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SELF-CONJUGATE FUNCTIONS ON BOOLEAN ALGEBRAS

THOMAS A. SUDKAMP

In section 1 we investigate the properties of a self-conjugate function
on a Boolean algebra (BA). In section 2, the notion of self-conjugacy will
then be extended to functions of more than one variable and Boolean
algebras with operators in which each of the additional operations has this
property will be examined. In particular, we extend the definition of ideal
element to every structure of this type. The notation of [3] will be used and
a familiarity with that paper is assumed. In addition,/" will represent the
composition of / with itself n times and id will denote the identity function
on a BA.

1 Self-conjugate functions Throughout this section let

* = <A, +, , -, 0, 1)

be a fixed BA. Recall the following definition and theorem from [3]:

Definition 1.1: Let / and g be functions on Λ to A. We say that g is
conjugate of / if, for any x, y e A, we have

f(x) y = 0 if, and only iί,g(y) *x = 0.

If, in particular, a function / is conjugate of itself, then we call / self-
conjugate.

Theorem 1.2 Iff: A-* A, then the following are equivalent:

(i) / is self-conjugate.
(ii) / is additive, andf(fix)) x = 0 for all xe A.

(iii) / is normal, andf(x) y ^f(x f(y)) for all x, ye A.

Lemma 1.3 If f: A -* A is additive and x ^ y, thenf(x) ^ f(y) for all x, ye A.

Proof: Obvious.
Theorem 1.4 Iff: A -* A is self-conjugate andf{ΐ) = 1, thenf(x) <£ x for any
xe A.
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Proof: Assume f{x) ̂  x, then /(#)•#= 0. Hence, by 1.1, f(x) x=0, or
equivalently f(x) ̂  x. But

1=/(I) =/(* + *)=/(*)+/(£)

which yields f(x) = x and f(x) = x.

Corollary 1.5 If f: A -* A is self-conjugate and /(I) = 1, then f(x) = Oiff
x = 0.

Proof: By 1.2(iii) and 1.4.

Corollary 1.6 Jjf /: A —* A is self-conjugate and /(I) = 1, then f(x) -xiff
f(x) = x.

Lemma 1.7 Iff: A —• A is self-conjugate and /(I) = a for some at A, then
f(a) = a andf(a) = 0.

Proof: Since /(I) = a, /(I) -a = 0. So by 1.1 f(a) 1 = f(a) = 0. Now, by
1.2(ii), we conclude

a = /(I) = f(a +a) = f(a) + f(a) = f(a).

Lemma 1.8 If f: A-+ A is self-conjugate, f(a) ̂  a and f(a) ̂ Έ for some
a e A, then a -f(x) = f(a - x) for all x eA.

Proof: By 1.2(ii) and the remark following Theorem 2.18 in [l], p. 356.

Theorem 1.9 f: A-* A is self-conjugate andf(l) = a for some aeA if, and
only if, there exists a function f:A—*A which satisfies the following
conditions:

(i) / is self-conjugate,
(ii) /(I) - 1, andf(a) = a,
(iii) f{x) = a -f(x) for allxeA.

Proof: Given/as above, define/as follows:

f(x) =fix) + x a.

/clearly satisfies (ii). By 1.3 and 1.7

a -fix) = a {fix) + x a) = a f{x) + a x-~a = a f{x) = f{x) for all x e A.

/ i s self-conjugate since it is the sum of two self-conjugate functions. Now
let / satisfy (i), (ii), and (iii), by 1.1, 1.6, and 1.8

f{x) - y = 0^->f{x) - a - y = 0<->f{a y) x = O^^fiy) - a - x = 0<->f{y) - x = 0 ,

so we conclude by 1.1 that/is self-conjugate. Clearly /(I) = a.

Throughout the rest of this paper by self-conjugate function we mean a
self-conjugate function in which/(I) = 1.

L e m m a 1 .20 Iff: A —> A is additive andf2 = i d , t h e n f { I ) = 1 andf{x) = 0 iff
x = 0 .
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Proof: /(0) = 0 and/(I) = 1 follow from 1.3. Assume f(x) = 0, then by 1.3

f(f(x))=x^f(x) = 0.

Lemma 1.21 Iff: A-* A is additive andf2 = id, thenf(x) £ x for any xeA.

Proof: f(x) ̂  x implies, by 1.3, x = /(/(#)) ^f(x) ^ x.

Lemma 1.22 Iff: A-* A is additive andf2 = id, thenf(x) = f(x) for all xeA.

Proof: By 1.20, 1 = f(x) +f{x), hence/(#) =f(x) + 6 where 6 *?/(#). Now

χ=f(f{χ)) = f(jM + b) =XfM) +/(«,

but by 1.3, f(b) ̂ f(f(x)) = x. Hence f(b) = 0 which, by 1.20, implies 6 = 0.

Lemma 1.23 Iff: A-*Ais self-conjugate, thenfn: A —> A is self-conjugate.

Proof: By 1.1.

Lemma 1.24 Iff: A —» A is self-conjugate and f2(x) Ί> x for any xeA, then

f(x) ^ x for any xeA.

Proof: hetf(x) =x+b,b^Έ, then f(f(x)) = f(x + b) = f(x) +f(b) = x + b +/(δ).
Hence 6 = 0.

Theorem 1.25 Iff: A—* A, then the following are equivalent:

(i) / i s additive, andf2 = id.
(ii) f is self-conjugate, andf2(x) ft x for any xeA.

Proof: (i) implies (ii). By 1.22 and (i)

f ( f { χ l ) ' X = f ( f ( x ) ) ' X = X ' X = 0.

By 1.20 and 1.2(ii)we conclude that/ i s self-conjugate. Trivially, f2(x) > x.

(ii) implies (i). Additivity follows from 1.2(ii). Let

x = x-f(x) +x-f(x).

By 1.2(iii), x-f(x) ^f(x f(x)) and therefore, by 1.24,

(1) x f(x)=f(χ.f(x)).

Now let b = x 7(x), c = b -f(f(b)), then f(f(b)) c = 0. By 1.1/(6) f(c) = 0,
so 1.3 implies/(c) = 0 and 1.5 yields c = 0. Hence/(/(6)) ^ 6, and by (ii) we
obtain

(2) / (/(* 7W) = * /W.
(i) follows from (1), (2), and additivity.

L e m m a 1.26. If f: A—* A is self-conjugate, thenf(x) ^ f n ( x ) for all xeA and
n > 2, for n odd.

Proof: By 1.2(Hi)

AD -f-2M ^fd r-'w) = fix).
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T h e o r e m 1.27 Iff: A-> A is self-conjugate andfn- id, thenf- id or n = 2.

Proof: Assume / Φ id. For all xeA, f(x) ^ x, for if f(x) > x, then
fn'1(f(x)) < / W , contradicting 1.4. Also by lΛ,f(x) i^ x for any xeA. This
implies that there is a δ e A such that fib) - b = c Φ 0. By 1.26 c ^/ w (δ) if
n > 2, for w odd. If n is even, result follows from 1.25(ii).

Theorem 1.28 If f: A -> A is self-conjugate and f2 = id, then fix y) = f(x)
/(3>) for all x, y e A.

Proof: By 1.3, f(x y) ^f(x) and f(x y) <f(y), so

f(x y)*Ax)'f(y).

By 1.2(iii) and/ 2 = id we get

Ax)-Ay) *A* Af(y))) =f(* y)

Lemma 1.29 If f: A—> A is self-conjugate and f2 = /, then f(x) ^ x for all

xeA.

Proof: Let b = x - f(x). By 1.1, 1.3, and hypothesis f(x) b = 0, so

/(/(*)) & = 0 ̂ / W •/(&) = f(b) = 0.

Hence, by 1.5, b = 0.

Theorem 1.30 # / : A—> A, then the following are equivalent:

(i) X0) = 0,Ax) > x, and f{x ./( y)) = f(x) f(y) for all x,yeA.
(ii) f is self-conjugate, and f2 = f.

Proof: (i) implies (ii). f(x) ^x implies /(I) = 1. Substituting 1 for x in the
equation in (i) we get

Afiy)) = /(i -Ay)) = /(D -Ay) = Ay) for an y e A.

Since x^f(x) and/(/W) =f(x),

y -Ax) *f(χ) -f(y) = f(χ - fifty))) = fix -f(y)) for ail χ,yeA.

Hence, by 1.2(iii),/is self-conjugate.

(ii) implies (i). Additivity follows from 1.2(ii) and x^fix) by 1.29. Let
b =fiχ) .f(y)9 then b *?/(#) and b^fiy). By 1.3 and 1.27

fib)<fifix))=ftx)

and

fW*Af(y))=Ay).
Hence f(b) =f(f(x) f(y)) ^f(x) f(y). Equality follows by 1.29, so we obtain

(l) f(χ) f(y)=f(f(χ) f(y)).

Again by 1.29, x f(y) «/(*) f(y), so by (1)

f(x -fly)) *flf{x) -fly)) = fly) -flx).
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On the other hand, 1.2(iii) and (ii) yield

Ax) f(y) *Aχ Af(y))) =A*-Ay)).

These two inequalities finish the proof.

The class of self-conjugate functions described in 1.30 is important in
the field of algebraic logic. Any function on a BA which attempts to express
an existential quantifier on a Boolean algebra of formulas must satisfy
1.30(ii), since these conditions translate to the valid formulas

(3xφ)* ψ <-^φ Λ (3xψ) and 3x{3xφ)<r^> 3xφ.

Lemma 1.31 Iff: A —> A and g: A-+ A are self-conjugate, then the following
are equivalent:

(i) fog = gof
(ii) fog is self-conjugate.

Proof: (i) implies (ii). By 1.1 and (i)

f(g(x))my = 0*->g(f(x))-y = 0*^>f(x) g(y) = 0<^f(g(y))'X = 0 for all x, ye A.

Hence, by 1.1,/o^ is self-conjugate.

(ii) implies (i). Again by 1.1

f(g(x)) - y = 0<-»Ay) -g(x) = 0<^g(f(y)) x = 0 for all x,yeA.

This states that fog and gof are conjugate functions, but then, by (ii) and
the fact that conjugate functions are unique (Theorem 1.13 in [3]),fog=gof.

Now using 1.30 and 1.31 we can obtain an equivalent, independent axiom
system for diagonal free cylindric algebras using the notion of self-
conjugacy. Recall the following definition, cf. [2], p. 168, Definition 1.19:

Definition 1.32: A diagonal free cylindric algebra of dimension α, where a
is an ordinal number, is an algebraic structure

31 = (A, +, , -, 0, l,cκ)κ<α

where A is an arbitrary set closed under the binary operations + and •, the
unary operation -, and the unary operation cκ for K = 1, 2, 3, . . ., and
containing constants 0 and 1 which satisfies the following postulates (for all
K, λ < a and x, ye A):

(Co) (A, +, ., - , 0 , 1) i s a BA

( d ) Cκ(0) = 0

(C2) x ^ cκ(x)
(C3) cκ(x - cκ(y)) = cκ(x) cκ(y)

(C4) Cκ(cχW) = c λ (cκW).

Theorem 1.33 A structure

* = (A, +> •> -> 0, 1, cX<a

is a diagonal free cylindric algebra of dimensions a if, and only if, %
satisfies the following conditions:
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(Po) (A, +, , -, 0, 1) is a BA
(Pi) Cκ c\is self-conjugate for every K, λ< a
(P2) CK = cκfor every K < a.

Proof: (Po) and (Px) imply cκ is self-conjugate for every K < a. Then the
result follows from 1.30 and 1.31.

2 Structures with self-conjugate functions In this section we generalize
the notion of self-conjugate function to functions of n variables. Let

* = <A, +, , -,0, 1>

be a fixed BA.

Definition 2.1: Let /: An —* A be an additive function. By the ith projection
of /, denoted /', we mean the unary function /*: A —> A obtained by replacing
all the variables of/, except the zth, by the constant 1.

Definition 2.2: Let /: An-* A be an additive function. We say / is totally
self-conjugate if /(I, 1, . . ., 1) = 1 and, for each 1 ̂  i < n, fι is self-
conjugate.

For the case n = 1, 2.2 reduces to the original definition of self-
conjugate with the additional condition that/(I) = 1.

Definition 2.3: Let

* = < A , + , , -,0, l,/ ε> ε < β

be a BA with operators. SU is called a self-conjugate BA (SBA) if each
non-constant function/ε is totally self-conjugate.

Definition 2.4: An SBA

* = <A, +, , ", 0, l,/ε>ε<β

is called discrete if, for every non-constant/ε: A
n —* A,

n

f(xi9 X2, •> χn) = i_l Xi for all xe A.

Theorem 2.5 Iff: An -> A is totally self-conjugate, f(a, c) ̂  a, andf(a, c) ̂  a
for a e A, ceAn~1, then a -f(x, c) =f(a'X, c) for all xeA.

Proof: By 2.2 and the remark following Theorem 2.18 in [l], p. 356.

Now we let

% = (A, +, , -, 0, l,/ ε, cδ>ε<α#δ<j3

be a fixed SBA in which/ε is totally self-conjugate, for each ε < α, and c§ is
constant, for each 5 < β. We let / denote an arbitrary fε and fι the ith
projection. Also, we let nz denote the rank of/ε.

Definition 2.6: An element a, ae A, is said to be an ideal element if /ε*(<z) = a
for each ε < a, 1 *£ i ^ nε.
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Theorem 2.7 If a is an ideal element, aeA, then a-f(xι,x2, . . ,xn) =
f(a <xl9 a x2, . . ., a -xn) for all xie A.

Proof:_ By 1.6 f\a) = a and/H?) = «, so by additivity/(α, χ29 x3, . . ., xn) < a
and/(α, x2, x3, . . ., xn) ̂  a for all x2, x3, . . ., xn e A. Hence 2.6 yields

a-f(xl9 x29 . . ., xn) =f(a'Xl9 x29 . . ., xn) for all Xi e A.

Repeating this for each argument completes the proof.

Theorem 2.8 If a and b are ideal elements, then

(i) ~a is an ideal element,
(ii) a + b is an ideal element,
(iii) « b is an ideal element,
(iv) 0 and 1 are ideals elements.

Proof: (i). By 2.2, 2.6, and 1.5.

(ii) By 2.2, 2.6, and additivity.
(iii) By 1.8 and 2.6,

b a = b-f\a) =fί(b a).

(iv) 0 is an ideal element by 1.2(iii) and 1 by 2.2.

Now we show that the set of ideal elements is closed under the opera-
tions / ε . Note that if / is an ra-ary totally self-conjugate function, then the
function / ' obtained from / by replacing m < n of the arguments by 1 is
totally self-conjugate. Moreover, ideal elements of/act as ideal elements
of/'.

Theorem 2.9 If g: An -* A is totally self-conjugate and alf a2, . . ., an act as
ideal elements for g (that is, g\aj) = aj for i, j < n), then

n

g(au a2, . . ., an) = i i α, .

Proof: By induction on the number of variables of g. If n= 1, trivial.
Assume 2.9 holds for n = k - 1 variables. Let g be a totally self-conjugate
function of k variables, bl9 b2, . . ., bk ideal elements of g. By induction and
previous remark

k-l

(1) gV>i,b2, . . .,bk_l9 D = Π δ /

By 2.2

g(blf b2, . . ., bk.19 bk) <g*(bύ = h

and

g(bu b2, . . ., bk_l9 Tk) ^gk(h) = Tk.

So, by 2.5 and (1),
k-l

b ' Π bi = bk-g(bl9 b29 . . ., bk_l9 1) = g{bu b2, . . ., bk)



SELF-CONJUGATE FUNCTIONS ON BOOLEAN ALGEBRAS 511

Theorem 2.10 If

51 = (A, +, , -, 0, l,/ ε> ε < α

is an SBA and eachfε is non-constant, then

51' = </,+, , - , 0 , l , / ε > ε < β

is a disrete SBA, where I is the set of ideal elements o/5f.

Proof: By 2.4, 2.8, and 2.9.

Definition 2.11: Let 51 be an SBA. Let ae A and B be the set of xe A such
that x ^ a. Then the system

(B, +, , -', 0, α,/ ε, cδ.tf) ε < a > δ < / 3

where -' denotes complementation with respect to a, will be denoted 5l(#).

Theorem 2.12 If 51 is an SBA and a is an ideal element, aeA, then%{a) is
an SBA and φ: A -* B defined by

φ(x) = a x for all x eA

map 51 homomorphically onto 51 (a).

Proof: By Boolean algebra it is known that φ maps (A, +, , -, 0, 1)
homomorphically onto (B, +, , -', 0, a). By 2.7

φ(f(xu . . .,#»)) = a •/(*!, . . ., xn) = f(a-xu . . .,fl #w) = f(φ(xi), . . ,φ(xn))

Clearly <ρ(cδ) = eg -a. The total self-conjugacy of/follows from 1.9.

Definition 2.13: An algebra 51 = (A, gε)ε<0[ is simple if \A\> 1 and every
non-constant homomorphism on 3ί is an isomorphism.

For the next result we let

21 = (A, +, , -, 0, l,/, , cδ> f.<A#δ</3fA<6J

be an SBA such that 51 is a member of an equational class. Theorem 2.15
is a generalization of the result presented in [3] for relation algebras, and
follows the same argument.

Definition 2.14: Φ(x) = f\{f\{ . . . (fϊHfl) . . . (/2

W2(. . . (ffr'W) . . .) for
every x eA.

Theorem 2.15 If fl ff satisfy 1.30(ii) and 1.31(ii) for all it j< k andn< nif

m < m, , then the following are equivalent:

(i) 51 is simple.
(ii) IAI > 1 αwd 51 has no ideal elements other than 0 and 1.
(iii) For ez er y x * 0, Φ(x) = 1.

Proo/; (i) implies (ii). By 2.12.

(ii) implies (iii). By 1.30 and 1.31, /?(Φ(#)) = Φ(x) for all i< k, n<ni9

hence Φ(x) = 1 for all x Φ 0.
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(iii) implies (i). Let φ: A —• B be a homomorphism mapping $1 onto 9$

» = (B, +, , -, 0, l,/ f , CδX^^g^.

Assume <ρ(#) = φ( y) for #, 3; 6 A. Let z = # 3? + y . #, then <ρ(;z) = 0. By
1.2(iii) and φ being a homomorphism of a member of an equational class
φ(φ(z)) = 0. Hence φ(Φ(z)) Φ 1 = Φ(l), so Φ(s) ^ 1. Hence z - 0 and A: = 3;.

Theorem 2.15 shows that it is essentially the self-conjugacy of the
operations in the systems of algebraic logic which allow us to establish the
simplicity results. From the above we immediately obtain a simplicity
theorem for quantifier algebras, as well as the result for finite dimensional
or, in fact, locally finite cylindric algebras {see Theorem 2.3.14 in [2]). We
obtain the result for relation algebras by using an axiom system which
omits converse v as an undefined operation (see p. 354 in [1]).
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