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DOUBLY TRANSITIVE SETS

JOHN L. HICKMAN

Since we are interested in linearly ordered sets, we shall adopt the
convention throughout this paper that unless the contrary is stated
explicitly, " set" means "linearly ordered set".* Let S, T be two sets, and
let /: S —» T be an order-preserving map. If / is bijective, then / is called
an "isomorphism" and S, T are said to be similar ("S ^ T"). An
isomorphism f:S^S is called an "automorphism", and the group (under
composition) of all automorphisms of S is denoted by "A(S)'\ We can
impose a partial order on A(S) by setting f^g whenever f(x) ^g(x) for
every xeS, and under this order A(S) becomes a lattice ordered group. A
study of A(S) for general sets S seems to have started with Holland in [l],
although results pertaining to specific classes of S had been obtained
previously.

If for any two x, y e S there exists fe A(S) withf(x) = y, then S is called
"transitive" (or "homogeneous"): furthermore, if there is exactly one
such/, then S is called "uniquely transitive". Okhuma in [4] has shown
that every uniquely transitive set is similar to a subgroup of the additive
group of real numbers. If for all x, y, u, υ e S with x < y and u < v there is
fe A(S) such that f(x) = u and f(y) = υ, then S is called "2-transitive", and
it is with such sets that this paper is concerned. Clearly a 2-transitive set
S is finite if and only if \s\^ 2, and so we exclude the finite case from
future considerations. A 2-transitive set is obviously transitive but not
uniquely transitive. A nonempty subset R of a set S is called a "segment"
of S if for all x, y, z e S with x < y ^ z and x, z e R we have y e R. A segment
R of S is called an "interval" of S if there exist x, z e S such that R has one
of the following forms:

(a) {yeSix <y < z}; (b) {y e S: x ^ y ^ z};
(c) {y e S: x ^ y < z}; (ά) {y e S: x < y ^ z}.

T h e work contained in this paper was done whilst the author was a Research Fellow at the
Australian National University.
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These forms are denoted by "(x,z)", "[x, z]", "[x, z)", and "(x, z]>>
respectively. An interval / i s called "trivial" if 1/1 = 1, and unless the
contrary is stated we shall henceforth use the word "interval" to mean
"nontrivial interval". A segment is said to be bounded if it is contained in
some interval.

One final piece of notation will prove useful before we commence our
study of 2-transitive sets. Let S be any set, and take x, y, u, v e S with
x < y and u < υ. Then we define the set Affv to consist of all those feA(S)
for which f(x)=u and f(y) = υ: moreover, whenever the symbol "All"
appears, it will be tacitly assumed that x < y and u < v.

To classify all countable 2-transitive sets (remembering that we are
excluding the finite cases) is an easy task, since up to similarity there is
only one. This follows at once from our first result.

Theorem 1 Every 2-transitiυe set is dense and without endpoints.

Proof: Let S be a 2-transitive set and suppose that for some x, ye S with
x < y there is no z e S such that x < z < y. Since S is infinite, we may
assume without loss of generality that the set T = {te S; y < t} is infinite,
and so we may choose u, v, we T such that u < v < w. Take fe A*y

w; then we
must have x <f~1(v) < y. This contradiction shows that S is dense.

Now assume that S has a right endpoint w, and take x, y, zeS with
x < y < z < w. Take fe Ax

z

y

w. Since / is order-preserving and y < z, we
must have w = f(y) < f{z), which is absurd. Thus S has no right endpoint,
and in a similar manner we can show that S has no left endpoint.

Corollary Let S be a countable 2-transitive set. Then S is {similar to) the
set of rational numbers under the usual ordering,

A set S is called "symmetric" if S ̂  S*, where S* is of course the
converse set to S. All the familiar 2-transitive sets, such as the set of
rationale, the set of reals, and so on, are symmetric. To show that there
are asymmetric 2-transitive sets, Longyear in [3] defined a specific set //,
and since this set will figure in some of our future arguments, we repeat
the definition here. We recall firstly,however, that if we are given two sets
S, T, then the ordered product S x T i s the set of all ordered pairs (s, t) with
seS, te T, such that (s, t) < (s!, t') whenever either t < V or else t = V and
s < sr. This is sometimes called the "antilexicographic product" and
coincides with general usage but is the converse of the ordered product
defined in [3].

Let Q be the set of rationale. Then we define H to be the ordered
product Q x ωλ, where of course coi is the first uncountable ordinal. In order
to see that H is 2-transitive, we simply note that for any x, y, u, ve //with
x < y and u < v there is some open interval / of H such that x, y, u, v e /,
and that every open interval of H is similar to Q. On the other hand, H
cannot be symmetric as cf(i/) = ωλ and cf(i/*) = ω. [For any set S, the
cofinality cf(S) of S is defined to be the least ordinal a for which there is an
order-preserving map f:a—*S such that for each xeS there is β < a
with x ^ f(β).]
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Longyear in [3] claims that a 2-transitive set S is symmetric if and
only if cf (S) = cf(S*) and S contains some symmetric interval. This claim
is unfortunately false, as is shown by Holland in [2]. We can, however,
salvage the claim to some extent by placing certain conditions upon S.

Theorem 2 (Longyear) Let S be a 2-transitive set, and assume that either
S is continuous or else that cf (S) = ω. Then S is symmetric if and only if
cf (S) = cf (5*) and S contains a symmetric interval.

Proof: Assume that S is symmetric; then obviously cf(S) = cf(S*). Further-
more it is easy to see that there is an order-inverting bisection /: S —> S
such that f = f~\ Define R, T by R = {x e S; x < /(#)}, T= {xeS; f(x) < x};
then S is the ordered union R ύ Jύ T, where J = {xe S; x =/(#)}. Clearly
I j \ ^ 1, and R, T are both infinite. Take any te T such that x < t for some
x e T, and put K = {yeS; f(y) < y < t}. Then K is a symmetric interval of S.

Now assume that S has some symmetric interval K (which we may
clearly assume to be open) and that cf(S) = cf(S*). Let us suppose firstly
that cf(S) = co. Then there is a subset V = {. . ., V-2,

 υ-i> υo> #n V2, . . .} of S
of order-type co* + ω that is both coinitial and cofinal with S. Now it is
obvious that in any 2-transitive set, all open intervals are similar. Thus
for each natural number n, the interval {v-^n, v-n) is similar to K and
hence symmetric, and thus for each such n there is an isomorphism
/«: (vn, vn+ύ —* (v-i-n, v-n)*. We can now define a map /: S —» S as follows.
Take xe S. If x = Vj for some integer j , then f(x) = Vj . If x = Vj for no
integer j , then there must exist an integer i such that xe (VJ9 v;+χ). If i ^ 0,
then f(x) = fi(x); if i < 0, then f(x) =/Γ/-i(#). It is easily seen that / is an
order-inverting bijection, and so in this case we have shown that S is
symmetric.

Now let us suppose that S is continuous, and put cf(S) = K. Then there
is an increasing /c-sequence {vξ)ξ<κ of elements of S that is cofinal with S:
since S is continuous, Wmξ^Vξ exists for each nonzero limit ordinal p < /c,
and we may without loss of generality assume that Vp = Wmξ<pVξ for each
such p. It follows that for each xeS with x ^v0, either x = va for some
a < K, or else xe (vβ, vβ+1) for some β < K. Similarly we have a decreasing
/c-sequence (uξ)ξ<κ of elements of S that is coinitial with S and such that
Up = \\mξ<pUξ for each nonzero limit ordinal p < K: we may of course
assume that u0 = v0.

We can now construct an order-inverting bijection/: S —> S in a manner
similar to that described in the previous case.

Before proceeding further, we present a simple criterion on 2-
transitivity, part of which was used in the proof of the preceding theorem.

Theorem 3 Let S be a set. Then S is 2-transitive if and only if S has no
endpoints and any two open intervals of S are similar.

Proof: The "only it" direction being clear, we concentrate on the converse
and assume that S has no endpoints and that any two open intervals of S are
similar. Take any x, y, u, veS such that x < y and u < v. We assume that
x < u and y < v; the other possibilities are dealt with in similar vein.
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Since S has no endpoints, we may choose t, weS such that t < x and

v < w. Let f0: (t, x) -* (t, u), fλ: (x, y) -» (u, υ) and /2: <y, w) — (v, w) be
isomorphisms. Define /: S -* S by the following conditions.

(a) /(#) = u, f(y) = v, and f(z) = £ for */<f, w>;
(b) /(*) = Λ(s) for *e dom(/, ), ί = 0, 1, 2.

It is clear that fe Ax

u

y

v. Thus S is 2-transitive.

Obviously it follows from the above theorem that if the set S has no
endpoints and any two bounded "open" segments of S are similar, then S is
2-transitive. The converse, however, is not necessarily true; we shall
exhibit later a 2-transitive set containing non-similar bounded open
segments.

The 2-transitive sets thus far encountered have been reasonably easy
to visualize. We now wish to make use of Theorem 3 to prove a result that
will give us many—a proper class, in fact—2-transitive sets that, by
contrast, could well be called "visually pathological". These sets, so to
speak, double back on themselves infinitely often.

We recall that a prime component is a nonzero ordinal a such that
β + a = a for each β < a; the ordinal a is a prime component if and only if
a = ωr for some ordinal r. Let S be a set and η an ordinal. Then by "S7/*"
we denote the set consisting of all functions g; η* —* S ordered anti-
lexicographically. For η = 2, this coincides with the ordered product S x S.
Let S be a set and take xeS. We find it convenient to denote the set
{ye S; x < y] by "(x, °o)". The sets (°o, χ)9 [χf oo) and (°o, x] are defined in
the obvious manner.

Theorem 4 Let S be a 2-transitive set, and let τ be a prime component.
Then ST* is 2-transitive.

Proof: Put T = SΓ* and let x = ( . . . , sτ, . . ., s2, sl9 s0) be any element of T.
Take se S with s < s0 and define ye T by y = (. . ., s, . . ., s, s, s). Then
y < x and thus T has no left endpoint. Similarly we can show that T has no
right endpoint. Therefore by Theorem 3 it suffices to show that any two
open intervals of T are similar.

Let us note firstly that for any s, sr e S, we have (oo, s) ^ (oo, s f ), for
there is certainly fe A(S) such that f(s) = sr. Similarly we have (s,oo) ~
(sf, oo). Therefore we can denote by " y " the order-type of any segment of
S of the form (<», s), and by " δ " the order-type of any segment of S of the
form (s, oo). Furthermore, we let r be the order-type of T.

Let / = (g, h) be an open interval of T, and let a be the last ordinal at
which g and h differ. Define J c /by

J = {ceT g(a) < c(a) < h(a) & Vβ > a(c(β) = g(β) = h{β))}.

[With regard to this definition we recall that we are working with 77*, not
with 77.] Clearly J is a segment of /. Now for any cej and for any ξ e 77*
with ξ < a, the choice of c(ξ) is unrestricted. Since η is a prime com-
ponent, it follows at once that the order-type of J is τ0, where θ is the
order-type of the open interval (g(a), h(a)) of S.



390 JOHN L. HICKMAN

Now take any ξ e 77* with ξ < a. We define Kξ, LξQ T by

/ζ* = {c e T; *(ξ) < c(ξ) & Vξ > ξ(c(ζ) = *«))},

and

Le = {ce T; Ml) > c(ξ) & Vζ > ξ(c(ζ) = *(ζ))}.

The same reasoning as above shows that Kξ and L̂  have respective order-
types Tδ and rγ. It is easy to see, however, that the interval / is the
ordered union. Then /has the form:

. . . ύ Kξ U . . . U Ka+1 LJ J U La+1 LJ . . . LJ Lξ ύ . . .

Hence the order-type of / is Tδη* + rθ + τγη, that is, ση*(δη* + θ +γη).
Since all open intervals of S are similar, the order-type θ is independent of
the choice of /. We have therefore shown that all open intervals of T have
the same order-type and hence are similar. Thus T is 2-transitive. In
computing the order-type of / above, we have made essential use of our
tacit assumption that S is infinite. For if we take s = 2 and η = ω, then we
obtain the famous Cantor set, and even if we remove the endpoints, the re-
sulting set is still not 2-transitive.

At this stage we wish to consider a question concerning symmetry of
2-transitive sets. Let S be a 2-transitive set; Longyear in [3] has posed
the following question:

If no interval of S can be inverted, must every interval contain a copy
ofH?

At first sight this question appears a little ambiguous, for the word
"contain" could be interpreted in two distinct ways. Let /be an interval of
S. Then by "/ contains a copy of H" we could mean

(i) There is a segment J of / with J <*> H; or else
(ii) There is an order-preserving map /: H —» /.

Since, as we shall see shortly, interpretation (i) leads to a contradiction, it
must be that interpretation (ii) is the one intended by Longyear.

Suppose that the 2-transitive set S is such that for every interval /of S
there is a segment J of /with J ^ H. Let /0 be a given interval of S, and let
Jo be some such segment of /0. Now every open interval of H is similar to
the set Q of rationale; hence there exists an interval /x of J o with/j ^ Q.
But Jo, being a segment of /0, is a segment of S, and so /x is an interval of
S. Therefore, by assumption, there is a segment J1 of Iγ such that J\ ^ H.
Since Iγ is countable and H is uncountable, this is a contradiction.

Therefore we must consider Longyear's question under interpretation
(ii). Let us say at once that we do not know the answer to this question; we
wish to show, however, that if Longyear is suggesting this condition as
some kind of criterion for the total asymmetry of a 2-transitive set, then it
fails rather badly. We do this by constructing a 2-transitive set Wwith the
property that W is symmetric and every interval of W contains a copy of H
(in sense (ii)). [Every open interval of W is symmetric by Theorem 2.]



DOUBLY TRANSITIVE SETS 391

Theorem 5 There exists a symmetric 2-transitive set W such that if I is
any interval of W then there is an order-preserving map f: H —> /.

Proof: Let R be the set {x; x is real & 0 ^ x < 1} under the usual ordering,
and let S be the set (R xωλ) - {(0, 0}}. Consider the ordered union W° =
S*U{(0, 0)}US. W° is of course symmetric, and it is easily seen that
every open interval of W° is similar to the real line. Thus by Theorem 3
W° is 2-transitive, and hence by Theorem 4 so is the set W= Woω*.

Let h: W° —» W° be an order-inverting bijection: we define a map
0. w-^ W as follows. For each geW and each weω*, we set h^(g)(ή) =
Hg(n)). It is a simple matter to show that JΦ is an order-inverting
bijection; thus W is symmetric. Let / be an open interval of W. In the
proof of Theorem 4 we showed that the order-type of / is μ(δω* + θ +yco),
where μ is the order-type of W, θ is that of any open interval of W°', γ is
that of any segment of W° of the form (<*>, x), and δ is that of any segment of
W° of the form {x, °°). Thus, in particular, there is a segment J of / such
that J c* W, and hence in order to show that there is an order-preserving
map H-* I, we have only to show that there is an order-preserving map
f: H-* W.

Now clearly there is an order-preserving map f0: H —* W°. Thus it
suffices to construct an order-preserving map fλ: W° —> W. Take xeW°,
and define fι(x): ω* —* W° by/iM(0) = x and/̂ ArXw) = w for n Φ 0, where w is
some fixed element of W°, independent of x. Clearly fι preserves order.
This proves our result.

Thus far we have not produced a 2-transitive set in which all intervals
are asymmetric, and such sets would not seem to be particularly plentiful.
Longyear in [3] defines a generalized ordered product, and uses this
product to construct a certain set, stating without proof that this set
satisfies the above requirements. Later in this paper we shall show that
the set Hω\ which is slightly simpler in its construction than the set given
in [3], also has no symmetric intervals.

Let Q be the set of rationale. Q is 2-transitive, and if /is any interval
of Q, then |/| = \Q\. On the other hand, if J is any interval of the
2-transitive set H, then \j\+= \H\. Here of course we are using "l+" to
denote the successor cardinal of the cardinal I. We wish to show that these
are the only two possibilities open to 2-transitive sets.

Theorem 6 Let S be a 2-transitive set, and let I be an interval of S. Then

|/Mskl/|+.
Proof: Obviously | / | ^ \s\. Thus we assume that \s\> \l\+ and derive a
contradiction. Let K and λ be the initial ordinals whose respective
cardinalities are \s\ and |/|+; thus K > λ. Now put 77 = cf(S), and let (tξ)ξ<η

be an increasing cofinal 77-sequence in S. For each positive ordinal a < 77,
define the segment Ta of S by Ta = {s e S; s < ta & V/3 < a(s > tβ)}. Similarly,
if we put p = cf (S*) and let (rξ)ξ<p be a decreasing coinitial p-sequence in S
such that r 0 = s0, we can define the segment Ra for each positive ordinal
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a < p. Putting T = \J{Ta; 0 < a < η} and R = \Jfaa, 0 < a < p}, we see that
S is the unordered union RUT, and so we must have either \s\ = | τ | or
| S | = \R\. Without loss of generality we may assume the former.

Now each Ta is a bounded segment of S, and hence | τ α | ^ |/|. Since
\τ\= \s\> |/|+, it follows that η ^ K. Therefore η > λ, and so the segment
T° = \J{Ta; 0 < a <λ} is well-defined and bounded in S. Thus we have
I T° I ̂  | /|. On the other hand we have ta e T° for each a < λ, and since (%)^<7?

is increasing, it follows that \τ°\ > \λ\= |/ |+.

The following result is very simple, but as it will be used a couple of
times later on, we present it explicitly.

Theorem 7 Let S be a set without endpoints. Then S is 2-transitive if and
only if every open interval of S is 2-transitive.

Proof: Suppose that every open interval of S is 2-transitive, and take
x, y, u, ve S with x < y and u < v. Since S has no endpoints, there is an
open interval I of S such that x, y, u, ve I. Take fe A(I)H and extend / t o
ge A(S) by settingg{z) = z for z jίI. Thence A(S)ul, and so S is 2-transitive.
Now assume that S is 2-transitive, and let /be an open interval of S. Let
J, Jr be open intervals of /. Then J, J' are open intervals of S, and so by
Theorem 3 J ^ Jr. Thus all open intervals of / are similar, and so by
Theorem 3 again, / is 2-transitive.

This result enables us to say something about the cofinality of a
continuous 2-transitive set.

Theorem 8 Let S be a continuous 2-transitive set, and let I be an open
interval of S. Then cf(7) = cf(/*) = ω.

Proof: Let I be an open interval of S, and choose x, y e I with x < y. By
Theorem 7 / is 2-transitive, and so there exists fe A(7) such that/(#) = y.
Put T = {z e I; 3n(fn(z) ^ xvfn(x) ^ z)}. T is an open segment of 7, and hence
an open bounded segment of S. Moreover, cf(T) = cf(71*) = ω. Now any
bounded segment of a continuous set is in fact an interval of that set.
Therefore T is an open interval of S, and so by Theorem 3 T ̂  7. Thus
cf(7) = cf (7*) = ω.

Theorem 9 Let S be a continuous 2-transitive set. Then cf(S), cf(S*) ^ ω1#

Proof: We shall show that cf(S)^cϋi; since the converse of a continuous
2-transitive set is also a continuous 2-transitive set, the full result will
follow. Suppose that cf (S) = η > ωλ, and let (%)̂ <7? be an increasing cofinal
η-sequence in S. Since S is continuous, we may assume that tp = lim^pi^ for
each nonzero limit ordinal p<η. Put T = (t0, tωi); then T is an open
interval of S with cf(T) = ωlβ Since this contradicts Theorem 8, we must
have cf(S) ^ ω1#

The set S constructed in the proof of Theorem 5 shows that the bound
given in the preceding result is the best possible.

If S is a dense set, then S can be embedded in a continuous sets in
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such a way that S is dense in S; moreover, S is uniquely determined (up to
similarity) by these conditions. This of course is well known, and is most
easily achieved by the method of Dedekind cuts.

It is natural to ask whether the completion of a 2-transitive set is
itself 2-transitive. The answer is " N o " ; to show this, we consider the set
M = Hω*. Let / be an open interval of M; we know that / contains a segment
J such that J <* M. Then cf(J) = cf(M), and it is easy to see that cf(Λf) =
cf(#) = coi. Thus cf(J) = α>i. By Theorem 4, M i s 2-transitive. Consider its
completion, M. Naturally the completion J of J is (similar to) an open
bounded segment of Έ, and thus is an open interval of M. But J is dense in
J, and so cf(J) = cf(J) = ωx. Hence by Theorem 8, M is not 2-transitive.

This answers a question posed earlier in this paper; are all open
bounded segments of a 2-transitive set similar? Let K be any open bounded
segment of M\ then K is an open interval of M. Now if all such segments K
were similar, then all open intervals of M would be similar (since M i s
dense in M), and by Theorem 3 M would be 2-transitive. Therefore M
contains non-similar open bounded segments.

Before we dispose of M, we note that M is a 2-transitive set in which
all open intervals are asymmetric. For let /be an open interval of M; we
know that / contains a segment J with J ^ M; thus cf(J) = ω lβ Hence if
I c* /*, then I must contain a segment R with cfCR*) = ω1# However, it is
easily seen that cf (R*) = ω for every open segment R of M.

Let m be a positive integer. We make the obvious generalization of
2-transitivity and say that a set S is m-transitive if for any two increasing
m-sequences (Xk)k<m> (yk)k<m in S, there i s / e A(S) such tha.tf(xk) =yk, k < m.

Obviously a 1-transitive set is just a transitive set. By considering
the set of all integers under the usual ordering, we can see that there are
transitive sets that are not 2-transitive. This is as far as it goes, however;
for any two integers m, n ^ 2, a set is m-transitive if and only if it is
n-transitive. We conclude this paper with a demonstration of this fact.

Theorem 10 Let S be a set, and let m, n ^ 2 be two integers. Then S is
m-transitive if and only if S is n-transitiυe.

Proof: Clearly if S is ^-transitive for some positive integer p, then S is
^-transitive for every positive integer q ^ p. We may assume that m < n,
and it therefore suffices to show that if S is m-transitive, then S is
n-transitive. Hence we assume that S is m-transitive, then it follows that
S is 2-transitive. By Theorem 7, therefore, every open interval of S is
2-transitive.

Let (Xk)k<n, (yk)k<n be two increasing rc-sequences in S; we must con-
struct fe A(S) such that f(xk) = yk for k = 0, . . ., n - 1. Since S is 2-
transitive, we know that there is ge A(S) such that gix^) = yk f ° r k < 2. We
proceed by induction and assume that for some p with 2 ^ p < n, there is
he A(S) such that h{x^) = yk for k < £ . Now if h(xp) = yp, we are through;
hence we may assume, without loss of generality, that yp < h(xp). S is dense
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and without endpoints, and so we may choose u, υe S such that yp^1 < u <
yp < h(xp) < υ. Let /be the open interval (u, v). /is 2-transitive, and thus
there is h° e A(/) with ho(h(xp)) = yp. Define iΦ\ S -* S as follows. For any
z e S, if h(z) e I, then lΦ(z) = h°(h(z))9 and ffi(z) = h(z) otherwise. It is routine
to show that jfi e A(S) and that hft(xk) = yk, k < p. This proves our theorem.
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