SEMANTICS FOR S4.1.2

DOLPH ULRICH

Sobociński's modal system S 4.1 is obtained [8] by adding

N1 LCLCLCpLppCMLpp

to a Gödel-style base for $S 4$, and Zeman's S 4.04 can be gotten (see [1]) by using

L2 CpLCMLpp

instead. If both additions are made together, the system S 4.1 .2 of Sobociński's [9] results. Semantics for the former systems are available in [7] and [1], respectively; the aim of the present note is to provide them for S4.1.2 as well. Familiarity with modal semantics and Henkin-style completeness proofs in the approximate manner of [4] is presupposed.
Lemma 1 The theorems of S 4.1 .2 are valid in each model $\langle W, R, V\rangle$ wherein R is reflexive, transitive and satisfies

$$
\begin{equation*}
\forall x \forall y \forall z \forall z^{\prime}\left(\left(x R y . y R z . x R z^{\prime}\right) \rightarrow\left(z^{\prime} R y \vee z=y \vee y=x\right)\right) \tag{a}
\end{equation*}
$$

Proof: Since, as is well-known, reflexivity and transitivity ensure validation of S4's axioms, and detachment and necessitation preserve validity in any case, it is sufficient to show that neither L2 nor N1 can fail in models of the sort specified in the Lemma. And for $L 2$ we have only to note that identification of z and z^{\prime} in (a) delivers, for reflexive, transitive models,

$$
\begin{equation*}
\forall x \forall y \forall z((x R y \cdot y R z) \rightarrow(z R y \vee y=x)) \tag{b}
\end{equation*}
$$

a version of Goldblatt's S4.04 condition ([1], p. 393).
So suppose $\mathbf{N} 1$ fails in some model $\langle W, R, V\rangle$ of the above sort. Then for some $x \in W, V(L C L C p L p p, x)=V(M L p, x)=\mathbf{T}$ but $V(p, x)=\mathbf{F}$. Since $V(L C p L p, x)=\mathbf{F}$, then, we must have y in W such that $x R y, V(p, y)=\mathbf{T}$ and $V(L p, y)=\mathrm{F}$. The latter requires existence of at least one z in W for which $y R z$ and $V(p, z)=\mathrm{F}$; and since we had, earlier, $V(M L p, x)=\mathrm{T}$, we may also find z^{\prime} in W such that $x R z^{\prime}$ and $V\left(L p, z^{\prime}\right)=\mathrm{T}$. Were R as in the statement of the Lemma, then since $x R y, y R z$ and $x R z^{\prime}$ we should have to have,
according to (a), either $z^{\prime} R y, z=y$ or $y=x$. The former is ruled out, however, because $V\left(L p, z^{\prime}\right)=\mathbf{T}$ but $V(p, y)=\mathbf{F}$, and the latter two are impossible since $V(p, z) \neq V(p, y)$ and $V(p, y) \neq V(p, x)$.
Lemma 2 The relation R of S4.1.2's canonical model $\langle W, R, V\rangle$ is reflexive, transitive and satisfies (a).

Proof: Since S4.1.2 extends S4.04, its canonical model $\langle W, R, V\rangle$ is known from [1] to be one wherein R is reflexive, transitive and satisfies (b). To establish that (a) is satisfied as well, suppose that for some x, y, z and z^{\prime} in W we have $x R y, y R z, x R z^{\prime}, z^{\prime} \not \subset y, z \neq y$ and $y \neq x$. There must consequently exist wffs, say q, r and s, such that $L q \in z^{\prime}, q \notin y, s \in z, s \notin y, r \in x$ and $r \notin y$. We have r and hence AAqrs in x, from which it follows by way of L2 that LCMLAAqrsAAqrs ϵx. Moreover, since $L q$ and so LAAqrs are in z^{\prime}, MLAAqrs $\in x$ and S4.01's characteristic axiom CMLpLCLMpMLp then puts LCLMAAqrsMLAAqrs in x as well. We now have CMLAAqrsAAqrs and CLMAAqrsMLAAqrs in y, and thus CLMAAqrsAAqrs $\in y$. Since AAqrs $\notin y$, LMAAqrs $\& y$, so NLMAAqrs $\in y$, that is, MLNAAqrs $\in y$. There must then exist some $w \in W$ with $y R w$ and LNAAqrs ϵw. Since $x R y$ and $y R w$, it follows by (b) that $w R y$ or $y=x$. But the former is impossible on pain of LNAAqrs then being in y with $N s$ consequently in z; and the latter is rejected by our hypothesis that $y \neq x$.

The lemmas combine to give us
Theorem 3 The theorems of S4.1.2 are precisely the wffs valid in each model $\langle W, R, V\rangle$ wherein R is reflexive, transitive and satisfies condition (a).

Indeed, since we required for the completeness part only L2 and the S4.01 axiom

$\Gamma 2 C M L p L C L M p M L p$,

we have also
Theorem 4 To obtain S4.1.2, it suffices to add L2 to S4.01's axiom set, a result known already from [2].

Closer inspection of the proof of Lemma 2 suggests, however, a more direct way of obtaining the system under study:

Theorem 5 To obtain S4.1.2, it suffices to add CpCMLpLCMpp to S4's axiom set.

It is readily verified that the formula in question is valid in the models shown above to characterize S4.1.2; for the rest, put AAqrs for p in this formula and run the completeness proof along the lines of that given for Lemma 2.

In addition, Theorem 3's semantic characterization of S4.1.2 allows us to establish

Lemma 6 S4.1.2 is strongly Halldén-incomplete (in the sense of [5]), for ALCMLpCpLpLCqLCMqq is among its theorems.
Proof: Otherwise, there would exist an S4.1.2 model $\langle W, R, V\rangle$ and x in W for which $V(L C M L p C p L p, x)=\mathbf{F}$ and $V(L C q L C M q q, x)=\mathbf{F}$. The first of these assignments requires existence of $y \in W$ such that $x R y, V(M L p, y)=$ $V(p, y)=\mathbf{T}$ and $V(L p, y)=\mathbf{F}$ and so z and z^{\prime} such that $y R z^{\prime}, V\left(L p, z^{\prime}\right)=\mathbf{T}$, $y R z$ and $V(p, z)=$ F. Since $x R y, y R z$ and, by transitivity, $x R z^{\prime}$, (a) assures us that $z^{\prime} R y$ or $z=y$ or $y=x$. The first of these alternatives can be dismissed since $V\left(L p, z^{\prime}\right)=\mathbf{T}$ but $V(p, z)=\mathbf{F}$, and the second since $V(p, z)=\mathbf{F}$ but $V(p, y)=\mathbf{T}$. So it must be that $y=x$, whereupon $V(p, x)=\mathbf{T}$.

Since $V(L C q L C M q q, x)=F$, we must have u, v and w in W with $x R u$, $V(q, u)=\mathbf{T}, u R v, V(q, v)=\mathbf{F}, v R w$ and $V(q, w)=\mathbf{T}$. Because $x R u, u R v$ and $x R z^{\prime}$, it follows from (a) that $z^{\prime} R u$ or $v=u$ or $u=x$. The middle alternative is impossible since $V(q, v) \neq V(q, u)$, leaving us with two cases to consider.

Case 1: $z^{\prime} R u$. Because $x R v, u R v$ and $x R z$, either $z R u$ or $v=u$ or $u=x$. However, $v=u$ is ruled out as before, and $u=x$ is also impossible lest (transitivity again) $z^{\prime} R x$ and so $z^{\prime} R z$. Consequently, $z R u$. But now we have $x R z, z R u$ and $x R u$, whence $u R z, u=z$ or $z=x$. In the first two cases we would be led, again, to $z^{\prime} R z$; and $z=x$ is obviously impossible since $V(p, z) \neq V(p, x)$.

Case 2: $u=x$. Now $x R u, v R w$ and $x R z^{\prime}$, so $z^{\prime} R v, w=v$ or $v=u$. Only $z^{\prime} R v$ need be considered, since q-considerations rule out the latter two. But $x R v, v R w$ and $x R z$, so $z R v, w=v$ or $v=x$. Again, the q-situation rules out all but $z R v$. Now, however, we have $x R z, z R v$ and $x R z^{\prime}$, and so either $z^{\prime} R z$ or $v=z$ or $z=x$, all equally impossible: in the first two cases we should have $z^{\prime} R z$, and in the latter have both $V(p, x)=\mathbf{T}$ and $V(p, x)=\mathbf{F}$.

The proof complete, we may now note that the formula of Lemma 6 is the disjunction of strict versions of the characteristic axioms of S4.4 and K1.2. Via Halldén-style arguments familiar from [3] and [6], it follows that each formula provable in both S4.4 and K1.2 is provable in S4.1.2; and since the converse is a trivial consequence of the latter's inclusion in both S4.4 and K1.2, we have not only an additional axiomatization of S4.1.2 but a more interesting

Corollary The set of theorems of S4.1.2 is the intersection of the theorem sets of S4.4 and K1.2.

So $\mathbf{S 4 . 1 . 2}=\mathrm{S} 4+\mathbf{N} 1+\mathbf{L} 2=\mathrm{S} 4.01+\mathbf{L 2}=\mathrm{S} 4+C p C M L p L C M p p=\mathrm{S} 4+$ $A L C M L p C p L p L C q L C M q q=S 4.4 \cap \mathrm{~K} 1.2$; and its decidability follows from that of S4.4 and K1.2 (obtained, for example, in [10] and [7] respectively).

Remark: This work on condition (a) has naturally suggested investigation of the corresponding conditions

$$
\begin{equation*}
\forall x \forall y \forall z \forall z^{\prime}\left(\left(x R y \cdot y R z \cdot x R z^{\prime}\right) \rightarrow\left(z^{\prime} R x \vee z=y \vee y=x\right)\right) \tag{c}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall x \forall y \forall z \forall z^{\prime}\left(\left(x R y \cdot y R z \cdot x R z^{\prime}\right) \rightarrow\left(z^{\prime} R z \vee z=y \vee y=x\right)\right) \tag{d}
\end{equation*}
$$

in an S4 setting. Thus in the presence of reflexivity and transitivity, (c) is readily shown to characterize the modal system $Z 2$. On the other hand, (d) generates a new extension of S4, one properly containing S 4.1 and its subsystems, properly included in S4.1.2 and its extensions, and independent of the other known extensions of $S 4$ tabulated in [2]. It may be axiomatized by adding to S 4 all wffs of the form $C N p C M L p L C p L p$.

REFERENCES

[1] Goldblatt, R. I., "Concerning the proper axiom for S 4.04 and some related systems," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 392-396.
[2] Goldblatt, R. I., "A new extension of S4," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 567-574.
[3] Goldblatt, R. I., "A Study of Z modal systems," Notre Dame Journal of Formal Logic, vol. XV (1974), pp. 289-294.
[4] Hughes, G. E., and M. J. Cresswell, An Introduction to Modal Logic, Methuen and Co., Ltd., London (1968).
[5] Lemmon, E. J., "A note on Halldén-incompleteness," Notre Dame Journal of Formal Logic, vol. VII (1966), pp. 296-300.
[6] Schumm, George F., "K and Z," Notre Dame Journal of Formal Logic, vol. XV (1974), pp. 295-297.
[7] Segerberg, K., An Essay in Classical Modal Logic, Filosofiska Studier, Uppsala, 1971.
[8] Sobociński, B., "Modal system S4.4," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 305-312.
[9] Sobociński, B., 'Note on Zeman's modal system S4.04," Notre Dame Journal of Formal Logic, vol. XI (1970), pp. 383-384.
[10] Zeman, J., "A study of some systems in the neighborhood of S4.4," Notre Dame Journal of Formal Logic, vol. XII (1971), pp. 341-357.

Purdue University
West Lafayette, Indiana

