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PROJECTIVE BIGRAPHS WITH RECURSIVE OPERATIONS

J. C. E. DEKKER

1 Introduction All graphs under consideration will be undirected,
simple (i.e., without loops or multiple edges), countable and connected. In
[3] two effectiveness conditions were discussed for graphs & = (v, n), where
v (the set of vertices) and n (the set of edges) are subsets of ¢ (the set of
nonnegative integers). @& is called an a-graph if there is an effective
procedure which enables us to decide, given any two distinct vertices p and
and g of @, whether they are adjacent, i.e., joined by an edge. On the other
hand, & is an w-graph if there is an effective procedure which enables us,
given any two distinct vertices p and g of @, to find a minimal path joining
p and g. Note that p and ¢ are adjacent if and only if the (only) minimal
path which joins them has length one. We see therefore that every w-graph
is an a-gvaph. It will be shown below that the converse is false.

The present paper deals with bigraphs, i.e., graphs of the type
B = (v, ), where v can be decomposed into two disjoint nonempty sets @ and
B such that every edge of 8 joins a vertex in @ and a vertex in 8. We call B
an a-bigraph (w-bigraph) if it is both an a-graph (w-graph) and a bigraph.
In [2] the notion of a projective w-plane was introduced. Projective planes
correspond in a natural manner to certain bigraphs, the so-called projec-
tive bigraphs. Our main result is that under this corvespondence w-planes
covrespond to w-bigraphs.

2 Preliminaries We consider nonnegative integers (numbers), collec-
tions of numbers (sets) and collections of sets (classes). The empty set of
numbers is denoted by o, the set of all numbers by €, and the class of all
finite sets by @. We write C for inclusion (proper or not), and ¢ for the
cardinality of the continuum. We need an effective enumeration without
repetitions of the class @ and we choose the following:

Po = g,
(1) -
_[(ai, . .., @), where ay, . . ., @ are distinct
Pott = \andm+ 1=29 4. ..+ 2%,
The sequence {py, p, . . . is called the canonical enumeration of Q.
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For every finite set o there is exactly one number ¢ such that o = p;; this
number ¢ is called the canromnical index of o and denoted by can(s). Let
¥» = card(p,); then 7, is a recursive function of #n. We define for @ C ¢, ie¢,

(2) la; i] = {nlp, € @ and 7, = i}.

If e is the edge of a graph, we can characterize e by the two-element
set of its endpoints. Every graph is therefore isomorphic to a graph of the
form @ = (v, n), where

(3) vCeandn C[v; 2].

Henceforth all graphs under consideration will satisfy (3). Thus, if the
vertices a and b of @ are adjacent, the edge e which joins them can be
computed from a and b, since e = can(a, b) = 2% + 2°. Conversely, given any
edge e of , we can compute its endpoints. The sets a and 8 are separable
(written: a@|pB) if they can be separated by disjoint r.e. sets. An a-graph
can now be defined as a graph @ = (v, 1) such that n/[v;2] - 1.

If o is any set, we write (0 x 0)’ for {(x, y)eo xolx < y}and (c x0)”~
for {(x, y)e o x olx # y}. The domain of a function f is denoted by 5f. Let
us write {q,, ¢, . . .» for the sequence of all odd primes, arranged
according to size. For any finite sequence 7 = (p,, . . ., p,) of numbers with
po < p, we define the Gddel number &(m) by

n
@) o(m = 2+ I1 ¢/,

and the lengthI(m) as n. If p and q are vertices of a graph &, we denote
their distance by d(p, q); thus, if p < g and 7 is a minimal path from p to g,
then d(p, q) = I(m).

Definition 1 The graph @& = (v, n) is an w-graph if some function m such
that

i) o6m=(v xv)',
(ii) m(p, q) = ®(7), for some minimal path 7 from p to ¢, has a partial
recursive extension.

If ® = (v, n) is an w-graph and m a function related to & as described in
Definition 1, we have for (p, q) ¢ (v x v)’,

(5) can(p, q) € n<>[4 divides m(p, q) and 8 does not divide m(p, q)].

Thus every w-graph is an a-grvaph. In Section 1 we defined a-bigraphs and
w-bigraphs. Thus every w-bigraph is an a-bigraph. A graph &= (v, ) is
isolic if the sets v and i are isolated, i.e., have no infinite r.e. subsets; &
is immune if the sets v and n are immune, i.e., both infinite and isolated.

3 Two propositions For a nonempty set o we write &, for the complete
graph (o, n) withn = [0; 2]. We immediately see that ®, is both an a-graph
and an w-graph. If @ and B are disjoint nonempty sets, we write 8, for the
complete bigraph on a and B, i.e., for the graph ®B = (v,n) such that
v=aUpBand for (x, yye (v xv)~,

(6) can(x,y)en<>(reaandyep) or (xe B and yea).
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Proposition 1 Fov disjoint nonempty sets a and B the following conditions
are mutually equivalent:

i) alg,
(ii) R4pis an w-bigraph,
(iii) R4p2s an a-bigraph.

Proof: Note that ®,; is connected, since a and B are nonempty. Let
aea, beB; throughout this proof a and b remain fixed. We already know
that (ii) = (iii). To show that (i) => (ii), assume a|B. Let us write #(x, y)
for the family of all minimal paths between vertices x and y. We have for
x,yeaUB, x <y,

x, yea=>(x, b, y)e Mx, ),
x, yeB=(x, a, y) e M(x, y),
xeaand ye B =>(x, y)e M(x, y),
xefBand yea =>(x, y)ec M(x, y).

Since a|8 we can effectively decide which of the four premisses holds; thus
we can effectively find (the Godel number of) a minimal path from x to y.
Hence K,5is an w-bigraph. To establish (iii) => (i), assume that ®,5is an
a-bigraph. We have for xe a U 8,

xea<>x=aqor[x#band can(x, b)en],
xeB<>x=>bor [x #aand can(x, a)en].

It follows that a|B because we can effectively decide whether x € @ or x € 8.
Proposition 2 Every w-bigraph is an a-bigraph, but not conversely.

Proof: We only need to exhibit an a-bigraph 8 = (v, ) which is not an
w-bigraph. In our example B will be immune. For the definitions of
regressive functions and regressive isols, see ([1], Section 3). It follows
from ([1], p. 25) that there exist regressive functions s, and #, from ¢ into €
with ranges o and 7 respectively such that ¢ and T are separable and
immune, while the set 0 U7 is immune, but not regressive. Define three
classes of two-element sets by:

E, = {(sn, tn)}nem E, = {(32n+1, 32n+2)}nesy Es = {(tzm t2n+1)}n£5'
Let 8 = (v, n) be the bigraph such that

a= (SO, tl, Sa, t3, .. .), ,8 = (tO) Sy, tz, S3, . . .),
v=aUB,n={canlx, y)|(x, y)e E, U E, U E3}.

Note that every edge of B joins a vertex in @ and a vertex in 3. Since the
functions s, and £, are regressive, the functions 7 and 7, defined by

675 = 0, 75(x) = sT'(W), 67, =T, 7, (%) = £7'(),

have partial recursive extensions. We claim that (a) 8 is an a-bigraph and
(b) B is not an w-bigraph.

Re(a). Letx, yev, x <y. We distinguish four cases.
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a B
So to
t, S,
S, t,
t3 S3
S4 ly

etc. etc.
Figure 1.

() x, yeo, () x,yer, () xeo, yer, (IV)xeT, yeo.
In view of o!/T we can decide which of these four cases holds. Moreover,

if (I), can(x, y) en<> min[7s(x), 7s(y)] odd and [7(x) - »(y)| =1,
if (1), can(x, y) € <> min [7,(x), 7,(y)] even and |7,(x) - 7,(y)| = 1,
if (1), can(x, y) e n<>75(x) = 7,(y),

if (IV), can(x, v) e n<=>7,(x) = 74(y).

The numbers ¥4(x), 7s(y), 7:(x), 7,(y) can be computed from x and y; hence
is separable from [v; 2] - 7, i.e., B is an a-bigraph. Moreover, Req 7 <
Req [v; 2]; thus, since v is immune and 7 infinite, the set i is also immune.
We conclude that 8 is an immune a-bigraph.

Re (b). If B were an w-bigraph, we could, given any vertex x of B different
from s,, compute the unique (hence minimal) path which joins x and s,.
Then the enumeration s,, %, ¢, S;, Sz, . . . of the set a U 8 =0 U 7 would be
regressive. However, the set o U T is not regressive; hence B is not an
w -bigraph.

Remark: Note that B is a tree, in fact, a one-way infinite path. Thus
there exists an immune a-tree which is not an w-tree.

4 Projective bigraphs

Definition 2 A projective plane is an ordered triple I = (@, A, inc.) con-
sisting of two disjoint sets @ and X and an incidence relation inc. so that the
three classical axioms hold.

The elements of a are called the points, those of X the lines of II. With
every projective plane II = (a, X, inc.) we associate the functions L and P:

6L=(axa)”,6P=(Xx2)",
L(a, b) = the line through ¢ and b,
P(1, m) = the point in which 7 and m intersect.

We also write a- b for L(a, b) and I N m for P(1, m).

Definition 3 A projective w-plane is a projective plane II = (a, A, inc.),
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where a|)x and the functions L and P have partial recursive extensions.
II is called isolic (immune), if the sets @ and 1 are isolated (immune).

Definition 4 A projective bigraph is a graph B = (v, n) for which there
exist sets a and X such that

(a) v=a U2, where a and x are disjoint,
(b) can(x, y)en=>[xea and ye rx] or [xe x and ye al,
(c¢) the relation inc. defined by:

x inc. y<>canl(x, y)en, for x, ye v,
is such that 1 = (a, A, inc.) is a projective plane.

If the projective bigraph B and the projective plane II are related in
this manner and min(a U \) e @, we say that B and II are associated. The
condition min(@ U A) e @ guarantees that @ and X are uniquely determined by
the bigraph B and cannot be interchanged. Note that every projective
bigraph is connected.

Proposition 3 Let the projective plane 1l = (a, A, inc.) and the projective
bigraph B = (v, n) be associated. Then Il is a projective w-plane if and only
if B is an w-bigraph.

Proof: Assume the hypothesis.

(a) Suppose that I is a projective w-plane. Choose distinct elements
a, be a; from now on we keep a and b fixed. Let p and ¢ be distinct vertices
of B, say, p < q. We distinguish four cases. Since a|x we can effectively
decide which of these four cases holds.

Case 1 p,qea. Then d(p, q) =2, for if p.-q =7, the path (p, 7r, ¢ is a
minimal path from p to ¢q. Since » = L(p, ¢) can be computed from p and g,
so can the path (p, 7, ¢).

Case 2 p, gex. If s =pN g, the minimal path (p, s, ¢} from p to ¢q can be
computed from p and gq.

Case 3 pea, ge x. Then

1, if p inc. g,

d(p, q) = [3’ if nOt[P inc. q].

If p inc. g, {p, @ is the only minimal path from p to q. Suppose not[p inc. q]
and assume p # a. Define s = (p-a) Nq. Then (p, p-a, s, ¢ is a minimal
path from p to ¢; it can be computed from p and ¢, because P and L have
partial recursive extensions. If p =a, put s = (p-b) Ngq; then{p, p-b, s, q)
is a minimal path. Given p and ¢ we can by [2, §3, (e)] effectively decide
whether p inc. q. Hence we can compute a minimal path from p to gq.

Case 4 pe ), gea. This is the dual of Case 3.

(b) Suppose that 8 = (v, 1) is a projective w-bigraph. Let a and X be related
to v as described in Definition 4 and let min(a U A)ea. We wish to prove:
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(i) ala, (ii) the function P has a partial recursive extension, (iii) the
function L has a partial recursive extension. Note that (ii) is the dual of
(iii). Let x = min(@UA). Then xea and for ye(@UA) - (x) we have:
yea<>d(x, y) = 2. Since B is an w-graph we can compute d(x, y); thus a|x.
We now prove (iii). Let p and g be distinct points of IT with p < q. Then
there is exactly one vertex x of B so that can(p, ¥) and can(q, x) belong to 1,
say, x = ¥; moreover, v = L(p, q). The only minimal path from p to ¢ is
{p, 7, @. Since {p, 7, @) can be computed from p and g, so can » = L(p, q).
Thus L has a partial recursive extension.

Let the projective w-bigraph 8 =(v,n) and the projective w-plane
I = {a, A, inc.) be associated. For pea, le » we define @; as the set of all
points on [ and ), as the set of all lines through p. By (2], p. 2) there is a
unique recursive equivalence type [see 1, Section 1] # such that

Reqa; = Req x, = M + 1, for all pea, le,
Reqa = Req X = M? + M + 1,
the so-called order of II. It follows that
Req v = Req(@ U A) = 2Req (@) = 2(H> + M + 1),
Reqn = (M + 1)(M> + M + 1).

Clearly, M4 < M?> + M + 1. Thus, if we write A for the collection of all isols,
we have

IT isolic=> M € A = Req v, Reqn e A =>B isolic,
B isolic = 2(M% + M + 1) e A = M ¢ A=> Tlisolic.

Also, II is infinite if and only if B is infinite, so that
(7 II immune << %8B immune.

Proposition 4 There ave exactly ¢ w-bigraphs. Among these exactly ¢ are
immune.

Proof: Every graph is of the form & = (v, ), where v, n C €; hence there
are at most ¢ graphs and at most ¢ w-bigraphs. Thus we only need to show
that there are at least ¢ immune w-bigraphs. It follows from ([2], p. 7)
that there exists a family of ¢ immune w-planes which are mutually
nonisomorphic. We may assume that all these planes satisfy min(a U ) € a,
since every immune w-plane is isomorphic to an immune w-plane in which
oea. Using (7) we conclude that there are at least ¢ immune w-bigraphs.
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