A SECOND ORDER AXIOMATIC THEORY OF STRINGS

HOWARD C. WASSERMAN

Introduction A second order axiomatic theory with equality is presented which completely characterizes systems of the form $\left\langle X^{*}, \lambda, 1, *, l\right\rangle$, where X^{*} is the set of all strings over the non-null alphabet X, λ is the null string, $1 \epsilon X$,* is string concatenation, and l is the mapping on X^{*} such that for all $x \in X^{*}, l(x)$ is the string resulting from x by substituting 1 for each occurrence of a letter in x. The theory is based on eleven axioms, all but one of which, a second order induction principle, are first order statements. The language of the theory is based on four primitive first order constants: two individual constants 0 and 1, a 2-place function constant \cdot, and a 1-place function constant L. For simplification of presentation and for motivation, the theory also includes three defined first order constants: a 2 -place predicate \leqslant, and two 1 -place predicates ATOM and NAT. The reader is advised that a more obvious notion of "string system" than that given above would be that of an ordered triple $\left\langle X^{*}, \lambda, \mathcal{L}\right\rangle$, where \mathcal{L} is the length function mapping X^{*} onto the set of natural numbers such that $\mathcal{L}(\sigma)=$ length of σ. But the desire to provide a second order theory led us to include in our definition the specification of a particular member 1 of X, so that via the 1 -adic number representation system there would be an internal representation 1^{*} of the set of natural numbers. Given this internal representation, we were then able to utilize l, a unary operation on X^{*}, to correspond to the length function \mathcal{L}.

1 The theory and it's intended models

Ax. $1 \quad(\forall x)(\forall y)(\forall z)[(x \cdot y) \cdot z=x \cdot(y \cdot z)]$
Ax. $2(\forall x)[0 \cdot x=x \wedge x \cdot 0=x]$
D1 $\quad(\forall x)(\forall y)[x \leqslant y \equiv(\exists z)(\exists w)(y=z \cdot x \cdot w)]$
D2 $\quad(\forall x)[\operatorname{ATOM}(x) \equiv x \neq 0 \wedge(\forall y)(y \leqslant x \supset y=x \vee y=0)]$
Ax. 3 ATOM (1)
Ax. $4 \quad(\forall x)[x \leqslant 0 \supset x=0]$
D3 $\quad(\forall x)[\operatorname{NAT}(x) \equiv(\forall y)(\operatorname{ATOM}(y) \wedge y \leqslant x \supset y=1)]$

Note: \vdash NAT (0), since, by D2, $\vdash \sim \operatorname{ATOM}(0)$, hence, by Ax.4, $\sim \sim(\exists y)(\operatorname{ATOM}(y)$ ^ $y \leqslant 0)$, and thus $\vdash \operatorname{NAT}(0)$.
Ax. $5(\forall x)(\forall y)[x \cdot y=x \supset y=0]$
Note: Ax. 5 does not state that 0 is the only right identity (a triviality), but states, more strongly, that no object other than 0 can operate on the right upon any object y leaving y unchanged.
Ax. $6 \quad(\forall P)\left[P(0) \wedge(\forall x)\left(\operatorname{NAT}^{\prime}(x) \wedge P(x) \supset P(x \cdot 1)\right)\right] \supset[(\forall x)(\operatorname{NAT}(x) \supset P(x))]$
Ax. $7 \quad(\forall x)[(\exists y)(x=\mathrm{L}(y)) \supset \operatorname{NAT}(x)]$
Ax. $8 \quad(\forall x)[\mathrm{L}(x)=0 \supset x=0]$
Ax. $9 \quad(\forall x)(\forall y)[\mathbf{L}(x \cdot y)=\mathbf{L}(x) \cdot \mathrm{L}(y)]$
Ax. $10(\forall x)[(x \neq 0 \wedge \mathrm{~L}(x) \neq 1) \supset(\exists y)(\exists z)(y \neq 0 \wedge z \neq 0 \wedge x=y \cdot z)]$
Ax. $11(\forall x)(\forall y)(\forall z)(\forall w)[(x \cdot y=z \cdot w \wedge \mathrm{~L}(x)=\mathrm{L}(z) \wedge \mathrm{L}(y)=\mathrm{L}(w))$ $\supset(x=z \wedge y=w)]$
The intended models of Ax.1-Ax. 11 are the string systems over nonnull alphabets. More specifically, we give

Definition 1 A string system is an ordered 5-tuple $\left\langle X^{*}, \lambda^{\prime}, 1, *, l\right\rangle$, where X^{*} is the set of all strings over the non-null alphabet X, λ is the null string, $1 \epsilon X, *$ is the binary operation of string concatenation on X^{*}, and l is the substitution operation on X^{*} such that for every $x \in X^{*}, l(x)$ is the string obtained from x by substituting 1 for each occurrence of a letter in x.

Definition 2 A concatenation system is any model $\langle C, 0,1, \cdot, \mathrm{~L}\rangle$ of Ax.1Ax. 11 .

Clearly, every string system $\left\langle X^{*}, \lambda, 1, *, l\right\rangle$ is a concatenation system, the substring relation on X^{*} is the extension of \leqslant, X is the extension of ATOM, and 1^{*} is the extension of NAT. In section 2, we shall show that every concatenation system is, up to isomorphism, a string system.
2 The isomorphism theorem For the remainder, let $\langle C, 0,1, \cdot, L\rangle$ be a fixed but arbitrary concatenation system, let A denote the extension of ATOM in C, and N the extension of NAT in C. Let \mathbb{N} denote the set of all natural numbers, and let $\Phi: I N \rightarrow N$ be defined recursively, as follows:

$$
\Phi(0)=0, \Phi(n+1)=\Phi(n) \cdot 1
$$

Lemma $1 \mathrm{~L}(0)=0$.
Proof: $\mathrm{L}(0) \cdot \mathrm{L}(0)=\mathrm{L}(0 \cdot 0)=\mathrm{L}(0)$, by Ax .9 and Ax.2. Thus, $\mathrm{L}(0)=0$, by Ax.5.

Lemma 2 For all $m, n \in \mathbb{N}, \Phi(m+n)=\Phi(m) \cdot \Phi(n)$.
Proof (by induction on n): (i) $n=0$: trivial, by definition of Φ and Ax.2.
(ii) Assume true for k, and suppose $n=k+1$. Then:

$$
\begin{aligned}
\Phi(m+n) & =\Phi(m+k+1)=\Phi(m+k) \cdot 1=\Phi(m) \cdot \Phi(k) \cdot 1 \\
& =\Phi(m) \cdot \Phi(k+1)=\Phi(m) \cdot \Phi(n) .
\end{aligned}
$$

Lemma 3 Φ is a bijection.
Proof: (i) Φ is 1-to-1: Suppose $m, n \in \mathbb{N}$ with $m<n$. Then $n=m+k$, for some $k \geqslant 1$. Then:

$$
\Phi(n)=\Phi(m) \cdot \Phi(k)=\Phi(m) \cdot(\Phi(k-1) \cdot 1) . \quad \text { (by Lemma 2) }
$$

Now, $1 \leqslant \Phi(k-1) \cdot 1$, and $1 \neq 0$ by Ax.3. Hence, by Ax.4, $\Phi(k-1) \cdot 1 \neq 0$. Thus, by Ax.5, $\Phi(m) \cdot(\Phi(k-1) \cdot 1) \neq \Phi(m)$; i.e., $\Phi(n) \neq \Phi(m)$.
(ii) Φ is surjective: Let $P=\operatorname{Range}(\Phi)$. By Ax.6, it suffices to show that $0 \in P$, and for all $x \in \mathrm{~N}$, if $x \in P$, then $x \cdot 1 \in P$. We have that $0 \in P$ since $\Phi(0)=0$. Suppose $x \in P$. Then, for some $n \in \mathbb{N}, x=\Phi(n)$. Then $x \cdot 1=$ $\Phi(n+1)$, and hence $x \cdot 1 \in P$.

Definition 3 Let $\mathrm{L}^{\prime}: C \rightarrow \mathbb{N}$ such that for all $x \in C, \mathrm{~L}^{\prime}(x)=\Phi^{-1}(\mathrm{~L}(x))$ (n.b., $\mathbf{L}(x) \in \mathrm{N}$ by Ax.7).

Lemma 4

(a) For every $x \in C, \mathrm{~L}^{\prime}(x)=0$ if and only if $x=0$.
(b) For all $x, y \in C, \mathrm{~L}^{\prime}(x \cdot y)=\mathrm{L}^{\prime}(x)+\mathrm{L}^{\prime}(y)$.
(c) For every $x \in C$, if $L^{\prime}(x)>1$, then there are $x_{1}, x_{2} \in C-\{0\}$ such that $x=x_{1} \cdot x_{2}$.
(d) For all $x_{1}, x_{2}, y_{1}, y_{2} \in C$, if $x_{1} \cdot x_{2}=y_{1} \cdot y_{2}$ and $L^{\prime}\left(x_{i}\right)=L^{\prime}\left(y_{i}\right)(i=1,2)$, then $x_{i}=y_{i}(i=1,2)$.

Proof:

(a) $\mathrm{L}^{\prime}(x)=0 \Leftrightarrow \Phi^{-1}(\mathrm{~L}(x))=0 \Leftrightarrow \mathbf{L}(x)=\Phi(0) \Leftrightarrow \mathbf{L}(x)=0 \Leftrightarrow x=0$
(by Ax. 8 and Lemma 1).
(b) $L^{\prime}(x \cdot y)=\Phi^{-1}(\mathrm{~L}(x \cdot y))=\Phi^{-1}(\mathrm{~L}(x) \cdot \mathrm{L}(y))$
(by Ax.9)

$$
\begin{aligned}
& =\Phi^{-1}(\mathbf{L}(x))+\Phi^{-1}(\mathbf{L}(y)) \\
& =L^{\prime}(x)+L^{\prime}(y) .
\end{aligned}
$$

(by Lemma 2)
(c) Let $x \in C$ such that $L^{\prime}(x)>1$. Then $\Phi^{-1}(L(x)) \neq 0$ and $\Phi^{-1}(L(x)) \neq 1$. Since $\Phi^{-1}(0)=0$ and $\Phi^{-1}(\mathrm{~L}(x)) \neq 0, \mathrm{~L}(x) \neq 0$; hence, by Lemma $1, x \neq 0$. Now, $\Phi(1)=\Phi(0+1)=\Phi(0) \cdot 1=0 \cdot 1=1$. Hence $\Phi^{-1}(1)=1$. But $\Phi^{-1}(L(x)) \neq 1$. Hence, $\mathrm{L}(x) \neq 1$. Thus, $x \neq 0$ and $\mathrm{L}(x) \neq 1$. Hence, by Ax.10, there are $x_{1}, x_{2} \in C-\{0\}$ such that $x=x_{1} \cdot x_{2}$.
(d) Let $x_{1}, x_{2}, y_{1}, y_{2} \in C$ such that $x_{1} \cdot x_{2}=y_{1} \cdot y_{2}$ and $\mathrm{L}^{\prime}\left(x_{i}\right)=\mathrm{L}^{\prime}\left(y_{i}\right)(i=1,2)$. Then $x_{1} \cdot x_{2}=y_{1} \cdot y_{2}$ and $\mathrm{L}\left(x_{i}\right)=\mathbf{L}\left(y_{i}\right)(i=1,2)$. Hence, by Ax.11, $x_{i}=$ $y_{i}(i=1,2)$.

Lemma 5 For every $x \in C, x \in A$ if and only if $L^{\prime}(x)=1$.
Proof: Let $x \in C$. Suppose $\mathrm{L}^{\prime}(x)=1$. Suppose $y \in C$ such that $y \leqslant x$. Then $x=y_{1} \cdot y \cdot y_{2}$ for some $y_{1}, y_{2} \in C$. Suppose $y \neq 0$. Then, by Lemma 4(a), $L^{\prime}(y)>0$. But, by Lemma 4(b), $L^{\prime}(x)=L^{\prime}\left(y_{1}\right)+L^{\prime}(y)+L^{\prime}\left(y_{2}\right)$. Hence, since $L^{\prime}(x)=1, L^{\prime}\left(y_{1}\right)=L^{\prime}\left(y_{2}\right)=0$, and, thus, by Lemma 4(a), $y_{1}=y_{2}=0$. Hence, by Ax.2, $y=x$. Thus, $x \in A$.

Now suppose $\mathrm{L}^{\prime}(x) \neq 1$. If $\mathrm{L}^{\prime}(x)=0$, then, by Lemma $4(\mathrm{a}), x=0$, and
$x \notin A$. Suppose, now, that $L^{\prime}(x)>1$. Then, by Lemma 4(c), there are $x_{1}, x_{2} \in C-\{0\}$ such that $x=x_{1} \cdot x_{2}$. Hence $x_{1} \leqslant x$. But $x_{1} \neq 0$. Moreover, since (by Lemma 4(a)) $\mathrm{L}^{\prime}\left(x_{2}\right)>0$ and $\mathrm{L}^{\prime}(x)=\mathrm{L}^{\prime}\left(x_{1}\right)+\mathrm{L}^{\prime}\left(x_{2}\right)$ (by Lemma 4(b)), $\mathrm{L}^{\prime}(x) \neq \mathrm{L}^{\prime}\left(x_{1}\right)$, and hence $x_{1} \neq x$. Since $x_{1} \neq 0, x_{1} \neq x$, and $x_{1} \leqslant x$, we have that $x \notin A$.

Lemma 6 (Unique Decomposition) For every $x \in C-\{0\}$, there is a unique sequence $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ with $x_{i} \in A(1 \leqslant i \leqslant n)$ and such that $n=L^{\prime}(x)$ and $x=x_{1} \cdot \ldots x_{n}$.
Proof: Let $x \in C-\{0\}$ and let $n=L^{\prime}(x)$. The proof proceeds by induction on n :
(i) $n=1$: Then, by Lemma $5, x \in A$.
(ii) Assume $n>1$ and for every $x^{\prime} \in C-\{0\}$ with $m=L^{\prime}\left(x^{\prime}\right)<n$, there is a unique sequence $\left\langle x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\rangle$ with $x_{i}^{\prime} \in A(1 \leqslant i \leqslant m)$ and such that $x^{\prime}=x_{1}^{\prime}$. $\ldots \cdot x_{m}^{\prime}$. Since $n>1$, we have by Lemma 4(c) that there are $y_{1}, y_{2} \in C-\{0\}$ such that $x=y_{1} \cdot y_{2}$. Let $n_{i}=L^{\prime}\left(y_{i}\right)(i=1,2)$. Then, by Lemma 4(b), $n=n_{1}+$ n_{2}, and, by Lemma 4(a), $n_{i}>0(i=1,2)$. Thus, $n_{i}<n(i=1,2)$. Hence, there are unique sequences $\left\langle w_{1}, \ldots, w_{n_{1}}\right\rangle$ and $\left\langle z_{1}, \ldots, z_{n_{2}}\right\rangle$ with $w_{i} \in A(1 \leqslant$ $\left.i \leqslant n_{1}\right), z_{j} \in A\left(1 \leqslant j \leqslant n_{2}\right), y_{1}=w_{1} \cdot \ldots w_{n_{1}}$, and $y_{2}=z_{1} \cdot \ldots \cdot z_{n_{2}}$. Thus, $x=$ $w_{1} \cdot \ldots \cdot w_{n_{1}} \cdot z_{1} \cdot \ldots \cdot z_{n_{2}}$.

Suppose also that $\left\langle w_{1}^{\prime}, \ldots, w_{n_{1}}^{\prime}, z_{1}, \ldots, z_{n_{2}}^{\prime}\right\rangle$ is a sequence with $w_{i}^{\prime} \in A$ $\left(1 \leqslant i \leqslant n_{1}\right), z_{j}^{\prime} \in A\left(1 \leqslant j \leqslant n_{2}\right)$, and $x=w_{1}^{\prime} \cdot \ldots \cdot w_{n_{1}}^{\prime} \cdot z_{1}^{\prime} \cdot \ldots \cdot z_{n_{2}}^{\prime}$. Then, letting $u_{1}=w_{1}^{\prime} \cdot \ldots \cdot w_{n_{1}}^{\prime}$ and $u_{2}=z_{1}^{\prime} \cdot \ldots \cdot z_{n_{2}}^{\prime}$, we have that $u_{1}, u_{2} \in C$ such that $x=u_{1} \cdot u_{2}$, and, since $w_{i}^{\prime} \in A\left(1 \leqslant i \leqslant n_{1}\right), z_{j}^{\prime} \in A\left(1 \leqslant j \leqslant n_{2}\right)$, it follows by Lemma 4(b) and Lemma 5 that $L^{\prime}\left(u_{i}\right)=L^{\prime}\left(y_{i}\right)=n_{i}(i=1,2)$. Thus, by Lemma 4(d), $u_{i}=y_{i}(i=1,2)$. Hence, by induction hypothesis, $w_{i}=w_{i}^{\prime}(1 \leqslant$ $\left.i \leqslant n_{1}\right)$ and $z_{j}=z_{j}^{\prime}\left(1 \leqslant j \leqslant n_{2}\right)$, and the sequence $\left\langle w_{1}, \ldots, w_{n_{1}}, z_{1}, \ldots, z_{n_{2}}\right\rangle$ is unique.

We shall refer to the sequence $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ of Lemma 6 as the decomposition sequence for x.
Theorem (Isomorphism) The concatenation system $\langle C, 0,1, \cdot, \mathrm{~L}\rangle$ is isomorphic to the string system $\left\langle A^{*}, \lambda, 1, *, l\right\rangle$.

Proof: Define $\Psi: C \rightarrow A^{*}$ as follows: for every $x \in C$,

$$
\Psi(x)=\left\{\begin{array}{l}
\lambda, \text { if } x=0 \\
x_{1} * \ldots * x_{n}, \text { if } x \neq 0, \text { where }\left\langle x_{1}, \ldots, x_{n}\right\rangle \\
\quad \text { is the decomposition sequence for } x .
\end{array}\right.
$$

Proof: It follows easily by Lemma 6 (applied to C and to A^{*}) that Ψ is a 1-to-1 mapping of C onto A^{*} which maps 0 onto λ, and such that for all $y_{1}, y_{2} \in C, \Psi\left(y_{1} \cdot y_{2}\right)=\Psi\left(y_{1}\right) * \Psi\left(y_{2}\right)$. Moreover, $\Psi(1)=1$, since $1 \in A$. Also, $l^{\prime}(\Psi(x))=\mathrm{L}^{\prime}(x)$ for all $x \in C$, and hence $l(\Psi(x))=\mathrm{L}(x)$ for all $x \in C$. Thus, Ψ is an isomorphism.

Corollary 1 The axiom system Ax.1-Ax. 11 can be enlarged to one which characterizes exactly the string systems over finite alphabets by adding
$\operatorname{Ax} .12(\exists x)[(\forall y)(\operatorname{ATOM}(y) \supset y \leqslant x)]$.

Proof: Clearly, every string system over a finite alphabet realizes Ax. 12.
Moreover, if the concatenation system $C=\langle C, 0,1, \cdot L\rangle$ satisfies Ax.12, then so does the string system $\left\langle A^{*}, \lambda, 1, *, l\right\rangle$ isomorphic to \mathbb{C}, and hence, since every member of A^{*} is the concatenation of only finitely many letters, A is finite.

Corollary 2 For each $n \geqslant 1$, the theory obtained by adding to the system Ax.1-Ax. 11 the axiom Ax.12.n, stating that there exist exactly n atoms, is categorical.

Proof: Given two models C_{1} and C_{2} of Ax.1-Ax.11, Ax.12.n, an isomorphism from C_{1} onto C_{2} may be obtained using the isomorphisms Ψ_{1}, Ψ_{2} (see the proof of the preceding Theorem), and an arbitrary one-to-one correspondence between the atoms of C_{1} and the atoms of C_{2}.

Queens College of CUNY
Flushing, New York

