PROJECTIVE BIGRAPHS WITH RECURSIVE OPERATIONS

J. C. E. DEKKER

1 Introduction All graphs under consideration will be undirected, simple (i.e., without loops or multiple edges), countable and connected. In [3] two effectiveness conditions were discussed for graphs © $\boldsymbol{6}=\langle\nu, \eta\rangle$, where ν (the set of vertices) and η (the set of edges) are subsets of ε (the set of nonnegative integers). $\boldsymbol{6}$ is called an α-graph if there is an effective procedure which enables us to decide, given any two distinct vertices p and and q of \boldsymbol{G}, whether they are adjacent, i.e., joined by an edge. On the other hand, $\mathbf{6}$ is an ω-graph if there is an effective procedure which enables us, given any two distinct vertices p and q of $\boldsymbol{6}$, to find a minimal path joining p and q. Note that p and q are adjacent if and only if the (only) minimal path which joins them has length one. We see therefore that every ω-graph is an α-graph. It will be shown below that the converse is false.

The present paper deals with bigraphs, i.e., graphs of the type $\mathfrak{B}=\langle\nu, \eta\rangle$, where ν can be decomposed into two disjoint nonempty sets α and β such that every edge of $\boldsymbol{\mathcal { B }}$ joins a vertex in α and a vertex in β. We call \boldsymbol{B} an α-bigraph (ω-bigraph) if it is both an α-graph (ω-graph) and a bigraph. In [2] the notion of a projective ω-plane was introduced. Projective planes correspond in a natural manner to certain bigraphs, the so-called projective bigraphs. Our main result is that under this correspondence ω-planes correspond to ω-bigraphs.

2 Preliminaries We consider nonnegative integers (numbers), collections of numbers (sets) and collections of sets (classes). The empty set of numbers is denoted by σ, the set of all numbers by ε, and the class of all finite sets by Q. We write \subset for inclusion (proper or not), and \mathbf{c} for the cardinality of the continuum. We need an effective enumeration without repetitions of the class Q and we choose the following:

$$
\left\{\begin{align*}
\rho_{0} & =\sigma, \tag{1}\\
\rho_{n+1} & =\left\{\begin{array}{l}
\left(a_{1}, \ldots, a_{k}\right), \text { where } a_{1}, \ldots ., a_{k} \text { are distinct } \\
\text { and } n+1=2^{a_{1}}+\ldots+2^{a_{k}}
\end{array}\right.
\end{align*}\right.
$$

The sequence $\left\langle\rho_{0}, \rho_{1}, \ldots\right\rangle$ is called the canonical enumeration of Q.

For every finite set σ there is exactly one number i such that $\sigma=\rho_{i}$; this number i is called the canonical index of σ and denoted by can (σ). Let $r_{n}=\operatorname{card}\left(\rho_{n}\right)$; then r_{n} is a recursive function of n. We define for $\alpha \subset \varepsilon, i \in \varepsilon$,

$$
\begin{equation*}
[\alpha ; i]=\left\{n \mid \rho_{n} \subset \alpha \text { and } r_{n}=i\right\} \tag{2}
\end{equation*}
$$

If e is the edge of a graph, we can characterize e by the two-element set of its endpoints. Every graph is therefore isomorphic to a graph of the form $\boldsymbol{G}=\langle\nu, \eta\rangle$, where

$$
\begin{equation*}
\nu \subset \varepsilon \text { and } \eta \subset[\nu ; 2] . \tag{3}
\end{equation*}
$$

Henceforth all graphs under consideration will satisfy (3). Thus, if the vertices a and b of 6 are adjacent, the edge e which joins them can be computed from a and b, since $e=\operatorname{can}(a, b)=2^{a}+2^{b}$. Conversely, given any edge e of $(\mathbb{G}$, we can compute its endpoints. The sets α and β are separable (written: $\alpha \mid \beta$) if they can be separated by disjoint r.e. sets. An α-graph can now be defined as a graph $\boldsymbol{6}=\langle\nu, \eta\rangle$ such that $\eta \mid[\nu ; 2]-\eta$.

If σ is any set, we write $(\sigma \times \sigma)^{\prime}$ for $\{\langle x, y\rangle \in \sigma \times \sigma \mid x<y\}$ and $(\sigma \times \sigma)^{-}$ for $\{\langle x, y\rangle \in \sigma \times \sigma \mid x \neq y\}$. The domain of a function f is denoted by δf. Let us write $\left\langle q_{0}, q_{1}, \ldots\right\rangle$ for the sequence of all odd primes, arranged according to size. For any finite sequence $\pi=\left\langle p_{0}, \ldots, p_{n}\right\rangle$ of numbers with $p_{0}<p_{n}$ we define the Gödel number $\boldsymbol{6}(\pi)$ by

$$
\begin{equation*}
\boldsymbol{G}(\pi)=2^{n+1} \prod_{i=0}^{n} q_{i}^{p_{i}} \tag{4}
\end{equation*}
$$

and the length $l(\pi)$ as n. If p and q are vertices of a graph $\boldsymbol{6}$, we denote their distance by $\mathrm{d}(p, q)$; thus, if $p<q$ and π is a minimal path from p to q, then $\mathrm{d}(p, q)=l(\pi)$.

Definition 1 The graph $\boldsymbol{6}=\langle\nu, \eta\rangle$ is an ω-graph if some function m such that
(i) $\delta m=(\nu \times \nu)^{\prime}$,
(ii) $m(p, q)=\boldsymbol{6}(\pi)$, for some minimal path π from p to q, has a partial recursive extension.

If $\boldsymbol{\epsilon}=\langle\nu, \eta\rangle$ is an ω-graph and m a function related to $\boldsymbol{\epsilon}$ as described in Definition 1, we have for $\langle p, q\rangle \in(\nu \times \nu)^{\prime}$,
(5) $\operatorname{con}(p, q) \in \eta \Leftrightarrow[4$ divides $m(p, q)$ and 8 does not divide $m(p, q)]$.

Thus every ω-graph is an α-graph. In Section 1 we defined α-bigraphs and ω-bigraphs. Thus every ω-bigraph is an α-bigraph. A graph $\mathbf{6}=\langle\nu, \eta\rangle$ is isolic if the sets ν and η are isolated, i.e., have no infinite r.e. subsets; ©s is immune if the sets ν and η are immune, i.e., both infinite and isolated.

3 Two propositions For a nonempty set σ we write $\boldsymbol{\Omega}_{\sigma}$ for the complete graph $\langle\sigma, \eta\rangle$ with $\eta=[\sigma ; 2]$. We immediately see that $\boldsymbol{\Omega}_{\sigma}$ is both an α-graph and an ω-graph. If α and β are disjoint nonempty sets, we write $\boldsymbol{\Omega}_{\alpha, \beta}$ for the complete bigraph on α and β, i.e., for the graph $\mathfrak{B}=\langle\nu, \eta\rangle$ such that $\nu=\alpha \cup \beta$ and for $\langle x, y\rangle \in(\nu \times \nu)^{-}$,

$$
\begin{equation*}
\operatorname{con}(x, y) \in \eta \Leftrightarrow(x \in \alpha \text { and } y \in \beta) \text { or }(x \in \beta \text { and } y \in \alpha) . \tag{6}
\end{equation*}
$$

Proposition 1 For disjoint nonempty sets α and β the following conditions are mutually equivalent:
(i) $\alpha \mid \beta$,
(ii) $\boldsymbol{\Omega}_{\alpha \beta}$ is an ω-bigraph,
(iii) $\boldsymbol{\Omega}_{\alpha \beta}$ is an α-bigraph.

Proof: Note that $\boldsymbol{\Omega}_{\alpha \beta}$ is connected, since α and β are nonempty. Let $a \in \alpha, b \in \beta$; throughout this proof a and b remain fixed. We already know that (ii) \Rightarrow (iii). To show that (i) \Rightarrow (ii), assume $\alpha \mid \beta$. Let us write $\mathcal{M}(x, y)$ for the family of all minimal paths between vertices x and y. We have for $x, y \in \alpha \cup \beta, x<y$,

$$
\begin{aligned}
& x, y \in \alpha \Rightarrow\langle x, b, y\rangle \in \mathcal{M}(x, y), \\
& x, y \in \beta \Longrightarrow\langle x, a, y\rangle \in \mathcal{M}(x, y), \\
& x \in \alpha \text { and } y \in \beta \Rightarrow\langle x, y\rangle \in \mathcal{M}(x, y), \\
& x \in \beta \text { and } y \in \alpha \Longrightarrow\langle x, y\rangle \in \mathcal{M}(x, y) .
\end{aligned}
$$

Since $\alpha \mid \beta$ we can effectively decide which of the four premisses holds; thus we can effectively find (the Gödel number of) a minimal path from x to y. Hence $\boldsymbol{\Omega}_{\alpha \beta}$ is an ω-bigraph. To establish (iii) $\Rightarrow(\mathrm{i})$, assume that $\boldsymbol{\Omega}_{\alpha \beta}$ is an α-bigraph. We have for $x \in \alpha \cup \beta$,

$$
\begin{aligned}
& x \in \alpha \Leftrightarrow x=a \text { or }[x \neq b \text { and } \operatorname{can}(x, b) \in \eta], \\
& x \in \beta \Leftrightarrow x=b \text { or }[x \neq a \text { and } \operatorname{can}(x, a) \in \eta] .
\end{aligned}
$$

It follows that $\alpha \mid \beta$ because we can effectively decide whether $x \in \alpha$ or $x \in \beta$. Proposition 2 Every ω-bigraph is an α-bigraph, but not conversely.
Proof: We only need to exhibit an α-bigraph $\mathfrak{B}=\langle\nu, \eta\rangle$ which is not an ω-bigraph. In our example \mathfrak{B} will be immune. For the definitions of regressive functions and regressive isols, see ([1], Section 3). It follows from ([1], p. 25) that there exist regressive functions s_{n} and t_{n} from ϵ into ϵ with ranges σ and τ respectively such that σ and τ are separable and immune, while the set $\sigma \cup \tau$ is immune, but not regressive. Define three classes of two-element sets by:

$$
E_{1}=\left\{\left(s_{n}, t_{n}\right)\right\}_{n \epsilon \mathcal{E}}, E_{2}=\left\{\left(s_{2 n+1}, s_{2 n+2}\right)\right\}_{n \epsilon \varepsilon}, E_{3}=\left\{\left(t_{2 n}, t_{2 n+1}\right)\right\}_{n \in \varepsilon} .
$$

Let $\mathfrak{B}=\langle\nu, \eta\rangle$ be the bigraph such that

$$
\begin{aligned}
& \alpha=\left(s_{0}, t_{1}, s_{2}, t_{3}, \ldots\right), \beta=\left(t_{0}, s_{1}, t_{2}, s_{3}, \ldots\right), \\
& \nu=\alpha \cup \beta, \eta=\left\{\operatorname{can}(x, y) \mid(x, y) \in E_{1} \cup E_{2} \cup E_{3}\right\} .
\end{aligned}
$$

Note that every edge of \mathfrak{B} joins a vertex in α and a vertex in β. Since the functions s_{n} and t_{n} are regressive, the functions r_{s} and r_{t} defined by

$$
\delta r_{s}=\sigma, r_{s}(x)=s^{-1}(x), \delta r_{t}=\tau, r_{t}(x)=t^{-1}(x)
$$

have partial recursive extensions. We claim that (a) $\boldsymbol{\mathcal { B }}$ is an α-bigraph and (b) \mathfrak{B} is not an ω-bigraph.
$\operatorname{Re}(\mathrm{a})$. Let $x, y \in \nu, x<y$. We distinguish four cases.

Figure 1.

$$
\text { (I) } x, y \in \sigma, \quad \text { (II) } x, y \in \tau, \quad \text { (III) } x \in \sigma, y \in \tau, \quad \text { (IV) } x \in \tau, y \in \sigma .
$$

In view of $\sigma^{\prime} \tau$ we can decide which of these four cases holds. Moreover,
if (I), $\quad \operatorname{con}(x, y) \in \eta \Leftrightarrow \min \left[r_{s}(x), r_{s}(y)\right]$ odd and $\left|r_{s}(x)-r_{s}(y)\right|=1$,
if (II), $\operatorname{con}(x, y) \in \eta \Leftrightarrow \min \left[r_{t}(x), r_{t}(y)\right]$ even and $\left|r_{t}(x)-r_{t}(y)\right|=1$,
if (III), $\operatorname{can}(x, y) \in \eta \Leftrightarrow r_{s}(x)=r_{t}(y)$,
if (IV), $\operatorname{con}(x, y) \in \eta \Leftrightarrow r_{t}(x)=r_{s}(y)$.
The numbers $r_{s}(x), r_{s}(y), r_{t}(x), r_{t}(y)$ can be computed from x and y; hence η is separable from $[\nu ; 2]-\eta$, i.e., \mathfrak{B} is an α-bigraph. Moreover, $\operatorname{Req} \eta \leqslant$ Req $[\nu ; 2]$; thus, since ν is immune and η infinite, the set η is also immune. We conclude that \mathfrak{B} is an immune α-bigraph.
$R e(b)$. If \mathfrak{B} were an ω-bigraph, we could, given any vertex x of \mathfrak{B} different from s_{0}, compute the unique (hence minimal) path which joins x and s_{0}. Then the enumeration $s_{0}, t_{0}, t_{1}, s_{1}, s_{2}, \ldots$ of the set $\alpha \cup \beta=\sigma \cup \tau$ would be regressive. However, the set $\sigma \cup \tau$ is not regressive; hence \mathfrak{B} is not an ω-bigraph.

Remark: Note that \boldsymbol{B} is a tree, in fact, a one-way infinite path. Thus there exists an immune α-tree which is not an ω-tree.

4 Projective bigraphs

Definition 2 A projective plane is an ordered triple $\Pi=\langle\alpha, \lambda$, inc. \rangle consisting of two disjoint sets α and λ and an incidence relation inc. so that the three classical axioms hold.

The elements of α are called the points, those of λ the lines of Π. With every projective plane $\Pi=\langle\alpha, \lambda$, inc. \rangle we associate the functions L and P :

$$
\begin{aligned}
\delta L & =(\alpha \times \alpha)^{-}, \delta P=(\lambda \times \lambda)^{-}, \\
L(a, b) & =\text { the line through } a \text { and } b, \\
P(l, m) & =\text { the point in which } l \text { and } m \text { intersect. }
\end{aligned}
$$

We also write $a \cdot b$ for $L(a, b)$ and $l \cap m$ for $P(l, m)$.
Definition 3 A projective ω-plane is a projective plane $\Pi=\langle\alpha, \lambda$, inc. \rangle,
where $\alpha \mid \lambda$ and the functions L and P have partial recursive extensions. Π is called isolic (immune), if the sets α and λ are isolated (immune).

Definition 4 A projective bigraph is a graph $\mathfrak{B}=\langle\nu, \eta\rangle$ for which there exist sets α and λ such that
(a) $\nu=\alpha \cup \lambda$, where α and λ are disjoint,
(b) $\operatorname{con}(x, y) \in \eta \Rightarrow[x \in \alpha$ and $y \in \lambda]$ or $[x \in \lambda$ and $y \in \alpha]$,
(c) the relation inc. defined by:

$$
x \text { inc. } y \Leftrightarrow \operatorname{can}(x, y) \in \eta \text {, for } x, y \in \nu \text {, }
$$

is such that $\Pi=\langle\alpha, \lambda$, inc. \rangle is a projective plane.
If the projective bigraph \mathfrak{B} and the projective plane Π are related in this manner and $\min (\alpha \cup \lambda) \in \alpha$, we say that \mathfrak{B} and Π are associated. The condition $\min (\alpha \cup \lambda) \in \alpha$ guarantees that α and λ are uniquely determined by the bigraph \mathfrak{B} and cannot be interchanged. Note that every projective bigraph is connected.

Proposition 3 Let the projective plane $\Pi=\langle\alpha, \lambda$, inc. \rangle and the projective bigraph $\mathfrak{B}=\langle\nu, \eta\rangle$ be associated. Then Π is a projective ω-plane if and only if \mathfrak{B} is an ω-bigraph.

Proof: Assume the hypothesis.
(a) Suppose that Π is a projective ω-plane. Choose distinct elements $a, b \in \alpha$; from now on we keep a and b fixed. Let p and q be distinct vertices of \mathfrak{B}, say, $p<q$. We distinguish four cases. Since $\alpha \mid \lambda$ we can effectively decide which of these four cases holds.

Case $1 p, q \in \alpha$. Then $\mathrm{d}(p, q)=2$, for if $p \cdot q=r$, the path $\langle p, r, q\rangle$ is a minimal path from p to q. Since $r=L(p, q)$ can be computed from p and q, so can the path $\langle p, r, q\rangle$.

Case $2 p, q \in \lambda$. If $s=p \cap q$, the minimal path $\langle p, s, q\rangle$ from p to q can be computed from p and q.

Case $3 p \in \alpha, q \in \lambda$. Then

$$
\mathrm{d}(p, q)=\left\{\begin{array}{l}
1, \text { if } p \text { inc. } q \\
3, \text { if } \operatorname{not}[p \text { inc. } q] .
\end{array}\right.
$$

If p inc. $q,\langle p, q\rangle$ is the only minimal path from p to q. Suppose $\operatorname{not}[p$ inc. $q]$ and assume $p \neq a$. Define $s=(p \cdot a) \cap q$. Then $\langle p, p \cdot a, s, q\rangle$ is a minimal path from p to q; it can be computed from p and q, because P and L have partial recursive extensions. If $p=a$, put $s=(p \cdot b) \cap q$; then $\langle p, p \cdot b, s, q\rangle$ is a minimal path. Given p and q we can by [2, §3, (e)] effectively decide whether p inc. q. Hence we can compute a minimal path from p to q.

Case $4 p \in \lambda, q \in \alpha$. This is the dual of Case 3.
(b) Suppose that $\mathfrak{B}=\langle\nu, \eta\rangle$ is a projective ω-bigraph. Let α and λ be related to ν as described in Definition 4 and let $\min (\alpha \cup \lambda) \in \alpha$. We wish to prove:
(i) $\alpha \mid \lambda$, (ii) the function P has a partial recursive extension, (iii) the function L has a partial recursive extension. Note that (ii) is the dual of (iii). Let $x=\min (\alpha \cup \lambda)$. Then $x \in \alpha$ and for $y \in(\alpha \cup \lambda)-(x)$ we have: $y \in \alpha \Leftrightarrow \mathrm{~d}(x, y)=2$. Since \mathfrak{B} is an ω-graph we can compute $\mathrm{d}(x, y)$; thus $\alpha \mid \lambda$. We now prove (iii). Let p and q be distinct points of Π with $p<q$. Then there is exactly one vertex x of \mathfrak{B} so that $\operatorname{can}(p, x)$ and can (q, x) belong to η, say, $x=r$; moreover, $r=L(p, q)$. The only minimal path from p to q is $\langle p, r, q\rangle$. Since $\langle p, r, q\rangle$ can be computed from p and q, so can $r=L(p, q)$. Thus L has a partial recursive extension.

Let the projective ω-bigraph $\mathfrak{B}=\langle\nu, \eta\rangle$ and the projective ω-plane $\Pi=\langle\alpha, \lambda$, inc. \rangle be associated. For $p \in \alpha, l \in \lambda$ we define α_{l} as the set of all points on l and λ_{p} as the set of all lines through p. By ([2], p. 2) there is a unique recursive equivalence type [see 1 , Section 1] \mathcal{M} such that

$$
\begin{gathered}
\operatorname{Req} \alpha_{l}=\operatorname{Req} \lambda_{p}=\mathcal{M}+1, \text { for all } p \in \alpha, l \in \lambda, \\
\operatorname{Req} \alpha=\operatorname{Req} \lambda=\mathcal{M}^{2}+\mathcal{M}+1,
\end{gathered}
$$

the so-called order of Π. It follows that

$$
\begin{aligned}
\operatorname{Req} \nu= & \operatorname{Req}(\alpha \cup \lambda)=2 \operatorname{Req}(\alpha)=2\left(\mathcal{M}^{2}+\mathcal{M}+1\right), \\
& \operatorname{Req} \eta=(\mathcal{M}+1)\left(\mathcal{M}^{2}+\mathcal{M}+1\right) .
\end{aligned}
$$

Clearly, $\mathcal{M} \leqslant \mathcal{M}^{2}+\mathcal{M}+1$. Thus, if we write Λ for the collection of all isols, we have

$$
\begin{gathered}
\Pi \text { isolic } \Rightarrow \mathcal{M} \in \Lambda \Rightarrow \operatorname{Req} \nu, \operatorname{Req} \eta \epsilon \Lambda \Rightarrow \boldsymbol{B} \text { isolic }, \\
\mathfrak{B} \text { isolic } \Rightarrow 2\left(\mathcal{M}^{2}+\mathcal{M}+1\right) \in \Lambda \Rightarrow \mathcal{M} \in \Lambda \Rightarrow \text { Iisolic. }
\end{gathered}
$$

Also, Π is infinite if and only if \mathfrak{B} is infinite, so that

$$
\begin{equation*}
\text { I immune } \Leftrightarrow \boldsymbol{B} \text { immune. } \tag{7}
\end{equation*}
$$

Proposition 4 There are exactly $\mathbf{c} \omega$-bigraphs. Among these exactly \mathbf{c} are immипе.

Proof: Every graph is of the form $\boldsymbol{6}=\langle\nu, \eta\rangle$, where $\nu, \eta \subset \varepsilon$; hence there are at most \mathbf{c} graphs and at most $\mathbf{c} \omega$-bigraphs. Thus we only need to show that there are at least \mathbf{c} immune ω-bigraphs. It follows from ([2], p.7) that there exists a family of \mathbf{c} immune ω-planes which are mutually nonisomorphic. We may assume that all these planes satisfy $\min (\alpha \cup \lambda) \in \alpha$, since every immune ω-plane is isomorphic to an immune ω-plane in which $o \in \alpha$. Using (7) we conclude that there are at least \mathbf{c} immune ω-bigraphs.

Acknowledgement We wish to thank Dr. A. Silverstein for her careful reading of the manuscript and her criticisms.

REFERENCES

[1] Dekker, J. C. E., "Regressive isols," in Crossley, J. N., ed., "Sets, models and recursion theory," North Holland, Amsterdam, 1967, pp. 272-296.
[2] Dekker, J. C. E., "Projective planes of infinite, but isolic order," The Journal of Symbolic Logic, vol. 41 (1976), pp. 391-404.
[3] Dekker, J. C. E., "Twilight graphs," in preparation.
[4] Harary, F., "Graph theory," Addison-Wesley, Reading, Mass., 1969.

The Institute for Advanced Study
Princeton, New Jersey
and
Rutgers, The State University
New Brunswick, New Jersey

