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MODEL THEORETICAL INVESTIGATION OF THEOREM
PROVING METHODS

T. GERGELY and K. P. VERSHININ

1 Introduction From the literature of the logical deduction theory,
several different methods are known for theorem proving in different
calculi. Usually, these methods are purely syntactically founded, which, in
our opinion, often leads to the mystification of syntax. In the present paper
we have tried to discuss these methods from a model-theoretical point of
view. The basic facts serving as foundation for our treatment are also
discussed.

1.1 The general concept of language A language is represented by a
triple £ = (F, M, N), where F is the syntax of the language, i.e., a certain
set of words in a denumerably infinite alphabet and (M, N) is the semantics
with M being the class of models and N the validity relation ( N c M x F).
Let X be a finite alphabet and X* the set of all possible words described by
the alphabet X. Then the syntax F of the language ^ = (F, M, N) is usually
given as follows:

(1) Some elements of X* are defined as elements of F;
(2) New elements of F are constructed from the existing ones by using a
number of generator rules;
(3) F contains no further element different from those obtained according
to (1) and (2).

If φ e F and 51 e M, then 51 N φ denotes that φ is valid in 51. In other words,
51 \= φ denotes that 5ί is a model of φ. If the case 511= φ is not satisfied, this
will symbolically be denoted by 51 Ψφ.

1.2 Basic notations The notations =#> and ΦΦ stand for " i t follows" and
"if and only if", respectively. It is to be noted that, in proofs, the notations
=> and <£= will also be used to indicate in which direction a statement
containing <=#> is being proved. The letter " d " above the notations = or
<#=#> is used to indicate that a new concept is defined. Functions will some-
times be considered as sets of pairs. Rg/and Do/denote the range and the
domain of a function /, respectively, ΊL denotes the graphical equality, ω
denotes the first transfinite ordinal. \A\ denotes the cardinal number of the
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set A. Any further necessary notation will be defined in the relevant
paragraph.

2 t-type models In our approach it will be assumed that every language
has a fixed type t. Type t is defined as a pair of functions (t'9 f) such that

(1) i R g ί ' c ω - {0}
(2) iRgί" Cω
(3) Do*' Π Dot" = 0, for I Dor I <ω and \θot"\^ω9

(4) there exists a symbol c0 for which (c0, 0) e t".

Dot* is the set of relation symbols and Dot" the set of functional
symbols. The function tdefines the arity of each symbol in Dotr U Dot".

Definition 1 A t-type model is such a function 31 for which

(1) 3l(o) = A is a set
(2) for all peDot', 3ί(p) c " ( p ) A
(3) for all / e Dot", 3l(/): <"(/) A -> A and if H / ) = 0, then 3l(/) e A

Remark: 0-ary functional symbols are the constant symbols and the
corresponding elements in A are called constants. According to the above
definition, A is never empty since one element is provided by3l(c0).

The class of ί-type models will be denoted by M .̂ For convenience we
introduce the following notations:

*(oM«o = A
3ϊ(p) = *p
3l(/) = */

A ί-type model will always be denoted by a German capital and the set 3l0

by the corresponding Roman capital. This set is often called the universe
of the model.

Definition 2 Let 31, 93 e M'. S3 is a submodel of the model 31 (symbolically:
93 ε 31) <=> for all such p that <p, w> e V or (p, n - 1) € f" it is true

»P = Sip Π WJ5 and 33o c 3I0

Definition 3 Let C = {c \{c, o) e ίff} be a set of ί-type constant symbols. It is
said that the model 93 is generated by constants if 93O = B is the smallest set
for which

(1) if ceC, then 93c €5
(2) if </, n) e t" and bu . . ., bn e B, then *f(blf . . ., bn) e B

In other words the universe B is generated byt the constants. In the
following such models will be called ί-type C models or simply C-models.

Theorem 1 For an arbitrary t-type model % the set of its subsets is
partially ordered by the relation £ and has a smallest element.

Proof: It follows from Definition 2 that the relation £ partially orders the
set of all ί-type submodels of 31. The intersection of an arbitrary set of
submodels of 31 is again a submodel of 31. This submodel is not empty,
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since all submodels contain constants. Let us now consider the intersection
of all submodels of the model 2f. This submodel is one of the submodels
and it is the smallest one. Q.E.D.

3 Zero-, first-, and second-order languages In the following, it will be
assumed that the class of models M = M', i.e., only ί-type or £-languages
will be investigated. The zero, first, and second order ί-type languages
will be denoted by QJ£\ ιJζt

t, 2-C*, respectively. For each of their M' is the
class of models. 2*C* i s introduced as an auxiliary language which will
enable some of the results to be expressed in a simpler way. First, the
language 2-C' will be defined and the other languages will be obtained using
it.

3.1 The t-type second order language (2-C*) The language 2J£* is a triple
(2F \ M', 2 ^ / ) . Let us define each of the elements in the above triple.

3.1.1 Definition of the syntax 2 F ' Let us fix the following disjoint sets
which are also disjoint from Do£f U Dot" u {Ί, Λ, 3}, where symbols Ί , Λ, 3
stand for negation, conjunction, and existential quantifier respectively.

V is an infinite set of symbols called individual variables.
Vn set of w-ary function variables for each n < ω.
Vn set of w-ary relation variables for each n < ω.

Definition 4 (a) 2T
ι (the set of the terms of the language 2£

ι) is the
smallest set for which

(i) F C 2 Γ <
(ii) if fe Vl or *"(/) = n and T l , . . ., τn e 2T\ then f(τu . . ., τn) e 2T

ι

(b) Put

2 P ^ { p ( T l , . . ., T J TX, . . ., τ β e 2 Γ ' a n d *'(p) = n or p e 7 ί , n < ω}.

The elements of 2 P / are called second order prime formulas;

(c) 2 F* (the set of second order formulas) is a smallest set for which

(i) 2 P ' C 2 F '
(ii) if φe 2 F ' , then"Ί(pe2F'
(iii) if φ, ψ e 2 F ί , then φ*ψ e 2F*
(iv) if φ e 2 F ' and z e U (V* U V§ U V, then 3z φ e 2F<.

The formula ψ e 2 F / will be called the subformula of the formula <^e2F
/ if

the latter is represented in the form φizaψβ, where a and β are some
sequences of symbols.

We introduce the following notations: Vυ (for all υ) will stand forΊΞltΠ,
φvψ for ~l(l<pΛΊψ), φ -* ψ for (iψvψ) and φ<->ψ for (φ —> ψ) Λ (ψ —> φ)
where φ, ψe2F

t. In the formulas only those brackets will be kept which
are necessary for understanding.

3.1.2 Semantics of the language 2<^t Let $1 be a given model. We define
a function 2k which gives a correspondence between variables from
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U(V"»Γ U Vn) U V and the concrete values from Rg3l. Such a function is

called an assignment function.

Let us introduce now the set 2K of second order assignment functions as
follows:

2K i Lk I Do2fc = U (V£ U VS) U 7 and

if v e F, then 2fe(v) e A
iίfeVl then afc(/) e(*Λ) A
UpeVZ, then 2k(p) QnA}.

Given some assignment function 2k e 2K we define its extension (2k) to the
set of terms 2T

t as follows

2k (υ) = 2k (v) for any υ e V

u(f(tr r XX ± I 2^(/)_(2^(T1), . . ., 2k{jn)) if /€ Vξ
2 l / l T l ' ' •' Tn)) " I V ί ^ T x ) , . . ., 2£(τJ) if </, tύet"

Now we define the validity relation 2N*: 312N
ί <^[2^] will mean that the

formula φ is valid in the model 31 for the assignment function 2k. This will
be defined through induction according to the construction of the formula φ.

Definition 5

« «•-•* '•>«*{!*:!:::::%$'£*W&
(ii) WaN' l^ ta i fe l^Wa^V^]
(iii) 3I2 N

/ (ς̂  Λ ψ) [2k]4=>W2 N' ̂  [2^] and * a h ' ψ [2fe]
(iv) for any z e [)(vf U F*) U V: <U2 \='3zψ [2ife]<^>there exists such a 2fc' 6 2K

that for all ω Φ z (ωe U (VΪ U 7?) U FJ2^'(co) = 2k(ω) and 3I2 N'ψ [2k
r]

We shall say that (pe2t* is vαZfrf in the model 51 if for all 2fc e ^31N

^ [2k], i.e.,

3I2 NV^(V 2 f e e 2K) %2 N' ςp [2ife].

The formula (p € F/ is a tautology if it is vαZz<i in all the models of the
class M*. Symbolically writing,

The variable v will be called bound in a formula <ρ if it is found in a
subformula ψ of form 3vι// only. The variable v will be said to be free in
the formula φ if it is not bound. A formula containing no free variable will
be called a sentence. We introduce the notation 2S / = {φe 2?

ι\φ contains no
free variable}. Note that if φ e 2S*, then 3l21=/ φ<^there exists 2k e 2K such
that 5 I 2 [ = > ( > ] .

Now, the definition of the second order ί-type language 2J!j = ( 2F /, M',

2N*) is complete.

Let φ, ψ € 2 F / . We shall say that ψ is the logical consequence of <p
(symbolically: φ\=ψ) if each ί-model 31, in which φ is valid, is a model of
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ψ. In other words:

φ2 μ< ψ ^ ( V t l e IVl') *I2 h ' φ =^W2 N'ψ

Logical consequences are sometimes called semantic consequences.
Two formulas φ, ψ e 2?

t are said to be semantically equivalent (symbol-
ically: φ = ψ) if φ\F ψ and ψ t= φ. In the following, some new notations will
be necessary. Let Σ c 2 F ί b e a set of formulas Σ = {σ, |e < ω}. Conjunction
(and disjunction) of the formulas will be denoted by the symbols Λσv

( Λ σ;). Introduce the following notations Σ = Λ σ, and Σ = V σ, .

3.2 The t-type first order language d C') The language 1£
t is the

triple d F ' , M', > '>• It can be defined with the help of 2£
ι as follows. The

syntax of ̂  is obtained from that of 2-C' by supposing in Definition 4 that
7 £ u ^ = ̂  (n<ω). In other words, X 7 = V. Then ^ ^ and 1 F / are
obtained from the corresponding definitions of 2T\ 2P\ and 2F* by taking
into account the introduced restrictions. The semantics of the language 1-C/

is defined in a similar way. For this case

^ = { ^ | D o ^ = V, RQlk = A}

for a given model 51 e M*. The validity relation is defined as

ih'^N'nίM'x :Fθ

This easily follows from Definition 5. All notions introduced for language

2-C/ are valid, with the introduced restrictions, for ιJ^t as well.

3.3 The t-type zero order language 0^
1 o-Cf is a triple <0F', M*, QN*),

which is defined with the help of 2-C' as follows. The syntax of 0-C/ is
obtained from that of 2£* by assuming that U (V*\J vS) U 7 = 0 . 0T\ 0P\

and 0?' are obtained from the corresponding definitions of 2T\ 2P\ and 2F*
by assuming that the language does not contain any variable symbols.

Remark: Remember that 0T* is constructed of constant symbols only, in
the following way (according to the Definition 4a): 0 T / is a smallest set
such that

(i) if (c, 0>eΓ, then ceoΓ<
(ii) if (/, n) e t" and τu . . ., τn e 0 Γ ' then f{rιy . . ., rn) e 0T*.

The semantics of the language o-C* is defined from that of the language
2-C by omitting all the variable symbols. In this case 0K = p. At the same
time, there exists extended assignment functions applicable for 0T*.
They can be defined as follows:

Let us suppose that (c, o) e V\ (f, n) e t" and τί9 . . ., τn e 0T
t and con-

sider a model % e M*. Then:

0Hf(Tl, . . ., rj) = H/UίrJ, . . ., oHrn))

Since it is easy to see that for any model 31 there exists only one function

ok so in the following we shall write 31 instead of ok. This means that the
language 0-C ι = (o^*, M', ot=*) is completely defined.
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Remark: It follows from the definition of languages that 0-f' Q i-C' Q 2 C
/

While 0 F ' c X F' c 2 F ' and ; | = ' = 2 μ ' n ( M ' X , F ' ) , for i = 0, 1.

Consequently, the validity relation is practically the same for any
order language. In the following, therefore, we shall omit indices and
simply write N to denote validity relation.

4 Some properties of the language 0^
1 In this section, N always

means QN'.

T h e o r e m 2 / / ί l e M * and 93 £ 31, then for any formula φeo?
t

Proof: It goes by induction on the length of the formula φ. For prime
formulas the statement follows from the definition of the relations c and N
and from that of the function 21. Suppose that the statement holds for the
formulas ψ and X from 0?

1. Then it also holds for the formula ΨΛX
according to the definition of the relation t= (see Definition 5 (iii)). The
statement's validity for Ίψ follows from point (ii) of the same definition.

Q.E.D.

Corollary Let%e M* and let® £M be C-model. Then B = RgSΪ.

In other words, the C- submodel of the model 31 consists of exactly those
elements which have corresponding terms.

Proof: Rg$l c C is true for any submodel S £ M. At the same time, Rg3Ϊ
is closed under the functions of the model 31. This follows from the defini-
tion of the set of terms 0 T'. Consequently 93 is the smallest model and
93O =B contains those elements only, which have corresponding terms. Q.E.D.

Let us now formulate the compactness theorem in dual form. As they
are well-known, their proof will not be detailed here.

Theorem 3 (Compactness Theorem) Let {<ρt | i < ω} c QF*. Then N V ψi if

and only if there exists ann<ω for which N V <ρ, .
i<n

See proof, e.g., in [1].

T h e o r e m 3 f (Compactness Theorem) Let {ψi\i < ω} c 0F\ hψi is valid

if and only if Λ<P/ is valid for all n < ω.
i<n

See proof, e.g., in [2].

A prime formula or its negation is called literal. The complement (¥) of
the literal π is defined as follows:

— ί "lπ if π is a prime formula
y πr if π 3EΊπ', where π f is prime formula:

The pair of literals (π, πf) is called contrary. If Π is a set of literals then
7Γ will denote the set consisting of the complementer elements of Π. A set
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of literals Π is called consistent if Π contains no contrary pairs. Let

Π c 0F* be a set of literals.

Theorem 4 If Π is consistent, then Π is valid.

Proof: Let us construct a model 31 € M' such thatSίhΠ. Let 3l0 = A = 0T\

tl/(τi, . . ., τn) = f(τl9 . . ., τβ) for all n < ω, Ti, . . ., τn e 0T
f and such/, that

*"(/) = rc, ϊlp={<τi, . . ., τm): p(τi, . . ., T J E Π } for all m < ω and such p

that f'(p) = m. 31 satisfies Π since, if 31 hπ then 311̂ TΓ. If 3ίl=τrf and3ϊhττ"

then 31 h πΆ TΓ" and it follows from τi ^ τ 2 that ϊlΓ l ^ 5lΓ2. Q.E.D.

Theorem 5 T/' Π contains at least one contrary pair then Π is tautologic.

Proof: Let TΓ, ϊ e Π and π = p(τi, . . ., τw) where τl9 . . ., rne0T'. Then it

follows from the definition of the ί-type model and of the relation {= that

either 51 Nπ or 511=77 is valid in any model % e M'. Q.E.D.

A set of formulas will often be represented by a sequence of its

elements. Then, if φ is a formula then Σ, φ = Σ u M Let φ0, φu φ2 be

formulas of the language 0-C'. Let us formulate the well-known properties

of the logical consequence relation N in the form of a theorem. For

convenience, we shall assume that ΓNΣ denotes the same as ΓN=Σ

(Γ, Σ C 0 F ' ) .

Theorem 6

(i) Γ, ^ Λ ( ^ 2 N Σ 4 » Γ , φl9 φ2)rΣ;

(V) Γ N ^ v ( ^ 2 , Σ ^ Γ N ^ , φ2, Σ;

(ii) Γ, (plV<ρ2hΣ<#ΦΓ, φ^Z and Γ, <^2t=Σ;

(iif) Γ ^ j Λ ^ ^ Σ O Γ N ^ i ^ Σ αnί? Γ ( = ^ 2 >

Σ ;

(iii) Γ,Ί<ρhΣ<N>Γ|=<p, Σ;

(iiif) I>Ί<p,Σ<=>Γ, (^NΣ;

(iv) Γ, ^ x -> ̂ N Σ O Γ N ^ i , Σ αwί? Γ, φ2 }=Σ;

(v) Γ ^ i -> φ2, Σ O Γ , Ψi\=φ2, Σ.

Proof: We prove one of the above statements, e.g., (ii).

=Φ. Let us suppose that, if % N=ΓΛ ( ^ v<^2), then 3ίhΣ for any model 31.

Let © N Γ Λ ^ . Then, according to the definition of the relation K Φ h ^ i

Consequently © {= φγ v < 2̂, and hence S3 N Γ Λ ^ V φ2) which means that 58 NΣ.

It can be proved in a similar way that, if 53 t=ΓΛ φ2, then © f=Σ.

<#=. Let us suppose that

(1) if ί lNΓΆ^!, then^lNΣ

(2) if 31 NΓ*φ 2 , then 51 NΣ

for any model 5ί. Let B̂ N f Λ (φι vφ2). Then « N Γ and © N ^ v ^ τ h e

latter statement is equivalent with 53 f= <̂ i or 53 N <p2.

Case 1: Let 53 N <̂ 1# Then, according to (1), 53 N Σ

Case 2: Let53N<?2. Then, according to (2), 53 t=Σ. Q.E.D.
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Theorem 7

(i) if f! N Σ and Γ\ c Γ2, then f 2 N Σ;
(ii) z/f NΣi αn^Σx c Σ2, tof NΣ2.

Proof is evident, therefore it is omitted.

The following properties of the relation N follow also simply from the
definition:

Theorem 8 Let Γ, Σ be consistent sets of literals. Then:

(i) ΓhΣ<#ΦΣcΓ;
(ii) ΓNΣ4ΦΓΠΣ Φ0;
(iii) ΓI=Σ<^ΓC_Σ;
(iv) Γ ^ Σ ^ Γ ί Ί Σ * 0 ;
(v) ΓVΣΦ=>Σ c Γ.

(N.B.: φγ ¥ φ2 means that no model of φγ is a model of φ2).

We also refer to a theorem which, although trivial in its proof, plays
an important role in some later considerations.

Theorem 9 Let Γ, Σ c 0F*, φe 0 F / . Then:

(i) Γ, <ρhΣ and Γ, Ί ^ N Σ O Γ N Σ
(ii) ΓNΣ, ςί? fl«ί/ΓNΣ,Ί<pθΓNΣ.

Proof: (i) 4=. It follows immediately from Theorem 7. =#>. Suppose that,
if «H=ΓΛ<P, thentίNΣ, and, if ©NΓΛΊφ, then«t=Σ. Let $t=f. It is
obvious that always either 8N(^or δ(=l<^. In both cases, SNΣ.

(ii) <^=. It is trivial from Theorem 7. =>. Suppose the contrary. Let
* l = f andSl^Σ. Since <p€0F', then either (*) % \*φ or (**) Wtlφ. In the
(*) case ^I^ΣvΊφ, and in the (**) case 3I^Σv</? what contradicts our
initial assumption. Q.E.D.

5 Set of literals as a model-theoretical tool Let Γ be a finite consistent
set of literals. The formula f (f) is called a conjunct (disjunct). A conjunct
(or disjunct) containing no literal will be said to be empty and denoted by the
symbol Δ(V).

If no ambiguity may occur, a conjunct (disjunct) will often be identified
with the corresponding set of literals and the notations and terminology of
set theory will be treated freely. We shall say that ςί? e 0 F̂  is represented

in conjunctive (disjunctive) normal form if φ has the form Λ ψι where each

Ψi is disjunct land .Y ψi where each ψi is conjunct, respectively).

Theorem 10 For any formula φe QF', there exist formulas φ' and φ" in 0 F /

such that φr = φ and φ" = φ and φr is represented in conjunctive normal
form and φ" in disjunctive normal form.
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Proof: It will be presented for the first statement of the theorem only. The
proof goes by induction on the length of φ. For φ we can construct a
formula φ' being semantically equivalent to φ and whose subformulas
beginning with the symbol Ί do not contain the symbols Λ, V, and Ί. This
formula can be obtained by repeated application of the following equalities:

110 s θ

Ί(0Λψ) s 10vΊψ

Ί(θvψ) = 10ΛΊψ

where θ, ψ e 0 F ' . These equalities follows easily from Theorem 6. Now,
the wanted representation of φ can be obtained by using the equality
φ v(ψ Λ θ) = (φvψ) Λ (φ v θ) (where φ,ψ, θe 0F*)f which is readily seen from
Theorem 6, and by taking into consideration that the symbols v and Λ are
commutative. Since the proof was carried out by using semantic equalities
only, then φ = φ'. The second statement of the theorem can be proved in a
similar way. Q.E.D.

The formula φ' will be called conjunctive normal form (CNF) of the
formula φ and φ" the disjunctive normal form (DNF) of the formula φ. Let
Σ c 0F/. PΣ denotes the set of prime formulas occurring in Σ.

Theorem 11 Let P c 0P*. Then, for any model SUe M', there exists a set of
literals Π such that Pπ c P and for any φ e 0F *, for which P^j c P it holds
that

Proof: Given a model $1, the set P can linearly be ordered. Let P =
(Pi, . . . , />», . . •)• Each element p^i ^ 1) has the form of p, (fl9 . . ., 4,).
Let us add the literal pi to Π. if (%{, . . ., %t0 e %P. and the literal!/)/ in
the opposite case. The obtained set Π will obviously be consistent.

=#>. Let % h<p and 53 t=Π. Then it is obvious that © satisfies each element
of Π and thus the value of the assignment function *8 for the prime sub-
formulas φ agrees with that of S. Consequently, ©!=<?. ^ = . It is evident,
since $! NΠ according to the construction. Q.E.D.

Thus, a "restriction" of any model to a fixed set of prime formulas P can
be given by a conjunct. The validity of any formula, the prime subformulas
of which are contained in P, is equivalent to the logical consequences of
this conjunct. On the other hand, any conjunct defines a class of models
coinciding (as functions, see section 2.3) in the prime formulas contained in
this conjunct. Evidently the fewer elements a conjunct contains, the
more "extended" the corresponding class of models is. The empty
conjunct Δ "defines" the class M' of all models.

T h e o r e m 12 Let P c 0 P ί , Then for any model %e Mf there exists a set of

literals Π such that P π c P and for any formula φeo?
t, P ^ c P, it holds

that

51 ¥φΦ=>φ NΠ.
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Proof: Let $1 be a given model. Let us construct a set of literals Π' which
satisfies the preceding theorem and suppose that Π = Πf. =Φ. Let 31 & φ
and 93 N φ. Then, obviously, there exists piτi, . . ., τn) e P^ such that

Then the corresponding literal from Π is valid in 93 and 33 N Π. <#=. It is
evident, since $1 hfί. Q.E.D.

Theorem 12 is apparently the dual pair of the preceding one and
it states that the non-validity of a formula in a given model is equiva-
lent to the existence of a disjunct semantic consequence of it. Con-
sequently, we can say that each disjunct Π also defines a class of
models, namely, the complementer of the class determined by the conjunct
Π. That is, the fewer elements the disjunct contains, the "poorer" the
corresponding class is. The empty disjunct V "defines" an empty class of
models.

6 The semantical basis of resolution-like proof proceedures Now we
have shown that a consideration on the validity (or non-validity) of a
formula φe0?

1 may be substituted by a consideration on the logical
consequence of φ from a conjunct (or on the logical consequence of a
disjunct from φ) while the range of such a conjunct (disjunct) enables us to
conclude on the range of the class of models in which φ is valid (non-valid).
It also has to be noted that any conjunct (disjunct) CNF (DNF) of the
formula φ logically follows from (is the logical consequence of) φ and, in
addition Theorems 8 and 9 permit the construction of new conjuncts
(disjuncts) having such property. Later we shall show that they exhaust all
the conjuncts (disjuncts) possessing this property.

Two sets of literals Γ\ and Γ2 will be said to be compatible if Γx U Γ2

is consistent. We also shall speak of compatible pairs of conjuncts (dis-
juncts) by regarding them as a set of literals.

Definition 6 Two conjuncts (disjuncts) I\ and Γ2 form a contrary pair if
there exists a literal p such that I\ = Γ{ u {p}, Γ2 = Γ{ U {p} and Γ{
is compatible with Tf

2. If these conjuncts (disjuncts) form a contrary
pair then conjunct (disjunct) T[ v Γ*2 is called their resolvent and denoted
byR(Γ\, Γa).

Theorem 13 Let φe 0?
t and let I\, T2form a contrary pair. Then:

(i) t^φandt^φ =̂> R(Γ1? Γ2)\=φ;
(ii) φ)rtandφ\=t2=Φφ)rP((Γl9Γ2).

Proof: It follows immediately from Theorems 8 and 9. Q.E.D.

Let S be a set of conjuncts (disjuncts). Assume that R°(S) = S, and that
R*+1(S) = RW(S) U {Γ| there exist I\, Γ2e RW(S), which form a contrary pair,
and Γ = R(I\, Γ2)}. Let R(s) = ( j R"(S).
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If S is finite, then R(S) is finite too, since P s is finite. More exactly:

l R ( s ) | < Σ 2lM

A C P S

Let ψ e 0 F / be valid, and πx v . . . v πf a DNF formula of φ. The symbol
Π^ stands for a set of conjuncts {πl9 . . ., π f}.

Theorem 14 Let Γ be a consistent set of literals. Then: Γ N ^ Φ ^ there
exists Π e R(Π^) such that Π c Γ.

Proof: <==. Let Π e R(Πφ) and Π c Γ. Let 51 N=Γ. Then, according to
Theorem 8, 51 N Π. Obviously, if 51 N R(I\, Γ2), then either 51 N f λ or 31 N f 2 .
Thus, one of the " in i t ia l " conjuncts π t (z = 1, . . ., r ) is valid in 5Ϊ. Con-
sequently, 511= Π^ and 5ί t= φ.

= » . Let Γ |=<ρ. Assume that P = Pw - P Γ . If P = 0 then the statement of
the theorem is obvious. Let P = {px, . . ., pw}: Put that Ro = {Π(Π e R(Π^)}
and Π is compatible with Γ}; R i + 1 = {π|ΠeR/ and p ί + i / Π and Ί p ί + 1 / π } ;
where i = 0, . . ., n - 1. We shall show by induction with respect to z

that for any i(i = 0, . . ., n)Γt=fti and R/ ^ 0

which means that the statement of the theorem is true.

Basis of the induction: Let i = 0. Ro * Φ since Γ f=Π<p, which means that
ΓhROπΌ, but it Π/R o then Γfe^Π. Consequently, there exist Π e Ro. It is
also obvious that if 51 N f then 511= Ro.

Induction step: Let the statement be valid for R7 (j = 0, . . ., i). Let us
consider R ί + 1 . Let t l h f * . The symbol 5Γ+ 1 stands for a model which
differs from 51 only in that 5(*+1l=p;+1<N>5i fc*p, + 1 . Obviously, if ψβot* and
Pi+JPM, then5!Nψ<^>5l i + 1 Nψ. In particular, 51 t + 1 N Γ , therefore 51i+ί N φ.

Let:

RH-I = {Π IΠ e Rf and p ί + 1 e Π}
R7+1 = {π |Πe Hi a n d Ί p ; + 1 e Π }

Then: Rf = R/+1 U R7+I U R, + I . Let us consider the following cases:

Case 1. R^+1 = R^+1 - 0 . Then R1 + 1 = Rz and the theorem is proved.

Case 2. R++1 = 0, RJ+1 Φ 0 . Let 5INΓ. If 5 l h p m , then «b«R7+1. But,
5(NR/ (according to the assumption of the induction), hence 2lt=R, + 1 and
R ί + 1 Φ0. If ΪINΊpi+i, then let us take 5I ί + 1 and, by analogous considera-
tions, we can see that 5l ί + 1 N Rz + 1 but, because of pi+1/ίPRi+ι, 51 NR ί + 1 . The
theorem has been proved for Case 2.

Case 3. R++1 Φ 0, Rj+ 1 = 0 . This case is the symmetric equivalent of the
former one.

Case 4. R^+1 Φ 0 ? R7+1 Φ 0 . Suppose the contrary. Let 51 NΓ and 5 l ^ R ί + 1 .
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As from the assumption of the induction it follows that 51NR,, then
flί=Rί ί.1vR7+1. Consequently, there exists a conjunct ΠeRt+ 1vR7+i such
that 51NΠ. Let Π+eR "+1 be such a conjunct (the considerations are
symmetrical for ΠeR7+i). It is seen that Π+ = Ilί"v {pί+1} and $1 h Π?" and
5lhp t + 1 .

Let us investigate 51'*1.5lί+11= Γ and <Ui+1&Ri+1, since pi+ι e P R / + 1 .
Consequently, 5I'+ 1 N R++1v R^+1. But 5Γ'+1 Nηp ί + 1 hence 5l/+1 h RJ+1. Let
Π" e Rf"+i be such a conjunct that ffi+1 N Π", Π" = IlΓ U { ipm} and 5f*+11= W[.
Since ρ ί +i€ Pπ] , then 5INΠΓ. Consequently, Π* and ΠΓ are compatible and
there exists R(Π+, IT) such that R(Π+, Π") e R/+1 and, according to Theorem
13, 51 hR(Π+, Π"). That is, 51 NR i + 1. The investigation of Case 4 leads to a
contradiction, which means that the proof of the theorem has been
completed. Q.E.D.

Corollary Letφeo?'. Then:

Now let φeot* be non-tautologic. Let α ^ . . .Λσs be a CNF of the
formula φ. Let us suppose that Σ^ = {σu . . ., σs}. It will be shown that the
dual equivalent oi the statement of Theorem 14 is also true.

Theorem 15 Let Γ be a finite consistent set of literals. Then:

φ NΓ4Φ there exists Σ e R(Σ*) such that Σ c Γ.

Proof: Since φ is not-tautologic, so lφ is valid. Let us consider the disjunct
Γ. It is obvious that Γ is consistent and φ (=fφ^ΓNΊ(p. It is also evident
that \Pφ =Σφ. According to Theorem 14, there exists Πe R(πΌ such that
Π C Γ , Then it is evident that Σ = Π e R(Σφ) and Σ c Γ. Q.E.D.

Corollary Letφe0?
1. Then:

Let 51 eM'. The pair of conjuncts (disjuncts) Ul9 Π2 is called 51-
resolvable, if

(i) Πi, Π2 are resolvable in the usual^ sense;
(ii) 51 N Πi v Π2 (correspondingly, 51 ̂  Πx v Π2).

If Πi, Π2 are 51-resolvable, then R(Π1? Π2) is called the %-resolυent of
Πi, Π2 and is denoted by Rtt(Πl9 Π2). Let S be a set of conjuncts (disjuncts).
Let 51 NS, (correspondingly, 5!hf). Let R£(s) = S and Rsίj+1(S) = {r | there
exist Γi, Γ2eR^(S) such that Γ1? Γ2 are 51-resolvable and Γ = R^Γ^ Γ2)}.
Let us suppose, furthermore, that R^S) = (J R ,̂(S).

Definition 7. An %1-clash is a set of conjuncts (disjuncts) {Γ, Γlf . . ., Tn}
such that

(i) Γ = Γ' U {πu . . ., Ήn} is non-valid (valid) in 51 while Γf is valid
(non-valid) in 51;
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(ii) Ti = T\ U {πt } (i = 1, . . ., n) is valid (non-valid) in 31;

( n \

U Γ/j Π ({π u . . ., 7Γw}u {?!, . . ., Ήn}) = 0. (clash condition)

Here Γ is called the nucleus of the clash, Tu . . ., Tn the satellites of the
clash and Γf u Γ{ U . . . U Γ*n the resolvent of the clash (symbolically:
R,M(Γf; Γ\, . . ., Γw). The literals π1} . . ., πn, Ίτl9 . . ., π« are said to be
resolvable by the literals of the clash.

Let us consider the proof of Theorem 14 again. Let 9We M* and Γ a
consistent set of literals such that 9W N f. Let us observe that, while
investigating Case 4 in the proof of Theorem 14, we established the exis-
tence of an element in R t+i. This element is a resolvent of two conjuncts,
one of which is valid in a fixed model $1. Let us consider the model 9W in
the place of 31, then the following statement can easily be proved:

Theorem 16 Let <pe0F' be valid. Then:

Γ N ^ Φ ^ there exists Π e R^ίΠ^) such that Π c Γ ,

The dual equivalent of this theorem is also true:

Theorem 17 Let φe 0F* be non-tautologic. Then:

φ N Γ<=> there exists Σ e R^ίΣ^) such that Σ c Γ.

Remark: It is easy to see that each element of R^ίΠ^JίR^ίΣ^)) which is
valid (non-valid, respectively) in 9W can be obtained not only by sequential
binary resolutions but as a resolvent of an 3W-clash. The nucleus and
satellites of the 9W-clash are easy to construct, by considering the deriva-
tion of the above-mentioned element of R^Π^XR^ΣΌ), while the nucleus
always is the "initial" conjunct (disjunct).

Now, let us generalize the concepts of conjunct and disjunct introduced
n

above. Let Ki, . . ., Kwbe conjuncts and Δi, . . ., Δm disjuncts. Then V K*

is called K- disjunct, and f\ Δ, D- conjunct. It is obvious that a K- disjunct
(a D-conjunct) is a formula in DNF (CNF). Let φ, ψeoF*. φ and ψ are
compatible if the formula φ Λ ψ is valid.

Definition 8. Let Γ\ and Γ2 be K-disjuncts (D-conjuncts). Γ\ and Γ2 form a
contrary pair if

(1) they can be represented in the forms

I\ = Γίu{K'uM}

and

Γ2 = Γ̂  U {K" U { }},

i.e., if Γ\ contains a conjunct (disjunct) for which there exists a conjunct
(disjunct) from Γ2 such that the pair formed by them is a contrary pair;

(2) Γί and Γ£ are compatible.
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And, if the K-disjuncts (D-conjuncts) ΓΊ and Γ2 form a contrary pair
then the K-disjunct (D-conjunct) Γ[ u Γ2 will be called their resolvent and
denoted by R*(ΓU Γ2).

We introduce the definition of all resolvents of a set S of K-disjuncts
(D-conjuncts). Let

R°(S) = S

RW+1(S) = R%S) U{Γ| there exist Γ\, Γ2e Rn(S) forming a contrary pair and
Γ = R(Γ\, Γ2)}.

Let furthermore R(S) = U RW(S). If S is finite then R(S) is finite too.
n<ω

Definition 9. Let Γ\ and Γ2 be K-disjuncts (D-conjuncts) such that

I\ = V K i ^ Γ ^ Λ Δ^j and Γ2 = V K,2̂ Γ2 = A Δ,2] .
We shall say that I\ absorbs Γ2 (symbolically: Γ\ -< Γ2) iff for all i(i = 1,
. . ., nx) there exists such a j(j = 1, . . ., m2) that Kf! D K; 2 (for all je{l,
. . ., m2} there exists such an ie {l, . . ., m^ that Δ^ D Δ; 2 ) .

It is easy to show that any formula φeo?* can be represented using
D-conjuncts (K-disjuncts). For this it is enough to represent φ in the form
of a disjunction (conjunction) of its subformulas and then all the sub-
formulas in CNF (DNF).

Let φe0F
t be valid and representable in the form (p^V Π ,̂ where

Ui(i= 1, . . ., n) are D-conjuncts. The set of D-conjuncts {Π^ . . ., Πw} is
denoted by Π^. For this case Theorem 14 can be rewritten in the following
way:

Theorem 18 Let Γ be a finite consistent set of literals. Then:

Γ h <?<#=#> there exists Π e R(Π^) such that Π >- Γ.

Proof: It is carried out simultaneously to the proof of Theorem 14 with the
difference that for each i(i = 1, . . ., n) the set of resolvents R, can be
written in the form:

where in this case

R+H = {Π |Π e Rt and Π = Πf U {Kf U {pi+1}}}
R7+1 = {ϊllΠeR; andΠ = Π'u{K f U {Ίp, +1}}} Q.E.D.

Now, let φ e QF* be non-tautologic and let it be represented in the form
λ

φ a: Λ Σi where Σ t (z = 1, . . ., m) are K-disjuncts. Let Σ^ = {Σl9 . . ., Σm}.

From Theorem 15 it follows

Theorem 19 Let Γ be a finite consistent set of literals. Then:

φ t= f Φ£> there exists Σ e R(Σφ) such that Σ > Γ.

Proof is analogous with that of Theorem 15.
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It has to be noted that the above introduced concepts of the $l-clash and
of the resolvent of the $!-clash (see Definition 7) can easily be extended to
K-disjuncts (D-conjuncts) (see [3]) and the corresponding theorems will be
true in this case as well.

Now, let us consider Gentzen classical propositional calculus {see,
e.g., [4]) and let us denote it by 0G. The most important fact related to 0G
is the Gentzen's theorem about the elimination of cut rule. Using this fact,
we shall show that a sequence Γ -*• Σ (where Γ, Σ c 0F') can be regarded as
the statement Γt=Σ. More exactly, the following theorem holds:

Theorem 20 ^ Γ - ^ Σ Φ ^ Γ N Σ .

Proof: Hereinafter we shall exclude the cut rule, when speaking of the
derivation rules. =Φ. If Γ —> Σ is an axiom, then Γ and Σ contain the same
formula and the statement is obviously true. It is easy to show that the
derivation rules of 0G preserve the relation K

<#=. Remember that the calculus 0G does not contain the cut rule. Let us
investigate the sequence Γ —* Σ and build the derivation tree using by
counter-application to it the derivation rules as long as it is possible. Since
each counter-application reduces the logical length of a formula in this
sequence, it is a finite process. Let ΓΊ —> Σ1 ? . . ., Γk —> Σ& and let them
all be "final" sequences. It is obvious that, Γ\ and Σf consist of prime
formulas only for any ie {l, . . ., k}. According to Theorem 6, f , l=Σt holds
for any i. According to Theorem 8, this is possible only if Σ, Π Γf Φ 0, i.e.,
if there exists a π, belonging to Γ, Π Σ, . Consequently, Γ, —> Σ, is an axiom
and the constructed tree is a derivation one. Q.E.D.

7 Some properties of the languages l β£' and 2JC NOW we introduce the
following notation: Let υ e {V, φ e γ ?

t and τ e YTK φ[v/τ] denotes the formula
obtained from φ by replacing each free occurrence of v in φ by r.

φ[v/τ] can be defined in the following way:

(i) p(τί9 . . ., τn)[v/τ] = piTilv/τ], . . ., τn[v/r]) and in Ti[v/τ] there is no
collision
(ii) l ψ b / τ ] = Ί(ψb/τ])
(iii) (ψ A X) [υ/τ] = ψ[v/r] A χ[v/τ]
(iv) (3w)ψ[v/τ] = (3w)(ψ[v/τ] if w does not occur in r; otherwise, let z eV
be a new variable not occurring in the formula and

(3w)ψ[v/τ]± (3z)(ψ[w/z])[v/r]

[v/r] is called a substitution. The substitution [vjτι, . . ., vn/τn] can
be defined in a similar way.

Definition 10. The formula φ is called prenex formula if ψ ΊΣ. Q1X1 . . .
QnXnψ, where Qi(i = 1, . . ., n) is either 3 or V, and ψ is a formula which
contains no quantifier.

T h e o r e m 21 For any formula φ e ιΨ
t there exists a prenex formula φr such

that φr = φ.
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Proof: It can be carried out by induction on the length of the formula φ
with the help of

(i) the following equalities:

(pΛψ = ψΛ φ
Ί3xφ = VxΊφ
ΊVxφ = 3xlφ

(3*ψ)AX = 3Z(Ψ[X/Z]ΛX)

(Vxψ) Λ X Ξ= \fz(ψ[x/z] Λ x) where z e V does not occur in ψ Λ X;

and

(ii) the following fact: for any ψ e 1 F / and xe V:

W\=φ<=>ty^yχφ Q.E.D.

We introduce the following notations:

3x1 . . . 3xn = 3xλ . . . xn and VÂ  . . . Vxn = Vxx . . . xn.

Theorem 22 (Skolem's Existential Normal Form Theorem for 2 ^ 0

3 * ^ 1 . . . 3xnVynψ =VΛ . . .fn 3xλ . . . Xnψhi/Mxi) . . . yn/fn(xi . . . *«)]
where ψ e 1?

t and for any ie {1, . . ., w}#/, 3;,- e V, yj e Ff and /,- does not
occur in ψ.

Proof: It is enough to prove the statement for the formula ΞΛΓV^X, where X
still may contain quantifiers. We shall make use of the definition of the
relation K If 31 N 3xVyX, then there exists an element ^{x) e A for which
X is valid for any element ^ ( y) e A. Thus, X is valid for γk(f(x)) e A as well,
i.e.,

%2V
tVf3xX[y/f{x)}.

Otherwise, if W&3xVyX, then there is no ιk{x)eA for which any fc( y) is
"good". This defines a function which renders the corresponding "bad"

2k(y) to each k^x). Let us note that here we made use of the axiom of
choice in an intuitive manner. Thus

%2¥
tVf3xX[y/f{x)].

To complete the proof, the statement has to be shown for the formulas
3xu . . ., xnVyX and 3xl9 . . ., xnVyl9 . . ., ynψ. This can easily be done by
induction. Q.E.D.

The following theorem is the dual pair of the preceding one.

Theorem 23 (Skolem's Universal Normal Form Theorem for 2 ^ 0 Let
ψ e 1 F / and x{, y{ e V, f{ e Vf for any ie{l, . . ., n} while fc does not occur in
ψ. Then:

V#i3 3>! . . . Vxn3ynψ = V*! . . . xn3f1 . . . fnψ[yi/fi(xi), . . ., yn/fn(Xi, .,*«)]

Proof: Without restricting generalities, we investigate the formula Vx3yX.
In the proof, we make use of the definition of N. Let S^ \=*Vx3yX. Then,
for any ιk(x) e A, there exists such an element ^(y) e A that X is valid. The
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axiom of choice permits the determination of such a function $1/, for which
%f(k{x)) = k(y). Therefore:

*, N'v*3/Xb//(*)].

Now, Iet3l2 )FtVx3fX[y/f(x)]. This means that for any 2k(x) eΛ there exists
a functional variable / such that X is valid for the element 2k(f(x)) € A. Con-
sequently, there exists an element ^(y) € A, determined by / , for which
X is valid. Hence, «x N'VΛΓΞ^X. Q.E.D.

Definition 11. We say that a type t has enough function symbols if and only
if t contains infinitely many function symbols of each arity, i.e., for any
w<ω, there are infinitely many symbols fl,fl, . . . eDoί" such that
t"(fί) = n(i<ω).

Corollary 22.1 If the type t has enough function symbols then, for any such
formula φe ιΨ

t that φ 3c 3x1Vy1 . . . 3xnVy ψ, there exist terms τl9 . . .,
τne 1T / such that

NΞΛαV y! . . . 3xnVynψ^:3x1 - . . Xnψ[yJru . . ., yjτn].

Proof: From Theorem 22 we have

ϊ=3x1Vy1 . . . 3xnVynψ<=>£Vfι . . . fn3xγ ... xxψiyJfM, . . . , yJfJLx^ ... x»)]

Now, let us choose, for each functional variable fi(i = 1, . . ., n) 2L cor-
responding functional symbol // from Dof such that fr(fj) = i and// does
not occur in ψ. This can be done because t has enough function symbols.
From the definition of M' and from that of t= we have

a^'V/i . . .fn3xγ . . ., Xnψ[yi/fi(Xi)9 , yJfn(Xι, . . , Xfi)}

Φ=>ι^Ft3xι . . . Xaψ[yι/f[(Xι)> . . , yJf&Xi, . . ., Xfd]

=#>. In fact, we assumed, without restricting generalities, that 2^
=t^f3xψ[y/

f(x)] where fe Vf and xe V. This means that, for anymodel Sle M*, there
exists an element 2H

X) € A such that X is valid for any 2Kf(x)) Let / be an
arbitrary fixed function variable and / ' the function symbol correspond-
ing to it. Then there exists a model 23 eM* such that ©! t^xψly/f'b)].
Since this is true for any / then we can conclude that

iN'3*ψ[y//'(*)]•

•#=. Let i¥'vf3xψ[y/f(x)]. This means that there exists a model % such
that

*2V'vf3xψ[y/f(x)],

which, in turn, means that for any 2H
χ) there exists such a 2k(f) which ψ

is not valid. Let us consider now the functional symbol / ' e Do t" cor-
responding to this /. Then there exists a model 23 such that

XiV'Bxψiy/f'ix)]

Consequently,

i¥'3xψ[y/f'(x)] Q.E.D.
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Remark: The above corollary says that for any formula φ e i?* there exists
its existential representation while φ is tautological if and only if its
existential representation is tautologic. The latter statement is weaker
than that of Theorem 22. This is connected with the fact that the interpre-
tation of functional variables differs from that of functional symbols (see
Definition 5). Accordingly, the statement that, if 31 is a model of φ, then 31
also provides a model for the existential representation of φ, is not true.
We can only say that there exists a model 53 e M* in which the existential
representation of the formula φ is valid.

Corollary 23.1 (Skolem's Normal Form for Validity for Λ') Let the type
t have enough function symbols. Then for any formula φe ̂  of the form
φ ΊL \ίχι3yί . . . Vxn3ynψ there exist such terms τ l 5 . . ., τ«e xT

ι that φ is
valid if and only if the formula Vxly . . ., xnψ[y\/τu . . ., yn/τn] is valid.

Proof: Without restricting generality, we suppose that

φ πVxByX

=Φ. From Theorem 23 it follows that Vx3yχ is valid if and only if
VxBfX[y/f(x)] is valid. Let Vx3fX[y/f(x)] be valid. This means that there
exists a model 31 e M* such that for any element 2k(x)eA there is such a
function variable / that X is valid for 2&(/M) Let/'eDof" correspond to
the function variable /. As the type t has enough function symbols, it
follows from the axiom of choice that there exists a model 53 in which the
interpretations 53/' and 2Hf) are equivalent. Consequently,

»iN'v*X[y//'(*)].

<#=. Let 3d N'VtfXf y//'(#)] and let us choose a functional variable /cor-
responding to the functional symbol / ' . Then we can find a model 53 in
which the formula X is valid by 2Hf) any element 2Hx) t B, i.e.,

532 \='Vx3fX[y/f(x)]. Q.E.D.

When establishing the semantic properties of formulas from iF*, it
would be convenient to use the methods available for the language <>£*. This
is possible according to Herbrand's Theorem (see, e.g., [l]). Two
theorems semantically analogous with Herbrand's Theorem will be formu-
lated: the first one relates to tautology and the other one to validity.
Remember that ιS

t denotes the set of first order closed formulas.

Theorem 24 Let t have enough functional symbols. Then for any formula
φe 1S

/ there exists a finite set of formulas Σ c 0 F ' such that φ is tautologi-
cal if and only ifi, is tautological.

Proof: For any formula φe iF*, according to Corollary 22.1, there exists
an existential representation. We assume, without restricting generality,
that it has the form 3xψ. Then \=φ<Φ3xψ.

=#>. As it is known from Theorem 1, any model 31 e M' has a smallest
C-submodel 53. Since ϊ=3xψ, then

53N3Λrψ.
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Hence, according to the corollary of Theorem 2 and to Definition 5, there
exists a term τ e 0T

ι such that 93 i= ψ[x/τ]. As ψ[x/r] e 0F * and <B £ 5ί, then
51 hψ[#/τ] (see Theorem 2). Consequently,

NrV,ψ[*/τ].

From the Compactness Theorem (Theorem 3) it follows that there exists a
finite subset of terms T c QT* such that

<£=. From N V ψ[x/τ] it is obvious that \=3xψ. Q.E.D.

Theorem 25 Let t have enough functional symbols. Then, for any formula
φe iS*, ί&ere exists a set of formulas Σ c 0 F / swc/z ίftatf <p is valid if and
only if the formula t is valid for any finite subset Γ c Σ.

Proof: =Φ. Let φe^1 be valid. Then, according to Corollary 23.1, its
universal representation is also true. Let us assume that the latter has the
form Vxψ where ψ is a quantifier free formula. Let 511= Vxψ and let © be
the C-submodel of $1. Then 93 N Vxψ (see Theorem 2). Hence, according to
the corollary of Theorem 2 and to Definition 5 &)rψ[x/τ] for any term
TeoΓ*. Consequently, 51 (= Λ tψ[x/τ]. From the Compactness Theorem

(Theorem 3') it follows that 51 N Λ φ[x/τ] for any finite subset of terms
TQ0T*.

Φ=. Let M\= Aψ[x/τ] for any finite subset of terms T c 0T*. Then,

according to Theorem 3', 51N A ψ[x/τ]. Consequently, 5lNVΛ:ψ. Then,

according to Corollary 23.1 it can be concluded that φ is valid. Q.E.D.

With the help of Theorems 24 and 25 any formula of the language x-C'
can be reduced to a set of formulas of OJQ1. Thus, all the theorem proving
methods developed for formulas from 0

F ' are also applicable to the
language 1J£t. However, it has to be noted that there exist syntactical
methods which, in order to increase the effectivity of establishing the
properties of the formulas of i-C \ transform the formulas into those of 0-C'
after performing all the possible simplifications.
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