-conjugate, $f^n = f^m$, n < m and for $i \le n, j < m$, $f^i \ne f^j$, then

- (i) m = n + 2, if n, m have the same parity,
- (ii) m = n + 1, if n, m have different parities.

Received March 27, 1978

Proof: (i) By lemma

$$f^{n}(x) \leq f^{n+2}(x) \leq \ldots \leq f^{m}(x)$$

Hence, $f^{n}(x) = f^{n+2}(x)$, for all $x \in A$, and therefore m = n + 2. (ii) Again by the lemma we get $f^{n}(x) \leq f^{m-1}(x)$. So $f^{n+1}(x) \leq f^{m}(x) = f^{n}(x)$. Hence, by 1.4, $f^{n}(x) = f^{n+1}(x)$ and m = n + 1.

We have now established some conditions for which occur when powers of self-conjugate functions start repeating. We show that these results are the best possible. Let

$$\mathfrak{A} = \langle A, \cup, \cap, -, 0, 1, c_{ij} \rangle_{i,j < \omega, i < j}$$

where A is the power of ${}^{\omega}U$, where U is a countably infinite set, \cup , \cap , and - are the standard set-theoretic operations and, for each i < j, c_{ij} is a unary function on A defined as follows:

 $c_{ij}(X) = \{y \in A: \text{ for some } x \in X \text{ we have } x_i = y_j, y_i = x_j \text{ and } x_k = y_k \text{ for } k \neq i, j\}$ for any $X \in A$.

By 1.25, c_{ij} is self-conjugate for each *i*, *j*. Let

$$f_n = \operatorname{id} + \sum_{i,j < n} c_{ij}$$

 f_n has the property that $f_n^i \neq f_n^j$ for $i \leq n$, j < n, and $f_n^n = f_n^{n+1}$.

For a self-conjugate function f such that $f^i \neq f^j$, for $i \leq n, j \leq n+2$, and $f^n = f^{n+2}$, the function $f = \langle f_n, c_{01} \rangle$ on $\mathfrak{A} \times \mathfrak{A}$ suffices.

REFERENCE

[1] Sudkamp, T. A., "Self-conjugate functions on Boolean algebras," Notre Dame Journal of Formal Logic, vol. XIX (1978), pp. 504-512.

Seminar in Symbolic Logic University of Notre Dame Notre Dame, Indiana