PROJECTIVE BIGRAPHS WITH RECURSIVE OPERATIONS

J. C. E. DEKKER

1 Introduction All graphs under consideration will be undirected, simple (i.e., without loops or multiple edges), countable and connected. In [3] two effectiveness conditions were discussed for graphs $\mathfrak{G} = \langle \nu, \eta \rangle$, where ν (the set of vertices) and η (the set of edges) are subsets of ε (the set of nonnegative integers). \mathfrak{G} is called an α -graph if there is an effective procedure which enables us to decide, given any two distinct vertices p and and q of \mathfrak{G} , whether they are adjacent, i.e., joined by an edge. On the other hand, \mathfrak{G} is an ω -graph if there is an effective procedure which enables us, given any two distinct vertices p and q of \mathfrak{G} , to find a minimal path joining p and q. Note that p and q are adjacent if and only if the (only) minimal path which joins them has length one. We see therefore that every ω -graph is an α -graph. It will be shown below that the converse is false.

The present paper deals with bigraphs, i.e., graphs of the type $\mathfrak{B} = \langle \nu, \eta \rangle$, where ν can be decomposed into two disjoint nonempty sets α and β such that every edge of \mathfrak{B} joins a vertex in α and a vertex in β . We call \mathfrak{B} an α -bigraph (ω -bigraph) if it is both an α -graph (ω -graph) and a bigraph. In [2] the notion of a projective ω -plane was introduced. Projective planes correspond in a natural manner to certain bigraphs, the so-called projective bigraphs. Our main result is that under this correspondence ω -planes correspond to ω -bigraphs.

2 Preliminaries We consider nonnegative integers (mumbers), collections of numbers (sets) and collections of sets (classes). The empty set of numbers is denoted by σ , the set of all numbers by ε , and the class of all finite sets by Q. We write \subset for inclusion (proper or not), and \mathbf{c} for the cardinality of the continuum. We need an effective enumeration without repetitions of the class Q and we choose the following:

(1)
$$\begin{cases} \rho_0 = \sigma, \\ \rho_{n+1} = \begin{cases} (a_1, \dots, a_k), \text{ where } a_1, \dots, a_k \text{ are distinct} \\ \text{and } n+1 = 2^{a_1} + \dots + 2^{a_k}. \end{cases}$$

The sequence $\langle \rho_0, \rho_1, \ldots \rangle$ is called the *canonical enumeration* of Q.

For every finite set σ there is exactly one number i such that $\sigma = \rho_i$; this number i is called the *canonical index* of σ and denoted by $can(\sigma)$. Let $r_n = card(\rho_n)$; then r_n is a recursive function of n. We define for $\alpha \subseteq \varepsilon$, $i \in \varepsilon$,

(2)
$$[\alpha; i] = \{n \mid \rho_n \subseteq \alpha \text{ and } r_n = i\}.$$

If e is the edge of a graph, we can characterize e by the two-element set of its endpoints. Every graph is therefore isomorphic to a graph of the form $\mathfrak{G} = \langle \nu, \eta \rangle$, where

(3)
$$\nu \subseteq \varepsilon \text{ and } \eta \subseteq [\nu; 2].$$

Henceforth all graphs under consideration will satisfy (3). Thus, if the vertices a and b of $\mathfrak G$ are adjacent, the edge e which joins them can be computed from a and b, since $e = \operatorname{con}(a, b) = 2^a + 2^b$. Conversely, given any edge e of $\mathfrak G$, we can compute its endpoints. The sets a and b are separable (written: $a \mid b$) if they can be separated by disjoint r.e. sets. An a-graph can now be defined as a graph $\mathfrak G = \langle \nu, \eta \rangle$ such that $\eta \mid [\nu; 2] - \eta$.

If σ is any set, we write $(\sigma \times \sigma)'$ for $\{\langle x, y \rangle \in \sigma \times \sigma \mid x < y\}$ and $(\sigma \times \sigma)^-$ for $\{\langle x, y \rangle \in \sigma \times \sigma \mid x \neq y\}$. The domain of a function f is denoted by δf . Let us write $\langle q_0, q_1, \ldots \rangle$ for the sequence of all odd primes, arranged according to size. For any finite sequence $\pi = \langle p_0, \ldots, p_n \rangle$ of numbers with $p_0 < p_n$ we define the Gödel number $\mathfrak{G}(\pi)$ by

(4)
$$\mathfrak{G}(\pi) = 2^{n+1} \prod_{i=0}^{n} q_i^{p_i},$$

and the *length* $l(\pi)$ as n. If p and q are vertices of a graph \mathfrak{G} , we denote their distance by d(p,q); thus, if p < q and π is a minimal path from p to q, then $d(p,q) = l(\pi)$.

Definition 1 The graph $\mathfrak{G} = \langle \nu, \eta \rangle$ is an ω -graph if some function m such that

- (i) $\delta m = (\nu \times \nu)'$,
- (ii) $m(p,q) = \mathfrak{G}(\pi)$, for some minimal path π from p to q, has a partial recursive extension.

If $\mathfrak{G} = \langle \nu, \eta \rangle$ is an ω -graph and m a function related to \mathfrak{G} as described in Definition 1, we have for $\langle p, q \rangle \epsilon$ ($\nu \times \nu$)',

(5)
$$can(p,q) \in \eta \iff [4 \text{ divides } m(p,q) \text{ and } 8 \text{ does not divide } m(p,q)].$$

Thus every ω -graph is an α -graph. In Section 1 we defined α -bigraphs and ω -bigraphs. Thus every ω -bigraph is an α -bigraph. A graph $\mathfrak{G} = \langle \nu, \eta \rangle$ is isolic if the sets ν and η are isolated, i.e., have no infinite r.e. subsets; \mathfrak{G} is immune if the sets ν and η are immune, i.e., both infinite and isolated.

3 Two propositions For a nonempty set σ we write \Re_{σ} for the complete graph $\langle \sigma, \eta \rangle$ with $\eta = [\sigma; 2]$. We immediately see that \Re_{σ} is both an α -graph and an ω -graph. If α and β are disjoint nonempty sets, we write $\Re_{\alpha,\beta}$ for the complete bigraph on α and β , i.e., for the graph $\mathfrak{B} = \langle \nu, \eta \rangle$ such that $\nu = \alpha \cup \beta$ and for $\langle x, y \rangle \in (\nu \times \nu)^-$,

(6)
$$\operatorname{con}(x, y) \in \eta \iff (x \in \alpha \text{ and } y \in \beta) \text{ or } (x \in \beta \text{ and } y \in \alpha).$$

Proposition 1 For disjoint nonempty sets α and β the following conditions are mutually equivalent:

- (i) $\alpha \mid \beta$,
- (ii) $\Re_{\alpha\beta}$ is an ω -bigraph,
- (iii) $\Re_{\alpha\beta}$ is an α -bigraph.

Proof: Note that $\Re_{\alpha\beta}$ is connected, since α and β are nonempty. Let $a \in \alpha$, $b \in \beta$; throughout this proof a and b remain fixed. We already know that (ii) \Rightarrow (iii). To show that (i) \Rightarrow (ii), assume $\alpha \mid \beta$. Let us write $\mathcal{M}(x, y)$ for the family of all minimal paths between vertices x and y. We have for $x, y \in \alpha \cup \beta$, x < y,

$$x, y \in \alpha \Longrightarrow \langle x, b, y \rangle \in \mathcal{M}(x, y),$$

 $x, y \in \beta \Longrightarrow \langle x, a, y \rangle \in \mathcal{M}(x, y),$
 $x \in \alpha \text{ and } y \in \beta \Longrightarrow \langle x, y \rangle \in \mathcal{M}(x, y),$
 $x \in \beta \text{ and } y \in \alpha \Longrightarrow \langle x, y \rangle \in \mathcal{M}(x, y).$

Since $\alpha \mid \beta$ we can effectively decide which of the four premisses holds; thus we can effectively find (the Gödel number of) a minimal path from x to y. Hence $\Re_{\alpha\beta}$ is an ω -bigraph. To establish (iii) \Longrightarrow (i), assume that $\Re_{\alpha\beta}$ is an α -bigraph. We have for $x \in \alpha \cup \beta$,

$$x \in \alpha \iff x = a \text{ or } [x \neq b \text{ and } con(x, b) \in \eta],$$

 $x \in \beta \iff x = b \text{ or } [x \neq a \text{ and } con(x, a) \in \eta].$

It follows that $\alpha \mid \beta$ because we can effectively decide whether $x \in \alpha$ or $x \in \beta$.

Proposition 2 Every ω -bigraph is an α -bigraph, but not conversely.

Proof: We only need to exhibit an α -bigraph $\mathfrak{B} = \langle \nu, \eta \rangle$ which is not an ω -bigraph. In our example \mathfrak{B} will be immune. For the definitions of regressive functions and regressive isols, see ([1], Section 3). It follows from ([1], p. 25) that there exist regressive functions s_n and t_n from ϵ into ϵ with ranges σ and τ respectively such that σ and τ are separable and immune, while the set $\sigma \cup \tau$ is immune, but not regressive. Define three classes of two-element sets by:

$$E_1 = \{(s_n, t_n)\}_{n \in \mathbb{E}}, E_2 = \{(s_{2n+1}, s_{2n+2})\}_{n \in \mathbb{E}}, E_3 = \{(t_{2n}, t_{2n+1})\}_{n \in \mathbb{E}}.$$

Let $\mathfrak{B} = \langle \nu, \eta \rangle$ be the bigraph such that

$$\alpha = (s_0, t_1, s_2, t_3, \ldots), \beta = (t_0, s_1, t_2, s_3, \ldots), \\ \nu = \alpha \cup \beta, \eta = \{can(x, y) | (x, y) \in E_1 \cup E_2 \cup E_3\}.$$

Note that every edge of \mathfrak{B} joins a vertex in α and a vertex in β . Since the functions s_n and t_n are regressive, the functions r_s and r_t defined by

$$\delta r_s = \sigma, \ r_s(x) = s^{-1}(x), \ \delta r_t = \tau, \ r_t(x) = t^{-1}(x),$$

have partial recursive extensions. We claim that (a) $\mathfrak B$ is an α -bigraph and (b) $\mathfrak B$ is not an ω -bigraph.

Re(a). Let $x, y \in \nu, x < y$. We distinguish four cases.

Figure 1.

(I)
$$x, y \in \sigma$$
, (II) $x, y \in \tau$, (III) $x \in \sigma$, $y \in \tau$, (IV) $x \in \tau$, $y \in \sigma$.

In view of $\sigma^{\dagger}\tau$ we can decide which of these four cases holds. Moreover,

if (I),
$$can(x, y) \in \eta \Leftrightarrow min[r_s(x), r_s(y)]$$
 odd and $|r_s(x) - r_s(y)| = 1$,

if (II),
$$con(x, y) \in \eta \iff min[r_t(x), r_t(y)]$$
 even and $|r_t(x) - r_t(y)| = 1$,

if (III),
$$can(x, y) \in \eta \iff r_s(x) = r_t(y)$$
,

if (IV),
$$can(x, y) \in \eta \iff r_t(x) = r_s(y)$$
.

The numbers $r_s(x)$, $r_s(y)$, $r_t(x)$, $r_t(y)$ can be computed from x and y; hence η is separable from $[\nu; 2] - \eta$, i.e., $\mathfrak B$ is an α -bigraph. Moreover, Req $\eta \leq \text{Req}[\nu; 2]$; thus, since ν is immune and η infinite, the set η is also immune. We conclude that $\mathfrak B$ is an immune α -bigraph.

Re (b). If $\mathfrak B$ were an ω -bigraph, we could, given any vertex x of $\mathfrak B$ different from s_0 , compute the unique (hence minimal) path which joins x and s_0 . Then the enumeration s_0 , t_0 , t_1 , s_1 , s_2 , . . . of the set $\alpha \cup \beta = \sigma \cup \tau$ would be regressive. However, the set $\sigma \cup \tau$ is not regressive; hence $\mathfrak B$ is not an ω -bigraph.

Remark: Note that \mathfrak{B} is a tree, in fact, a one-way infinite path. Thus there exists an immune α -tree which is not an ω -tree.

4 Projective bigraphs

Definition 2 A *projective plane* is an ordered triple $\Pi = \langle \alpha, \lambda, \text{inc.} \rangle$ consisting of two disjoint sets α and λ and an incidence relation inc. so that the three classical axioms hold.

The elements of α are called the *points*, those of λ the *lines* of Π . With every projective plane $\Pi = \langle \alpha, \lambda, \text{inc.} \rangle$ we associate the functions L and P:

$$\delta L = (\alpha \times \alpha)^{-}, \ \delta P = (\lambda \times \lambda)^{-},$$

 $L(a, b) = \text{the line through } a \text{ and } b,$
 $P(l, m) = \text{the point in which } l \text{ and } m \text{ intersect.}$

We also write $a \cdot b$ for L(a, b) and $l \cap m$ for P(l, m).

Definition 3 A projective ω -plane is a projective plane $\Pi = \langle \alpha, \lambda, \text{ inc.} \rangle$,

where $\alpha \mid \lambda$ and the functions L and P have partial recursive extensions. Π is called *isolic* (*immune*), if the sets α and λ are isolated (immune).

Definition 4 A *projective bigraph* is a graph $\mathfrak{B} = \langle \nu, \eta \rangle$ for which there exist sets α and λ such that

- (a) $\nu = \alpha \cup \lambda$, where α and λ are disjoint,
- (b) $can(x, y) \in \eta \Longrightarrow [x \in \alpha \text{ and } y \in \lambda] \text{ or } [x \in \lambda \text{ and } y \in \alpha],$
- (c) the relation inc. defined by:

$$x \text{ inc. } y \iff \operatorname{can}(x, y) \in \eta, \text{ for } x, y \in \nu,$$

is such that $\Pi = \langle \alpha, \lambda, \text{ inc.} \rangle$ is a projective plane.

If the projective bigraph $\mathfrak B$ and the projective plane Π are related in this manner and $\min(\alpha \cup \lambda) \in \alpha$, we say that $\mathfrak B$ and Π are associated. The condition $\min(\alpha \cup \lambda) \in \alpha$ guarantees that α and λ are uniquely determined by the bigraph $\mathfrak B$ and cannot be interchanged. Note that every projective bigraph is connected.

Proposition 3 Let the projective plane $\Pi = \langle \alpha, \lambda, \text{ inc.} \rangle$ and the projective bigraph $\mathfrak{B} = \langle \nu, \eta \rangle$ be associated. Then Π is a projective ω -plane if and only if \mathfrak{B} is an ω -bigraph.

Proof: Assume the hypothesis.

(a) Suppose that Π is a projective ω -plane. Choose distinct elements a, $b \in \alpha$; from now on we keep a and b fixed. Let b and a be distinct vertices of a, say, a, a, we can effectively decide which of these four cases holds.

Case 1 p, $q \in \alpha$. Then d(p, q) = 2, for if $p \cdot q = r$, the path $\langle p, r, q \rangle$ is a minimal path from p to q. Since r = L(p, q) can be computed from p and q, so can the path $\langle p, r, q \rangle$.

Case 2 p, $q \in \lambda$. If $s = p \cap q$, the minimal path $\langle p, s, q \rangle$ from p to q can be computed from p and q.

Case 3 $p \in \alpha$, $q \in \lambda$. Then

$$d(p, q) = \begin{cases} 1, & \text{if } p \text{ inc. } q, \\ 3, & \text{if } \text{not}[p \text{ inc. } q]. \end{cases}$$

If p inc. q, $\langle p, q \rangle$ is the only minimal path from p to q. Suppose not [p] inc. [q] and assume $p \neq a$. Define $s = (p \cdot a) \cap q$. Then $\langle p, p \cdot a, s, q \rangle$ is a minimal path from p to q; it can be computed from p and q, because P and P have partial recursive extensions. If p = a, put $s = (p \cdot b) \cap q$; then $\langle p, p \cdot b, s, q \rangle$ is a minimal path. Given p and q we can by $[2, \S 3, (e)]$ effectively decide whether p inc. q. Hence we can compute a minimal path from p to q.

Case 4 $p \in \lambda$, $q \in \alpha$. This is the dual of Case 3.

(b) Suppose that $\mathfrak{B} = \langle \nu, \eta \rangle$ is a projective ω -bigraph. Let α and λ be related to ν as described in Definition 4 and let $\min(\alpha \cup \lambda) \in \alpha$. We wish to prove:

(i) $\alpha \mid \lambda$, (ii) the function P has a partial recursive extension, (iii) the function L has a partial recursive extension. Note that (ii) is the dual of (iii). Let $x = \min(\alpha \cup \lambda)$. Then $x \in \alpha$ and for $y \in (\alpha \cup \lambda) - (x)$ we have: $y \in \alpha \Leftrightarrow d(x, y) = 2$. Since $\mathfrak B$ is an ω -graph we can compute d(x, y); thus $\alpha \mid \lambda$. We now prove (iii). Let p and q be distinct points of Π with p < q. Then there is exactly one vertex x of $\mathfrak B$ so that $\operatorname{can}(p, x)$ and $\operatorname{can}(q, x)$ belong to η , say, x = r; moreover, r = L(p, q). The only minimal path from p to q is p, p, p. Since p, p, p can be computed from p and p, so $\operatorname{can}(p, q)$. Thus p has a partial recursive extension.

Let the projective ω -bigraph $\mathfrak{B} = \langle \nu, \eta \rangle$ and the projective ω -plane $\Pi = \langle \alpha, \lambda, \text{inc.} \rangle$ be associated. For $p \in \alpha$, $l \in \lambda$ we define α_l as the set of all points on l and λ_p as the set of all lines through p. By ([2], p. 2) there is a unique recursive equivalence type [see 1, Section 1] \mathcal{M} such that

$$\begin{aligned} \operatorname{Req} \alpha_l &= \operatorname{Req} \lambda_p = \mathcal{M} + 1, \text{ for all } p \in \alpha, \ l \in \lambda, \\ \operatorname{Req} \alpha &= \operatorname{Req} \lambda = \mathcal{M}^2 + \mathcal{M} + 1, \end{aligned}$$

the so-called *order* of Π . It follows that

Req
$$\nu = \text{Req}(\alpha \cup \lambda) = 2 \text{Req}(\alpha) = 2(\mathcal{M}^2 + \mathcal{M} + 1),$$

Req $\eta = (\mathcal{M} + 1)(\mathcal{M}^2 + \mathcal{M} + 1).$

Clearly, $\mathcal{M} \leq \mathcal{M}^2 + \mathcal{M} + 1$. Thus, if we write Λ for the collection of all isols, we have

Π isolic
$$\Rightarrow$$
 \mathcal{M} ϵ Λ \Rightarrow Req ν , Req η ϵ Λ \Rightarrow \mathfrak{B} isolic, \mathfrak{B} isolic \Rightarrow 2(\mathcal{M}^2 + \mathcal{M} + 1) ϵ Λ \Rightarrow \mathcal{M} ϵ Λ \Rightarrow Πisolic.

Also, II is infinite if and only if 3 is infinite, so that

(7)
$$\Pi$$
 immune $\Leftrightarrow \mathfrak{B}$ immune.

Proposition 4 There are exactly \mathfrak{e} ω -bigraphs. Among these exactly \mathfrak{e} are immune.

Proof: Every graph is of the form $\mathfrak{G} = \langle \nu, \eta \rangle$, where $\nu, \eta \subseteq \epsilon$; hence there are at most \mathfrak{e} graphs and at most \mathfrak{e} ω -bigraphs. Thus we only need to show that there are at least \mathfrak{e} immune ω -bigraphs. It follows from ([2], p. 7) that there exists a family of \mathfrak{e} immune ω -planes which are mutually nonisomorphic. We may assume that all these planes satisfy $\min(\alpha \cup \lambda) \in \alpha$, since every immune ω -plane is isomorphic to an immune ω -plane in which $o \in \alpha$. Using (7) we conclude that there are at least \mathfrak{e} immune ω -bigraphs.

Acknowledgement We wish to thank Dr. A. Silverstein for her careful reading of the manuscript and her criticisms.

REFERENCES

[1] Dekker, J. C. E., "Regressive isols," in Crossley, J. N., ed., "Sets, models and recursion theory," North Holland, Amsterdam, 1967, pp. 272-296.

- [2] Dekker, J. C. E., "Projective planes of infinite, but isolic order," *The Journal of Symbolic Logic*, vol. 41 (1976), pp. 391-404.
- [3] Dekker, J. C. E., "Twilight graphs," in preparation.
- [4] Harary, F., "Graph theory," Addison-Wesley, Reading, Mass., 1969.

The Institute for Advanced Study Princeton, New Jersey

and

Rutgers, The State University New Brunswick, New Jersey