Notre Dame Journal of Formal Logic Volume XIX, Number 2, April 1978 NDJFAM

A NEW FAMILY OF MODAL SYSTEMS

G. N. GEORGACARAKOS

1 It is well-known that a Lemmon-style axiomatization of modal system S3 is provided in the following fashion:

Formation Rules:

(1) Any propositional variable is a wff.
(2) If x is a wff, then so is $N x$.
(3) If x is a wff, then so is $L x$.
(4) If both x and y are wffs, then so is $C x y$.
(5) Nothing else is a wff.

Axioms:

A1 $C L p p$
A2 $C L C p q L C L p L q$
Rules of Inference:
(a) Uniform Substitution for Variables.
(b) Detachment (D): If both $C x y$ and x are theses, then y is a thesis.
(c) Restricted Necessitation (RN): If x is a PC-tautology or a thesis of the form $C L y z$, then $L x$ is a thesis. (This version of the rule of necessitation is taken from Zeman in [8], p. 105.)
(d) Tautology Rule (PCR): If x is a PC-tautology, then x is a thesis.

Definitions:

B1 $K x y=D_{f} N C x N y$
B2 $A x y=D_{D} N K N x N y$
B3 Exy $=_{D f} K C x y C y x$
B4 $M x=D f$ NLNX
B5 $F x y={ }_{D f} L C x y$
B6 $H x y={ }_{D f} K F x y F y x$
Now if we append to the above basis for $S 3$ the additional axiom
M1 CNLpLNLp
we obtain a modal system called S 3.5 (cf. [1], p. 82). Quite obviously this system is properly contained in $S 5$; and since $S 5$ is properly contained in PC, it must be the case that S3.5 is also properly contained in PC. However, there does exist a well-known class of irregular extensions of S3 which are not contained in PC. They are axiomatized in the following way:

$$
\begin{aligned}
& \mathrm{S} 7=\{\mathrm{S} 3 ; N L L p\} \\
& \mathrm{S} 8=\{\mathrm{S} 3 ; N M L L p\} \\
& \mathrm{S} 9=\{\mathrm{S} 3.5 ; N L L p\}
\end{aligned}
$$

What we are calling $S 9$ has been called $S 7.5$ by Åqvist in [1]. However, Cresswell has shown in [2] that Åqvist's S7.5 contains S8 and so it seems more appropriate to follow Cresswell in calling it $S 9$ (also see relevant footnote in [4], p. 272).

The containment relations existing among these irregular systems and some other well-known systems are exhibited in the following diagram:

Not only are these irregular systems not contained in PC, but they are inconsistent with it. After all, they are known to be inconsistent with S4, and S4 is contained in PC.

Now it is known that appending

N1 LCpLp

as an axiom to the axiomatic basis of a modal system at least as weak as S3 will collapse it into PC. Consequently, we might think of PC as being axiomatized by appending N 1 to S 3 . Quite obviously this would be a very inelegant axiomatization of PC, but nonetheless one that will serve our purposes.

Keeping in mind this consideration, we might speculate about what would happen if we were to append

P2 ANLLpLCqLq

to the axiomatic basis of $S 3$? In the primitive notation of $S 3$, the formula in question would be

P1 CLLpLCqLq

Note that the resulting modal system would apparently commit us to the view that either S7 or PC gives us the truths of logic. Appending P1 to S3.5, on the other hand, would apparently yield a modal system telling us that either S9 or PC is the correct system capturing the laws of logic. Analogously, appending
to the basis of S 3 would apparently yield a modal system telling us that either S8 or PC is the correct system concerning the laws of logic.

Using formulae P1 and Q1, it appears possible to construct an entirely new family of modal systems which we shall call Modal Family \mathcal{g}. We shall label the resulting systems in the following way:

$$
\begin{aligned}
\mathrm{J} 1 & =\{\mathrm{S} 3 ; \mathrm{P} 1\} \\
\mathrm{J} 2 & =\{\mathrm{S} 3 ; \mathrm{Q} 1\} \\
\mathrm{J} 3 & =\{\mathrm{S} 3.5 ; \mathrm{P} 1\}
\end{aligned}
$$

The purpose of this paper then shall be to define the relationships existing among these systems and to show that Modal Family \mathcal{I} is comprised of intersection systems possessing the following properties:

$$
\begin{aligned}
\mathrm{J} 1 & =\mathrm{S} 7 \cap \mathrm{PC} \\
\mathrm{~J} 2 & =\mathrm{S} 8 \cap \mathrm{PC} \\
\mathrm{~J} 3 & =\mathrm{S} 9 \cap \mathrm{PC}
\end{aligned}
$$

An acquaintance with 4,8 , and 16 valued ordinary Boolean matrices for functors C and N is assumed. In this paper I shall use the following matrices which are presented here only for functors M and L :

01

p	1	2	3	4
$M p$	1	1	1	4
$L p$	1	4	4	4

p	1	2	3	4	5	6	7	8
$M p$	1	1	1	3	5	5	5	7
$L p$	2	4	4	4	6	8	8	8

* *

04

p	1	2	3	4	5	6	7	8
$M p$	1	1	3	3	1	1	3	7
$L p$	2	6	8	8	6	6	8	8

03

p	1	2	3	4	5	6	7	8
$M p$	1	1	3	3	1	1	3	7
$L p$	2	6	8	8	6	6	8	8

05	p	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	$M p$	1	1	1	1	1	5	1	7	9	9	9	9	9	13	9	15
	$L p$	2	8	4	8	8	8	8	8	10	16	12	16	16	16	16	16

The designated values for each of these matrices are indicated by the asterisks. Moreover, all of these matrices verify S3. Matrix 01 is the familiar Group III of Lewis-Langford (cf. [5], p. 493). Matrix 03 is taken from Parry in [6]. The rest of them are mine.

2 Let us begin with modal system J1. Quite obviously, this system contains S3; that it contains S3 properly is established by the consideration that matrix 01 which is known to validate the entire axiomatic basis of S5,
and hence S3, falsifies formula P 1 for $p / 1$ and $q / 2$: $C L L 1 L C 2 L 2=$ $C 1 L C 2 L 2=C 1 L C 24=C 1 L 3=C 14=4$. It is an easy matter to show that $J 1$ is a subsystem of $S 7$; we need only demonstrate that $N L L p$ entails P 1 in the field of S3 !

G1	$N L L p$	Axiom of S7
G2	$C N p C p q$	PCR
G3	$C N L L p C L L p L C q L q$	G2, $p / L L p ; q / L C q L q$
P1	$C L L p L C q L q$	G1, G3, D

To demonstrate that J 1 is a proper subsystem of S 7 , we make use of matrix 03. This matrix verifies the entire basis of J 1 but invalidates $N L L p$ whenever p takes on any one of the values $1,2,5$, or 6 . Clearly then, J1 is a proper extension of $S 3$ and a proper subsystem of $S 7$.

We now wish to show that modal system J2 contains J1. To accomplish this, we need only demonstrate that Q1 entails P1 in the field of S3:

G4 $C M L L p L C q L q$
Q1
G5 CLCLpLqCLpLq A1, $p / C L p L q$
G6 $\quad C C p q C N q N p$
PCR
G7 CCLppCNpNLp
G8 CNPNLp
G6, $p / L p ; q / p$

G9 CNNpNLNp
A1, G7, D
G8, $p / N p$
G10 CpNNp PCR
G11 CCpqCCqrCpr PCR
G12 CCpNNpCCNNpNLNpCpNLNp G11, q/ NNp; r/NLNp
G13 CCNNPNLNPCPNLNp G10, G12, D
G14 CpNLNp G9, G13, D
G15 CpMp G14, Def[M]
G16 CLLpMLLp G15, $p / L L p$
G17 CCLLpMLLpCCMLLpLCqLqCLLpLCqLq G11, $p / L L p ; q / M L L p ; r / L C q L q$
G18 CCMLLpLCqLqCLLpLCqLq G16, G17, D
P1 CLLpLCqLq
G4, G18, D
Not only does J2 contain J1, but it contains J1 properly. To see this, consider matrix 03 again which, as we have already pointed out, verifies the entire basis of J 1 . We observe that this matrix rejects formula Q1 for $p / 1$ and $q / 1: C M L L 1 L C 1 L 1=C M L 2 L C 12=C M 6 L 2=C 16=6$.

Modal system J2, on the other hand, is contained in system S 8 since the characteristic axiom of S8 entails Q1 in the field of S3:

G19	NMLLp	Axiom of S8
G20	$C N M L L p C M L L p L C q L q$	G2, $p / M L L p ; q / L C q L q$
Q1	$C . M L L p L C q L q$	G19, G20, D

That J2 is a proper subsystem of S 8 is indicated by the consideration that matrix 05, which validates the axiomatic basis for J 2 , falsifies $N M L L P$ whenever p has any of the values $1,2,3,4,5,6,7$, or 8 .

[^0]In order to show that J2 is properly contained in J3, we direct our attention to matrix 05 which verifies J 2 but rejects M 1 for $p / 3$: CNL $3 L N L 3=$ $C N 4 L N 4=C 13 L 13=C 1316=4$. Now S9 obviously contains J3; that S9 contains J3 properly is confirmed by matrix 02 which verifies J3 but rejects $N L L p$ whenever p has any of the values 1,2 , or 3 . Again it is obvious that J3 is an extension of S3.5; that it is a proper extension of S3.5 is equally obvious since matrix 01 verifies the entire basis of $\$ 3.5$ but rejects, as we have seen above, formula P1. In fact this consideration also establishes that S3.5 contains none of the systems of Modal Family g.

We noted above that J3 does not contain $N L L p$ as a thesis; consequently, in order to establish that J3 and S8 are independent of one another, it will suffice to point out, as it is well-known, that S 8 does not contain M1 as a thesis.

We have yet to consider the relationship of Modal Family g to PC. Quite obviously PC contains every one of these systems since LCqLq is a thesis of PC. However, none of the systems of Family g contain PC, except of course as a fragment. (Perhaps it would be better to say that none of the systems of Family g collapse into PC.) This is evidenced by the consideration that matrix 02 which verifies all of the systems of Family g rejects $L C q L q$ when q has any of the values $1,2,3,5,6$, or 7 . Clearly this consideration, along with the fact that none of the systems of Modal Family \mathcal{J} contain any of the irregular systems, also establishes that all of the systems of the new family are unreasonable in the sense of Halldén ($c f$. [3]).

We are now in a position to visualize the containment relations which the systems of Family \mathcal{I} bear to one other and other well-known systems.

3 What I would now like to show is that Modal Family \mathcal{J} is comprised of intersection systems having the following properties:

$$
\begin{aligned}
& \mathrm{J} 1=\mathrm{S} 7 \cap \mathrm{PC} \\
& \mathrm{~J} 2=\mathrm{S} 8 \cap \mathrm{PC} \\
& \mathrm{~J} 3=\mathrm{S} 9 \cap \mathrm{PC}
\end{aligned}
$$

Let us begin with modal system J1. Clearly, if we are to show that J1 is the intersection of both S7 and PC, we must prove the following metalogical result:
(A) A formula, x, is a thesis of J 1 if and only if x is a thesis of both $\mathrm{S7}$ and PC.

In the last section, it was shown that J 1 is contained properly in both S 7 and PC; hence if a formula is a thesis of J 1 it must also be a thesis of both S7 and PC. Quite obviously then, the proof of (A) reduces to a demonstration that the following holds:
(A^{\prime}) If x is a thesis of both S 7 and PC, then x is a thesis of J 1.
In order to accomplish this task, we shall first show that each of the following formulae are theses of J1:

R 1	$C N L L C p L p N L L p$
R 2	$C N L L C p L p N L L C q L q$
R 3	$C L L C p L p L C p L p$
R 4	$C L L C p L p L L C q L q$

Then we shall prove two lemmata, to be stated below, from which (A^{\prime}) will follow.

Assume the field of J1; i.e., $\{S 3 ;$ P1\}:

| H1 | $L C p C q p$ | PCR, RN |
| :--- | :--- | ---: | ---: |
| H2 | $C C L C p q L C L p L q C C L C L p L q C L p L q C L C p q C L p L q$ | |
| | | G11, $p / L C p q ; q / L C L p L q ; r / C L p L q$ |
| H3 | $C C L C L p L q C L p L q C L C p q C L p L q$ | A2, H2, D |
| H4 | $C L C p q C L p L q$ | G5, H3, D |
| H5 | $C L C p C q p C L p L C q p$ | H4, q/Cqp |
| H6 | $C L p L C q p$ | H1, H5, D |

H7	CLCqpLCLqLp	A2, $p / q ; q / p$
H8	CCLpLCqpCCLCpqLCLqLpCLpLCLqLp	
		G11, $p / L p ; q / L C q p ; r / L C L q L p$
H9	CCLCqp LCLqLp $C L p L C L q L p$	H6, H8, D
H10	CLpLCLqLp	H7, H9, D
H11	CLCLLqLpCLqLp	A1, $p / C L q L p$
H12	CCLCpqLCLqLpCCLCLqLpCLqLpCLCqpCLqLp	
	G11, $p / L C q p ; q / L C L q L p ; r / C L q L p$	
H13	$C C L C L q L p C L q L p C L C q p C L q L p$	H7, H12, D
H14	CLCqpCLqLp	H11, H13, D
H15	CLCLqLpCLLqLLp	H14, $p / L p ; q / L q$
H16	CCLpLCLqLpCCLCLqLpCLLqLLpCLpCLLqLLp	
	G11, $p / L p ; q / L C L q L p ; r / C L L q L L p$	
H17	$C C L C L q L p C L L q L L p C L p C L L q L L p ~$	H10, H16, D
H18	CLpCLLqLLp	H15, H17, D
H19	ccpcqrCqCpr	PCR
H20	$C C L p C L L q L L p C L L q C L p L L p$	H19, $p / L p ; q / L L q ; r / L L p$
H21	CLLqCLpLLp	H18, H20, D
H22	CLLp $C L L p L L L p$	H21, $p / L p ; q / p$
H23	сСрСрqСpq	PCR
H24	$C C L L p C L L p L L L p C L L p L L L p ~$	H23, $p / L L p ; q / L L L p$
H25	CLLpLLLp	H22, H24, D
H26	LCLLpLCqLq	P1, RN
H27	$C L C L L p L C q L q C L L L p L L C q L q ~$	H4, $p / L L p ; q / L C q L q$
H28	CLLLpLLCqLq	H26, H27, D
H29	$C C L L p L L L p C C L L L p L L C q L q C L L p L L C q L q ~$	
	G11, $p / L L p ; q / L L L p ; r / L L C q L q$	
H30	CCLLLpLLCqLqCLLpLLCqLq	H25, H29, D
H31	CLLpLLCqLq	H28, H30, D
H32	$C C L L p L L C q L q C N L L C q L q N L L p$	G6, $p / L L p ; q / L L C q L q$
H33	CNLLCqLqNLLp	H31, H32, D
*R1	CNLLCpLpNLLp	H33, q / p
*R2	CNLLCpLpNLLCqLq	H33, $p / C q L q ; q / p$
*R3	CLLCpLpLCpLp	A1, $p / L C p L p$
*R4	$C L L C p L p L L C q L q$	H31, $p / C p L p$

Before stating and proving the two lemmata to which we alluded above, we ask that the reader imagine that we are working with a different axiomatization for S3 rather than the Lemmon-style axiomatization which was presented in section 1; say, an axiomatization due to Leo Simons in [7]. It looks like this:

Formation Rules:
(1) Any propositional variable is a wff.
(2) If x is a wff, then so is $N x$.
(3) If x and y are wffs, then so is $K x y$.
(4) If x is a wff, then so is $M x$.
(5) Nothing else is a wff.

Axioms:

K1 $F p K p p$
K2 FKpqp
K3 FKKrpNKqrKpNq
K4 CNMpNp
K5 FpMp
K6 FFpqFNMqNMp
Rules of Inference:
(a) Uniform Substitution for Variables.
(b) Material Detachment: If both $C x y$ and x are theses, then y is also a thesis.

Definitions:
L1 Axy $={ }_{D f} N K N x N y$
L2 Cxy ${ }_{D f}$ NKxNy
L3 Exy $=_{D f}$ KCxyCyx
L4 Lx $=D_{f} N M N x$
L5 Fxy $={ }_{D f}$ NMKxNy
L6 $H x y={ }_{D f}$ KFxyFyx
Now we may think of J1, J2, J3, S7, S8, S9, and PC as being axiomatized respectively as follows:

$$
\begin{aligned}
\mathrm{J} 1 & =\{\mathrm{S} 3 \text { (Simons) }+\mathrm{P} 1\} \\
\mathrm{J} 2 & =\{\mathrm{S} 3 \text { (Simons) }+\mathrm{Q} 1\} \\
\mathrm{J} 3 & =\{\mathrm{S} 3 \text { (Simons) }+\mathrm{M} 1, \mathrm{P} 1\} \\
\mathrm{S} 7 & =\{\mathrm{S} 3 \text { (Simons) }+\mathrm{NLLp}\} \\
\mathrm{S} 8 & =\{\mathrm{S} 3 \text { (Simons) }+\mathrm{NMLLp}\} \\
\mathrm{S} 9 & =\{\mathrm{S} 3 \text { (Simons) }+\mathrm{M} 1, \text { NLLp }\} \\
\mathrm{PC} & =\{\mathrm{S} 3 \text { (Simons) }+\mathrm{N} 1\}
\end{aligned}
$$

The advantage of this is twofold. First, uniform substitution and material detachment will be our only primitive rules of inference and thus we will not have to bother with the restricted rule of necessitation. Second, we will be able to follow the same pattern outlined by Hughes and Cresswell in [4], pp. 271-272, for their proof that S3 is the intersection of S7 and S4.

Lemma 1 If x is a thesis of $\mathrm{S7}$, then CNLLCpLpx is a thesis of J 1.
The proof of this lemma proceeds by induction on the various ways of proving theorems in S7.
(1) If x is a J 1 axiom then by $C p C q p$ and detachment we have $C N L L C p L p x$ as a thesis of J 1 .
(2) If x is the characteristic 57 axiom, $N L L p$, then $C N L L C p L p x$ is simply R1 and hence is a thesis of J1.
(3) Concerning Material Detachment: If x is obtained from the two proved formulae y and Cyx, then it follows by the induction hypothesis that both

CNLLCpLpy and CNLLCpLpCyx are theses of J1. But CCrpCCrCpqCrq is a tautology and hence a thesis of J1. Putting NLLCpLp for r, y for p, and x for q, and employing material detachment twice, we obtain CNLLCpLpx as a thesis of J1.
(4) Concerning Uniform Substitution: Let us assume that x is the result of substituting a formula, y, for some propositional variable in an S 7 theorem, z, then clearly by the induction hypothesis we have CNLLCpLpz as a thesis of J1.
(a) Now let us further assume that the variable for which the substitution is made is any variable other than p. Obviously then, the same substitution in $C N L L C p L p z$ will give us CNLLCpLpx as a thesis of J 1 . (b) Let us now assume instead that the substitution is made for p, then the same substitution in CNLLCpLpz will give us CNLLCyLyx as a thesis of J1. But putting y for q in R2 will give us CNLLCpLpNLLCyLy as a thesis of J1; hence by syllogism we now also have $C N L L C p L p x$ as a thesis of J1. We may therefore conclude that the lemma holds for all theses of J 1 .

Lemma 2 If x is a thesis of PC, then CLLCpLpx is a thesis of J 1.
The proof of this lemma proceeds by induction on the various ways of proving theorems in PC $=\{\mathrm{S} 3$ (Simons) $+\mathrm{N} 1\}$.
(1) If x is a J 1 axiom then by $C p C q p$ and detachment we have $C L L C p L p x$ as a thesis of J 1 .
(2) If x is the characteristic PC axiom, $L C p L p$, then $C L L C p L p x$ is simply R3 and hence is a thesis of J1.
(3) Concerning Material Detachment: If x is obtained from the two proved formulae y and $C y x$, then it follows by the induction hypothesis that both $C L L C p L p y$ and $C L L C p L p C y x$ are theses of J1. But $C C r p C C r C p q$ is a tautology and hence a thesis of J1. Putting LLCpLp for r, y for p, and x for q, and employing material detachment twice, we obtain $C L L C p L p x$ as a thesis of J 1 .
(4) Concerning Uniform Substitution: Let us assume that x is the result of substituting a formula, y, for some propositional variable in a PC theorem, z. Clearly, by the induction hypothesis we have CLLCpLpz as a thesis of J1. (a) Now let us assume that the variable for which the substitution is made is any variable other than p. Then it follows that the same substitution in CLLCpLpz will give us CLLCpLpx as a thesis of J1. (b) Suppose this time that the substitution is made for p, then the same substitution in $C L L C p L p z$ would give us CLLCyLyx as a thesis of J1. But putting y for q in R4 will give us CLLCpLpLLCyLy as a thesis of J 1 ; hence by syllogism we now also have CLLCpLpx as a thesis of J1. We may ther efore conclude that the lemma holds for all theses of PC.

Having proved these two lemmata, we are now in a position to prove (A^{\prime}). Suppose that x is a thesis of both S 7 and PC, then by Lemma 1 we have $C N L L C p L p x$ as a thesis of J 1 , and by Lemma 2 that $C L L C p L p x$ as a thesis of J 1 too. But $C C N p q C C p q q$ is a tautology and hence a thesis of J 1 .

Putting $L L C p L p$ for p and x for q, we obtain $C C N L L C p L p x C C L L C p L p x x$ as a thesis of J1. Thus two uses of material detachment gives us x as a thesis of J1. Clearly then, J1 is the intersection of S7 and PC. Put differently, we may think of J 1 as containing all those and only those theses provable in both S7 and PC.

Undoubtedly, the proof that J3 is the intersection of S9 and PC will proceed similarly with obvious modifications. Consequently, we assert the following:
(B) A formula, x, is a thesis of J3 if and only if x is a thesis of both S9 and PC .

Actually the proof that J2 is the intersection of both S8 and PC also proceeds similarly; the only difference is that it is necessary to use

T1 CNLLCpLpNMLLp

in place of R1 in the above proof. Consequently, all that needs to be done now is to show that T 1 is a thesis of J 2 . This is accomplished in the following way:

I1	CMLLpLCqLq	Q1
12	CLCqLqCqLq	A1, $p / C q L q$
I3	CMLLpCqLq	I1, I2, Syllogism
14	CMLLpCMLLpLMLLp	$\mathrm{I} 3, q / M L L p$
I5	CCMLLpCMLLpLMLLpCMLLpLMLLp	H23, $p / M L L p ; q / L M L L p$
16	CMLLpLMLLp	I4, I5, D
I7	CLMLLpMLLp	A1, $p / M L L p$
18	CLMLLpLCqLq	I1, I7, Syllogism
19	LCLMLLpLCqLq	I8, RN
I10	CLCLMLLpLCqLqCLLMLLpLLCqLq	H4, $p / L M L L q ; q / L C q L q$
I11	CLLMLLpLLCqLq	I9, I10, Syllogism
I12	CMLLpLCMLLpLMLLp	I1, $q / M L L p$
I13	CLCMLLpLMLLpCLMLLpLLMLLp	H4, $p / M L L p ; q / L M L L p$
I14	CMLLpCLMLLpLLMLLp	I12, I13, Syllogism
115	CLMLLpCLMLLpLLMLLp	I7, I14, Syllogism
116	CLMLLpCLMLLpLLMLLpCLMMLpLLMLLp	
		H23, $p / L M L L p ; q / L L M L L p$
117	CLMLLpLLMLLp	I15, I16, D
I18	CMLLpLLMLLp	I6, I17, Syllogism
I19	CMLLpLLCqLq	I11, I18, Syllogism
120	CCMLLpLLCqLqCNLLCqLqNMLLp	G6, $p / M L L p ; q / L L C q L q$
121	CNLLCqLqNMLLp	I19, I20, D
T1	CNLLCpLpNMLLp	I21, q / p

We are now justified in asserting:
(C) A formula, x, is a thesis of J2 if and only if x is a thesis of both S8 and PC.

Before concluding this paper we note that since PC, S9, S8, and S7 are known to be decidable, it follows, in light of the considerations established above, that the systems of Family \mathcal{g} are also decidable.

REFERENCES

[1] Åqvist, Lennart, "Results concerning some modal systems that contain S2," The Journal of Symbolic Logic, vol. 29 (1964), pp. 79-87.
[2] Cresswell, M. J., 'Note of a system of Aqvist,', The Journal of Symbolic Logic, vol. 32 (1967), pp. 58-60.
[3] Halldén, S., "On the semantic non-completeness of certain Lewis calculi," The Journal of Symbolic Logic, vol. 16 (1951), pp. 127-129.
[4] Hughes, G. E., and M. J. Cresswell, An Introduction to Modal Logic, Methuen and Co., Ltd., London (1968).
[5] Lewis, C. I., and C. H. Langford, Symbolic Logic, Dover Publications Inc., New York (1959).
[6] Parry, W. T., "Modalities in the Survey System of strict implication," The Journal of Symbolic Logic, vol. 4 (1939), pp. 137-154.
[7] Simons, L., 'New axiomatizations of S3 and S4," The Journal of Symbolic Logic, vol. 18 (1953), pp. 309-316.
[8] Zeman, J. J., Modal Logic: The Lewis-Modal Systems, Oxford University Press, London (1973).

Kansas State University
Manhattan, Kansas

[^0]: At this point we might wonder about the relationship between systems S 7 and J2? Now matrix 05 , again a matrix which verifies J 2 , falsifies $N L L p$, the proper axiom of $S 7$, whenever p ras any of the values $1,2,3,4,5,6,7$, or 8. Matrix 04, on the other hand, verifies the basis for S7, but rejects Q1 when $p / 2$ and $q / 4: C M L L 2 L C 4 L 4=C M L 6 L C 48=C M 6 L 5=C 16=6$. Clearly then, systems S7 and J2 are independent of one another.

 As we might expect, J3 contains J2. This is demonstrated by simply showing that M1 and P1 jointly entail Q1 in the field of S3:

 | G21 | $C L L p L C q L q$ | P1 |
 | :--- | :--- | ---: |
 | G22 | CNLpLNLp | M1 |
 | G23 | $C C N p q C N q p$ | PCR |
 | G24 | $C C N L p L N L p C N L N L p L p$ | G23, $p / L p ; q / L N L p$ |
 | G25 | $C N L N L p L p$ | G22, G24, D |
 | G26 | $C M L p L p$ | G25, Def[M] |
 | G27 | $C M L L p L L p$ | G26, $p / L p$ |
 | G28 | $C C M L L p L L p C C L L p L C q L q C M L L p L C q L q$ | |
 | | | G11, $p / M L L p ; q / L L p ; r / L C q L q$ |
 | G29 | $C C L L p L C q L q C M L L p L C q L q$ | G27, G28, D |
 | Q1 | $C M L L p L C q L q$ | G21, G30, D |

