Notre Dame Journal of Formal Logic
Volume XIX, Number 3, July 1978
NDJFAM

PROOFS OF THE NORMALIZATION AND CHURCH-ROSSER THEOREMS FOR THE TYPED λ-CALCULUS

GARREL POTTINGER

Introduction This paper contains new proofs of the normalization theorem and Church-Rosser theorem for the typed λ-calculus. Both results are obtained as corollaries of a theorem which shows that a certain kind of reduction sequence must always contain a normal term. ${ }^{1}$ The proof of this theorem proceeds via an assignment of ordinals. A knowledge of ordinal arithmetic sufficient for understanding this assignment ${ }^{2}$ will be presupposed, and detailed arguments for various assertions about alphabetic change of bound variables will not be given. Apart from these matters the paper is self-contained.
1 The calculus Terms are built up from variables x, y, z, x_{1}, \ldots, the operator λ, and the grouping indicators) and (according to the following rules. ${ }^{3}$

1. x is a term.
2. If t and u are terms, then ($t u$) is a term.
3. If t is a term, then ($\lambda x t$) is a term.

Henceforth t, u, v, t_{1}, \ldots are to be terms. Omitted parentheses are to be restored according to the convention of association to the left, and a dot is to be construed as a left parenthesis which has its mate as far to the right as possible. The formulas of the propositional calculus which can be built up from propositional parameters $p, q, r, s, p_{1}, \ldots$, the connective \supset, and the grouping indicators will be used as type symbols. In what follows A, B, C, A_{1}, \ldots are to be type symbols. ' \equiv ' will be used to express identity. τ_{0} is to be a function which maps the set of variables onto the set

[^0]of type symbols and satisfies the condition that for every $A,\left\{x: \tau_{0}(x) \equiv A\right\}$ is denumerable. τ is to be the smallest function satisfying the following conditions.

1. For all $x, \tau(x) \equiv \tau_{0}(x)$.
2. For all t, u, A, and B, if $\tau(t) \equiv A \supset B$ and $\tau(u) \equiv A$, then $\tau(t u) \equiv B$.
3. For all x and t, if τ is defined for t, then $\tau(\lambda x t) \equiv \tau(x) \supset \tau(t)$.
t is a typed term iff τ is defined for t. From now on t, u, v, t_{1}, \ldots are to be typed terms.

Let $*^{*}$ * be an occurrence of x in t. *x* is bound iff $*^{*} x^{*}$ falls within a part of t of the form $\lambda x u$. Otherwise, $*^{*}$ is free. x is free in t iff there is a free occurrence of x in t, and x is bound in t iff there is a bound occurrence of x in t. u is free for x in t iff there is no y such that y is free in u and some free occurrence of x in t falls within a part of t of the form $\lambda y v$. [$u / x / t$] is to be the result of replacing every free occurrence of x in t by an occurrence of u. It is easy to show that if $\tau(u) \equiv \tau(x)$, then $[u / x / t]$ is a typed term and $\tau([u / x / t]) \equiv \tau(t)$.
$t={ }_{1 \alpha} u$ iff there is a term $\lambda x v$ and a variable y such that (1) y is free for x in v, (2) y is not free in v, and (3) u is a result of replacing an occurrence of $\lambda x v$ in t by an occurrence of $\lambda y[y / x / v] . t=\alpha u$ iff there exist $v_{1}, \ldots, v_{n}(1 \leqslant n)$ such that $v_{1} \equiv t, v_{n} \equiv u$, and for all $i<n, v_{i}={ }_{1 \alpha} v_{i+1}$.
($\lambda x t) u$ is a β redex, and if x is not free in t, then $\lambda x . t x$ is an η redex. If u is free for x in t, then ($\lambda x t) u$ is a contractible redex and if λx. $t x$ is an η redex, then $\lambda x . t x$ is a contractible redex. If $(\lambda x t) u$ is a contractible redex, then $[u / x / t]$ is the contractum of $(\lambda x t) u$, and if $\lambda x . t x$ is a contractible redex, then t is the contractum of $\lambda x . t x$.
$t>u$ iff u is a result of replacing an occurrence in t of a contractible redex by an occurrence of the contractum of that redex. If $t>u$, then the redex occurrence replaced in passing from t to u is contracted in passing from t to u. A reduction is a sequence of terms $v_{1}, \ldots, v_{n}(1 \leqslant n)$ such that for all $i<n, v_{i}=\alpha v_{i+1}$ or $v_{i}>v_{i+1}$. A reduction of t to u is a reduction v_{1}, \ldots, v_{n} such that $v_{1} \equiv t$ and $v_{n} \equiv u . t \geqslant u$ iff there is a reduction of t to u. ' \geqslant ' is read 'reduces to'. $t=u$ iff there exist $v_{1}, \ldots, v_{n}(1 \leqslant n)$ such that $v_{1} \equiv t, v_{n} \equiv u$, and for all $i<n, v_{i} \geqslant v_{i+1}$ or $v_{i+1} \geqslant v_{i}$. t is normal iff no redex occurs in t.

2 Normalization Define $c(t)$ as follows.
Case 1: Let $t \equiv x$. Then $\mathrm{c}(t) \equiv 0$.
Case 2: Let $t \equiv t_{1} t_{2}$. Then $\mathrm{c}(t) \equiv \mathrm{c}\left(t_{1}\right)+\mathrm{c}\left(t_{2}\right)+1$.
Case 3: Let $t \equiv \lambda x t_{1}$. Then $\mathrm{c}(t) \equiv \mathrm{c}\left(t_{1}\right)+1$.
$c(A)$ is to be the number of occurrences of \supset in A.
Let t be a redex. $G_{1}(t)$ is defined as follows.

Case 1: t is an η redex. Then $\mathcal{G}_{1}(t) \equiv 0$.
Case 2: t is a β redex. Let $t \equiv\left(\lambda x t_{1}\right) t_{2}$. Then $\mathcal{G}_{1}(t) \equiv c\left(\tau\left(\lambda x t_{1}\right)\right)$.
t is a predicative redex iff either t is an η redex or $t \equiv\left(\lambda x t_{1}\right) t_{2}$ and for every redex u, u occurs in t_{2} only if $G_{1}(u)<G_{1}(t)$.
$t>_{\mathrm{p}} u$ iff $t>u$ and u is a result of replacing an occurrence in t of a predicative redex by an occurrence of the contractum of that redex.
v_{1}, \ldots, v_{n} is a predicative reduction iff v_{1}, \ldots, v_{n} is a reduction and for all $i<n$, if $v_{i}>v_{i+1}$, then $v_{i}>_{\mathrm{p}} v_{i+1}$. A predicative reduction of t to u is a reduction of t to u which is a predicative reduction. $t \geqslant \mathrm{p} u$ iff there is a predicative reduction of t to u.

Where $1 \leqslant n$, let $\mathcal{R}(n, t)$ be the number of occurrences of redexes u in t such that $G_{1}(u) \equiv n$. Consider a term t, let $0<n_{1}<\ldots<n_{m}$ be the natural numbers such that $\mathcal{R}\left(n_{1}, t\right), \ldots, \mathcal{R}\left(n_{m}, t\right)$ are not 0 , and define:

$$
\mathcal{G}(t) \equiv\left\{\begin{array}{l}
\omega^{n_{m}} \mathcal{R}\left(n_{m}, t\right)+\ldots+\omega^{n_{1}} \mathcal{R}\left(n_{1}, t\right)+c(t), \text { if } m \not \equiv 0 \\
0, \text { if } m \equiv 0
\end{array}\right.
$$

Lemma 2.1 If $t>_{\mathrm{P}} u$, then $\boldsymbol{G}(u)<\boldsymbol{G}(t)$.
Proof: Let $*^{*} *$ be the redex occurrence replaced in passing from t to u, and let ${ }^{2} v^{\prime *}$ be the term occurrence which replaces ${ }^{*} v *$.
Case 1: v is an η redex. Then $\mathrm{c}(u)<\mathrm{c}(t)$. Let $v \equiv \lambda x . v^{\prime} x$, let $\tau\left(v^{\prime}\right) \equiv A \supset B$, and let $c(A \supset B) \equiv n$. According to the definition of $\tau, \tau\left(\lambda x . v^{\prime} x\right) \equiv \tau\left(v^{\prime}\right)$. Hence, $\mathcal{R}(n, u) \leqslant \mathcal{R}(n, t)$ and for $1 \leqslant m \not \equiv n, \mathcal{R}(m, t) \equiv \mathcal{R}(m, u)$. It follows that ${ }^{4}$ $\boldsymbol{G}(u)<\boldsymbol{G}(t)$.
Case 2: v is a β redex. Let $v \equiv\left(\lambda x v_{1}\right) v_{2}$, let $\tau\left(\lambda x v_{1}\right) \equiv A \supset B$, and let $\mathrm{c}(A \supset B) \equiv n$. Since $\mathrm{c}(A)<n, \mathrm{c}(B)<n$, and v is a predicative redex, $\mathcal{R}(n, u) \equiv \mathcal{R}(n, t)-1<\mathcal{R}(n, t)$ and for all $m, n<m$ only if $\mathcal{R}(m, u) \equiv \mathcal{R}(m, t)$. It follows that ${ }^{4} G(u)<\mathcal{G}^{(t)}$.

Let $\sigma \equiv\left\langle t_{1}, t_{2}, \ldots\right\rangle$ be an infinite sequence of terms. σ is a reduction sequence (for t_{1}) iff for all $i, t_{i}>t_{i+1}$ or $t_{i}={ }_{\alpha} t_{i+1} . \sigma$ is a predicative reduction sequence iff for all $i, t_{i}>_{\mathrm{p}} t_{i+1}$ or $t_{i}=_{\alpha} t_{i+1} . \sigma$ is a complete reduction sequence iff σ is a reduction sequence and for all i, if t_{i} is not normal, then there is a j such that $i<j$ and $t_{j}>t_{j+1}$. Henceforth, σ, σ_{1}, \ldots are to be reduction sequences.

For $\sigma \equiv\left\langle t_{1}, t_{2}, \ldots\right\rangle$ define:

$$
\mathcal{L}(\sigma) \equiv \text { the cardinality of }\left\{i: t_{i}>t_{i+1}\right\}
$$

Theorem 2.2 If σ is a complete, predicative reduction sequence, then $\mathcal{L}(\sigma)$ is finite.
4. To see this, one must know that if $\alpha_{1} \equiv \omega^{\beta_{n}} i_{n}+\ldots+\omega^{\beta_{1}} i_{1}+i_{0}$ and $\alpha_{2} \equiv \omega^{\bar{\beta}_{n}} j_{j_{n}}+\ldots+$ $\omega^{\beta_{1} j_{1}+j_{0}}$, where $0<\beta_{1}<\ldots<\beta_{n}$, then, where k is the greatest number such that $i_{k} \neq j_{k}$, $\alpha_{1}<\alpha_{2}$ if $i_{k}<j_{k}$. This can be proved from Lemma 9.1.1 of Rubin [1] and the monotonicity laws for + and $<$.

Proof: Theorem 2.2 follows from Lemma 2.1 via transfinite induction on $\boldsymbol{G}(t)$ (i.e., transfinite induction up to ω^{ω}).
Corollary 2.3 [Normalization theorem] There is a normal u such that $t \geqslant_{\mathrm{p}} u$; a fortiori there is a nor̀mal u such that $t \geqslant u$.

Proof: Evidently a complete, predicative reduction sequence for t exists. By Theorem 2.2 such a sequence must contain an appropriate u.
3 The Church-Rosser theorem Define:

$$
[t] \equiv\left\{u: t={ }_{\alpha} u\right\}
$$

Consider the sequence $\Sigma \equiv\left\langle\left[t_{1}\right],\left[t_{2}\right], \ldots\right\rangle . \Sigma$ is a reduction sequence (for $\left[t_{1}\right]$) iff for all i, t_{i} is the last item of Σ or there exist $t_{i}^{\prime} \in\left[t_{i}\right]$ and $t_{i+1} \in\left[t_{i+1}\right]$ such that $t_{i}^{\prime}>t_{i+1^{\prime}}$. Σ is a predicative reduction sequence iff for all i, either $\left[t_{i}\right]$ is the last item of Σ or there exist $t_{i}^{\prime} \in\left[t_{i}\right]$ and $t_{i+1} \prime \in\left[t_{i+1}\right]$ such that $t_{i}^{\prime} \gg_{\mathrm{p}} t_{i+1}$. Henceforth $\Sigma, \Sigma_{1}, \ldots$ are to be reduction sequences of this sort. Define:

$$
\hat{t} \equiv\{\Sigma: \Sigma \text { is a predicative reduction sequence for }[t]\}
$$

Lemma $3.1 \hat{t}$ is finite.
Proof: Consider \hat{t} as a tree, and apply Theorem 2.2 and König's lemma.
Define:

$$
\mathcal{L}(t) \equiv \text { the maximum of the lengths of members of } \hat{t}
$$

Lemma 3.2 If $t \geqslant_{\mathrm{p}} u_{1}, t \geqslant_{\mathrm{p}} u_{2}$, and u_{1} and u_{2} are normal, then either t is normal or there exist t_{1}, v_{1}, and v_{2} such that $t={ }_{\alpha} t_{1}, t_{1}>_{\mathrm{p}} v_{1} \geqslant_{\mathrm{p}} u_{1}$ and $t_{1}>_{\mathrm{p}} v_{2} \geqslant \mathrm{p} u_{2}$.

Proof: Suppose t is not normal, and let $t_{1}^{1}, \ldots, t_{n_{1}}^{1}$ and $t_{1}^{2}, \ldots, t_{n_{2}}^{2}$ be predicative reductions of t to u_{1} and u_{2}, respectively. Since t is not normal and u_{1} and u_{2} are normal, there exist i_{1} and i_{2} such that $t_{i_{1}}^{1} \gg_{\mathrm{p}} t_{i_{1}+1}^{1}$ and $t_{i_{2}}^{2}>_{\mathrm{P}} t_{i_{2}+1}^{2}$. Consider the least such i_{1} and i_{2}. $t=\alpha t_{i_{1}}^{1}$ and $t={ }_{\alpha} t_{i_{2}}^{2}$. It can be shown that $=_{\alpha}$ is symmetric and transitive, so it follows that $t_{i_{1}}^{1}={ }_{\alpha} t_{i_{2}}^{2}$. From this it can be shown that there exist t_{1}, v_{1}, and v_{2} such that $t={ }_{\alpha} t_{1}, t_{1} \gg_{\mathrm{P}} v_{1}=\alpha$ $t_{i_{1}+1}^{1}$, and $t_{1}>_{\mathrm{P}} v_{2}=\alpha t_{i_{2}+1}^{2}$. This suffices.
Lemma 3.3 If $t>_{\mathrm{p}} u_{1}$ and $t>_{\mathrm{p}} u_{2}$, then there is av such that $u_{1} \geqslant_{\mathrm{p}} v$ and $u_{2} \geqslant_{p} v$.

Proof: Let the redex occurrences contracted in passing from t to u_{1} and u_{2} be ${ }^{*} t_{1}{ }^{*}$ and $t_{2}{ }^{*}$, respectively.

Case 1: $* t_{1} *$ and $* t_{2} *$ do not overlap. Let v be the result of contracting the occurrence of t_{2} in u_{1} which corresponds to ${ }^{*} t_{2}{ }^{*} . v$ is also the result of contracting the occurrence of t_{1} in u_{2} which corresponds to $t_{1}{ }^{*}$, so $u_{1}>_{\mathrm{p}} v$ and $u_{2}>_{\mathrm{p}} v$. This suffices.

Case 2: ${ }^{*} t_{1} *$ and $t_{2} *$ overlap.

Case 2.1: $* t_{1} *$ and $* t_{2}{ }^{*}$ coincide. Then $u_{1} \equiv u_{2}$. Let $v \equiv u_{1} . u_{1} \geqslant_{\mathrm{p}} u_{1} \equiv v$ and $u_{2} \geqslant_{\mathrm{P}} u_{1} \equiv v$, so $u_{1} \geqslant_{\mathrm{P}} v$ and $u_{2} \geqslant_{\mathrm{P}} v$.

Case 2.2: $* t_{1} *$ and $* t_{2} *$ do not coincide. Without loss of generality it may be supposed that $* t_{1} *$ properly contains $* t_{2}{ }^{*}$.

Case 2.2.1: t_{1} is an η redex. Let v be the result of contracting the occurrence of t_{2} in u_{1} corresponding to $* t_{2} * . v$ is also the result of contracting the η redex occurrence in u_{2} which arises from $* t_{1} *$ by contracting $* t_{2} *$. It follows that $u_{1}>_{\mathrm{p}} v$ and $u_{2}>_{\mathrm{p}} v$, which is sufficient.

Case 2.2.2: t_{1} is a β redex. Let $t_{1} \equiv\left(\lambda x t^{1}\right) t^{2}$. The contractum of t_{1} is $\left[t^{2} / x / t^{1}\right]$. Let $*\left[t^{2} / x / t^{1}\right] *$ be the occurrence of $\left[t^{2} / x / t^{1}\right]$ which replaces $* t_{1} *$, let ${ }^{*} \lambda x t^{1} *$ be the left half of $* t_{1}{ }^{*}$, let $* t^{1} *$ be the occurrence of t^{1} which follows the first occurrence of λx in ${ }^{*} \lambda x t^{1} *$, and let $* t^{2} *$ be the right half of $* t_{1} *$.

Case 2.2.2.1: $* t_{2} *$ falls within $* t^{2} *$. Let the occurrences of x in $* t^{1} *$ replaced by occurrences of t^{2} in passing from $* t_{1} *$ to $*\left[t^{2} / x / t^{1}\right] *$ be $*_{x} *_{1}, \ldots,{ }^{*} x_{n}$, and let the occurrences of t^{2} which replace $*_{x} *_{1}, \ldots,{ }^{*} x{ }_{n}$ be $* t^{2} *_{1}, \ldots, * t^{2} *_{n}$. Let $* t_{2} *_{1}, \ldots, t_{2} *_{n}$ be the occurrences of t_{2} in $* t^{2} *_{1}, \ldots, * t^{2} *_{n}$ corresponding to $* t_{2} *$, and let v be the result of contracting $* t_{2}{ }_{1}, \ldots, t_{2}{ }_{n}$. v is also the result of contracting the predicative β redex occurrence in u_{2} which arises from ${ }^{*} t_{1} *$ when $* t_{2} *$ is contracted, so $u_{1} \geqslant_{\mathrm{P}} v$ and $u_{2} \geqslant_{\mathrm{P}} v$.

Case 2.2.2.2: $* t_{2} *$ falls within $* \lambda x t^{1} *$.
Case 2.2.2.2.1: x is not free in t_{2} or $* t_{2} *$ falls within a part of $* t^{1} *$ of the form $\lambda x t^{3}$. Let v be the result of contracting the occurrence of t_{2} in u_{1} which corresponds to $*_{2}{ }_{2} . v$ is also the result of contracting the predicative β redex in u_{2} which arises from $* t_{1} *$ by contracting $* t_{2}{ }^{*}$, so $u_{1} \geqslant_{\mathrm{P}} v$ and $u_{2} \geqslant_{\mathrm{p}} v$.

Case 2.2.2.2.2: x is free in t_{2} and $* t_{2} *$ does not fall within a part of $* t^{1} *$ of the form $\lambda x t^{3}$. Then $* t_{2} *$ is replaced by an occurrence of $\left[t^{2} / x / t_{2}\right]$ in passing from t to u_{1}. Let the occurrence in question be $*\left[t^{2} / x / t_{2}\right] *$.

Case 2.2.2.2.2.1: t_{2} is an η redex. Then so is $*\left[t^{2} / x / t_{2}\right] *$, because t_{1} is contractible. Let v be the result of contracting $*\left[t^{2} / x / t_{2}\right]^{*}$. v is also the result of contracting the predicative β redex which arises from ${ }^{*} t_{1} *$ by contracting $* t_{2}{ }^{*}$, so $u_{1} \geqslant \mathrm{P} v$ and $u_{2} \geqslant \mathrm{P} v$.

Case 2.2.2.2.2.2: t_{2} is a β redex. Let $t_{2} \equiv\left(\lambda y t^{3}\right) t^{4}$. Then $* t_{2} *$ is replaced by a term occurrence $*\left[t^{2} / x / \lambda y t^{3}\right]\left[t^{2} / x / t^{4}\right] *$ in passing from t to u_{1}. Applying Corollary 2.3, let t^{5} be a normal term such that $t^{2} \geqslant p t^{5}$, let t^{6} be a normal term such that $\left[t^{5} / x / t^{4}\right] \geqslant p t^{6}$, and let $\lambda y t^{7}$ be the term which arises from $\left[t^{2} / x / \lambda y t^{3}\right]$ by replacing every occurrence of t^{2} introduced in passing from $\lambda y t^{3}$ to $\left[t^{2} / x / \lambda y t^{3}\right]$ by an occurrence of t^{5}. Let $\lambda y t^{8}$ be such that $\lambda y t^{7}={ }_{\alpha} \lambda y t^{8}$ and $\left(\lambda y t^{8}\right) t^{6}$ is a contractible redex. Because t^{6} is normal, $\left(\lambda y t^{8}\right) t^{6}$ is also a predicative redex.
v is to be the result of replacing $*\left[t^{2} / x / \lambda y t^{3}\right]\left[t^{2} / x / t^{4}\right] *$ by an occurrence of $\left[t^{6} / x / t^{8}\right]$ and replacing all occurrences of t^{2} introduced in passing from t to u_{1} which fall outside $*\left[t^{2} / x / \lambda y t^{3}\right]\left[t^{2} / x / t^{4}\right] *$ by occurrences of t^{5}. It is clear that $u_{1} \geqslant \mathrm{p} v$.

Also, $u_{2} \geqslant_{\mathrm{p}} v$ by first reducing the occurrence of t^{2} corresponding to $* t^{2} *$ to an occurrence of t^{5}, then proceeding via $=_{\alpha}$ as in the passage from $\lambda y t^{7}$ to $\lambda y t^{8}$ and contracting the redex occurrence in the resulting term which arises from ${ }^{*} t_{1}{ }^{*}$, and finally predicatively reducing to occurrences of t^{6} the appropriate occurrences of $\left[t^{5} / x / t^{4}\right]$ in the term so obtained. Hence, $u_{1} \geqslant \mathrm{p} v$ and $u_{2} \geqslant \mathrm{p} v$.

Lemma 3.4 If $t \geqslant_{\mathrm{p}} u_{1}, t \geqslant_{\mathrm{p}} u_{2}$, and u_{1} and u_{2} are normal, then $u_{1}={ }_{\alpha} u_{2}$.
Proof: By induction on $\mathcal{L}(t)$. If t is normal, then $u_{1}={ }_{\alpha} u_{2}$ by the symmetry and transitivity of $=_{\alpha}$, so suppose t is not normal. According to Lemma 3.2 there exist t_{1}, v_{1}, and v_{2} such that $t={ }_{\alpha} t_{1}, t_{1}>_{\mathrm{p}} v_{1} \geqslant_{\mathrm{p}} u_{1}$, and $t_{1}>_{\mathrm{p}} v_{2} \geqslant_{\mathrm{p}} u_{2}$. Consider such t_{1}, v_{1}, and v_{2}. Since $t={ }_{\alpha} t_{1}, \mathcal{L}(t) \equiv \mathcal{L}\left(t_{1}\right)$. Since $t_{1}>_{\mathrm{p}} v_{1}$ and $t_{1}>_{\mathrm{p}} v_{2}, \mathcal{L}\left(v_{1}\right)<\mathcal{L}(t)$ and $\mathcal{L}\left(v_{2}\right)<\mathcal{L}(t)$. By Lemma 3.3 there is a v such that $v_{1} \geqslant_{\mathrm{p}} v$ and $v_{2} \geqslant_{\mathrm{p}} v$. Applying Corollary 2.3 , let v^{\prime} be a normal term such that $v \geqslant_{\mathrm{P}} v^{\prime}$. By Hyp Ind $v^{\prime}={ }_{\alpha} u_{1}$ and $v^{\prime}=\alpha_{\alpha} u_{2}$. Since $={ }_{\alpha}$ is symmetric and transitive, it follows that $u_{1}={ }_{\alpha} u_{2}$.

Lemma 3.5 If t is a contractible redex and u is the contractum of t, then there is a v such that $t \geqslant_{\mathrm{p}} v$ and $u \geqslant_{\mathrm{p}} v$.
Proof: If $t>_{\mathrm{p}} u$ there is nothing to prove, so suppose $t \searrow_{\mathrm{p}} u$. Then t is a β redex which is not predicative. Let $t \equiv\left(\lambda x t_{1}\right) t_{2} . \quad u \equiv\left[t_{2} / x / t_{1}\right]$. Applying Corollary 2.3, let t_{2}^{\prime} be a normal term such that $t_{2} \geqslant_{\mathrm{p}} t_{2}^{\prime}$. Then $\left(\lambda x t_{1}\right) t_{2} \geqslant \mathrm{p}$ $\left(\lambda x t_{1}\right) t_{2}^{\prime}>_{\mathrm{P}}\left[t_{2}^{\prime} / x / t_{1}\right]$, and $u \equiv\left[t_{2} / x / t_{1}\right] \geqslant \mathrm{P}\left[t_{2}^{\prime} / x / t_{1}\right]$. This shows that $\left[t_{2}^{\prime} / x / t_{1}\right]$ is an appropriate v.

Lemma 3.6 If $t>u$, then there is a v such that $t \geqslant_{\mathrm{p}} v$ and $u \geqslant_{\mathrm{p}} v$.
Proof: Immediate from Lemma 3.5.
Lemma 3.7 If $t \geqslant u$ and u is normal, then $t \geqslant \mathrm{p} u$.
Proof: Let t^{1}, . ., t^{n} be a reduction of t to u. By Lemma 3.6 there exist v_{1}, \ldots, v_{n-1} such that $t^{1} \geqslant_{\mathrm{p}} v_{1}$ and $t^{2} \geqslant_{\mathrm{p}} v_{1}, \ldots, t^{n-1} \geqslant_{\mathrm{p}} v_{n-1}$ and $t^{n} \geqslant_{\mathrm{p}} \overline{v_{n-1}}$. Applying Corollary 2.3, let $v_{1}^{\prime}, \ldots, v_{n-1}$, be normal terms to which v_{1}, \ldots, v_{n-1}, respectively, reduce predicatively. Then for all $i(1<i<n), t^{i} \geqslant \mathrm{p}$ v_{i-1} and $t^{i} \geqslant \mathrm{p} v_{i}^{\prime}$. By Lemma 3.4 for all $i(1 \leqslant i<n-1), v_{i}^{\prime}={ }_{\alpha} v_{i+1}$. Also, $u \geqslant_{\mathrm{P}} v_{n-1}$, and u is normal, so $v_{n-1}=_{\alpha} u$ by the symmetry of $=_{\alpha}$. Since $=_{\alpha}$ is transitive, it follows that $v_{1}^{\prime}={ }_{\alpha} u$. Hence, $t \geqslant_{\mathrm{P}} v_{1}^{\prime}={ }_{\alpha} u$. It follows that $t \geqslant_{\mathrm{P}} u$.
Corollary 3.8 [Church-Rosser theorem, first version] If $t \geqslant u_{1}, t \geqslant u_{2}$, and u_{1} and u_{2} are normal, then $u_{1}={ }_{\alpha} u_{2}$.

Proof: Apply Lemmas 3.7 and 3.4.
Corollary 3.9 [Church-Rosser theorem, second version] If $t=u$, then there is a v such that $t \geqslant v$ and $u \geqslant v$.

Proof: Let t_{1}, \ldots, t_{n} be such that $t_{1} \equiv t, t_{n} \equiv u$, and for all $i<n, t_{i} \geqslant t_{i+1}$ or $t_{i+1} \geqslant t_{i}$. Applying Corollary 2.3, let v_{1}, \ldots, v_{n} be normal terms such that for all $i(1 \leqslant i \leqslant n) t_{i} \geqslant v_{i}$. By Corollary 3.8 for all $i(1 \leqslant i<n) v_{i}={ }_{\alpha} v_{i+1}$. It follows that $t \geqslant v_{n}$ and $u \geqslant v_{n}$, which suffices.

REFERENCE

[1] Rubin, J. E., Set Theory for the Mathematician, Holden-Day, San Francisco, 1967.

Carnegie-Mellon University
Pittsburgh, Pennsylvania

[^0]: 1. It is not shown that every reduction sequence must contain a normal term.
 2. Rubin [$1, \mathrm{pp} .175-219$] is enough.
 3. The use/mention conventions of Curry will be employed-all symbols written down are in the metalanguage and the objectlanguage is never displayed.
