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PROJECTIVE BIGRAPHS WITH RECURSIVE OPERATIONS

J. C. E. DEKKER

1 Introduction All graphs under consideration will be undirected,
simple (i.e., without loops or multiple edges), countable and connected. In
[3] two effectiveness conditions were discussed for graphs G* = (v, η), where
v (the set of vertices) and η (the set of edges) are subsets of ε (the set of
nonnegative integers). © is called an a-graph if there is an effective
procedure which enables us to decide, given any two distinct vertices p and
and q of d*, whether they are adjacent, i.e., joined by an edge. On the other
hand, ® is an ω-graph if there is an effective procedure which enables us,
given any two distinct vertices p and q of <£$, to find a minimal path joining
p and q. Note that p and q are adjacent if and only if the (only) minimal
path which joins them has length one. We see therefore that every ω-graph
is an a-graph. It will be shown below that the converse is false.

The present paper deals with bigraphs, i.e., graphs of the type
53 = (v, 77), where v can be decomposed into two disjoint nonempty sets a and
β such that every edge of 53 joins a vertex in a and a vertex in β. We call 53
an a-bigraph (ω-bigraph) if it is both an α-graph (ω-graph) and a bigraph.
In [2] the notion of a projective ω-plane was introduced. Projective planes
correspond in a natural manner to certain bigraphs, the so-called projec-
tive bigraphs. Our main result is that under this correspondence ω-planes
correspond to ω-bigraphs.

2 Preliminaries We consider nonnegative integers {numbers), collec-
tions of numbers {sets) and collections of sets {classes). The empty set of
numbers is denoted by σ, the set of all numbers by ε, and the class of all
finite sets by Q. We write c for inclusion (proper or not), and c for the
cardinality of the continuum. We need an effective enumeration without
repetitions of the class Q and we choose the following:

!

Po = or,

\{au . . ., ak), where al9 . . ., ak are distinct
pn+ι~ [and n+ 1 = 2β l + . . . + 2β*.

The sequence (p0, pl9 . . .) is called the canonical enumeration of Q.
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For every finite set σ there is exactly one number i such that σ = p,; this
number i is called the canonical index of σ and denoted by cαn(σ). Let
rn = cαrd(ρw); then rn is a recursive function of n. We define for a c ε, i e ε,

(2) [a; i] = {w |p w c a and rn = ί}

If e is the edge of a graph, we can characterize e by the two-element
set of its endpoints. Every graph is therefore isomorphic to a graph of the
form d* = (v, 77), where

(3) v c ε and 77 c [u; 2].

Henceforth all graphs under consideration will satisfy (3). Thus, if the
vertices a and b of <$f are adjacent, the edge e which joins them can be
computed from a and δ, since e = cαn(α, δ) = 2a + 2b. Conversely, given any
edge e of®, we can compute its endpoints. The sets a and β are separable
(written: a\β) if they can be separated by disjoint r .e. sets. An a-graph
can now be defined as a graph © = (v, 77) such that 77 \\y\ 2] - 77.

If σ is any set, we write (σ x σ)f for {(x, y) e σ x σ\x < y} and (σ x σ)~
for {(x, y) e σ x σ I x Φ y}. The domain of a function / is denoted by δf. Let
us write (q0, qu . . .) for the sequence of all odd primes, arranged
according to size. For any finite sequence π = (p0, . . ., pn) of numbers with
po < Pn w e define the Go del number ®(π) by

n

(4) @(τr) = 2 w + 1 Π ^ %

and the length l(π) as w. If /> and # are vertices of a graph®, we denote
their distance by ό(p, q); thus, if p < q and π is a minimal path from /> to q,
then d(/>,tf) = Z(τr).

Definition 1 The graph © = <i/, 77) is an ω-graph if some function m such
that

(i) δm = (v x i/)r,
(ii) m(p,q) =d*(π), for some minimal path π from >̂ to q, has a partial
recursive extension.

li ® = (v, η) is an ω-graph and m a function related to 0$ as described in
Definition 1, we have for (pt a) e (v x v)',

(5) cαn(/>, ̂ ) e 77<=Ξ> [4 divides m(p, ̂ ) and 8 does not divide m{p, q)].

Thus every ω-graph is an a-graph. In Section 1 we defined α?-bigraphs and
co-bigraphs. Thus every ω-bigraph is an a-bigraph. A graph <£*= (u, η) is
isolic if the sets v and η are isolated, i.e., have no infinite r.e. subsets; <£*
is immune if the sets v and 77 are immune, i.e., both infinite and isolated.

3 Two propositions For a nonempty set σ we write ®σ for the complete
graph (σ, r?> with η = [σ; 2]. We immediately see that $lσ is both an α-graph
and an ω-graph. If a and β are disjoint nonempty sets, we write $tα#j3 for the
complete bigraph on a and β, i.e., for the graph 53 = (1/, 77) such that
v = a U β and for (x, y) e (v x i/)~,

(6) can (AT, 3;) € 77 <£=> (# e a and 3; e β) or (x e β and yea).
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Proposition 1 For disjoint nonempty sets a and β the following conditions
are mutually equivalent:

(i) a\β,
(ii) ίlaβ is an ω- bigraph,
(iii) ^aβ is an a-bigraph.

Proof: Note that Uaβ is connected, since a and β are nonempty. Let
αeα, beβ; throughout this proof a and b remain fixed. We already know
that (ii) =^>(iii). To show that (i) =Φ>(ii), assume a\β. Let us writeM(x,y)
for the family of all minimal paths between vertices x and y. We have for
x, y e a U β, x < y,

xy y e a => (x, by y) e M{x\ y),

x, y e β => (x, a, y) e M{xy y),

xea and 3; e β =#>(#, y) e_M(x, y),

x e β and y e a => (x, y) e Jί(x, y).

Since a\β we can effectively decide which of the four premisses holds; thus
we can effectively find (the Gδdel number of) a minimal path from x to y.
Hence $tαβis an ω-bigraph. To establish (iii) =#>(i), assume that ®aβ is an
α-bigraph. We have for xe aU β,

xea Φ$>x = a or [x Φ b and can(#, b) eη],

x e β <Φ x = b or [x Φ a and can(#, a) eη].

It follows that a\β because we can effectively decide whether xe a or xe β.

Proposition 2 Every ω-bigraph is an a-bigraph, but not conversely.

Proof: We only need to exhibit an α-bigraph 53 = (v, η) which is not an
ω-bigraph. In our example 53 will be immune. For the definitions of
regressive functions and regressive isols, see ([1], Section 3). It follows
from ([l], p. 25) that there exist regressive functions sn and tn from e into €
with ranges σ and r respectively such that σ and r are separable and
immune, while the set σ U T is immune, but not regressive. Define three
classes of two-element sets by:

El = \(sn, 4)jWε> E2 = {(S2n+if S2n+2)}neε> ^3 = \(^2m ^2n+i)}neε'

Let 53 = (v, η) be the bigraph such that

a = (s0, t u s2, t3, . . .), β = (t0, slf t2, s3, . . .),

v = a U β, η = {cαn(Λ;, 3;) | (x, y) e Eλ U E2 U E3}.

Note that every edge of 53 joins a vertex in a and a vertex in β. Since the
functions sn and tn are regressive, the functions rs and rt defined by

δr s = σ, rs(x) = s~\x), δrt = r, rt(x) = Γ\x),

have partial recursive extensions. We claim that (a) 53 is an a -bigraph and
(b) 53 is not an ω-bigraph.

ite(a). Let x, y e v, x < y. We distinguish four cases.



196 J. C. E. DEKKER

a β

So "~^^ °

s2 ~Z*^*

s4 * ^ ~ ^ ^ t4

etc. etc.

Figure 1.

(I) x, y e σ, (Π) x, y e τ, (ΠI) x e σ, y e r, (IV) x e r, yeσ.

In view of σ 'τ we can decide which of these four cases holds. Moreover,

if (I), cαn(#, y) e 7?<=> min [rs(x), rs(y)] odd and I rs(x) - rs(y) I = 1,

if (II), cαn(Λr, y)eη<ξ=> min [rt(x)9 rt(y)] even and \rt(x) - rt(y) I = 1,
if (III), cαnU, y) eη<ξ=>rs(x) = rt(y),
if (IV), can(x, y) e η ΦΦ rt (x) = rs(y).

The numbers rs(Λ:), rs(y), rt(χ)> ^tiy) can be computed from x and 3?; hence η
is separable from [1/; 2] - 77, i.e., © is an α-bigraph. Moreover, Req η ^
Req [1/; 2]; thus, since v is immune and η infinite, the set η is also immune.
We conclude that 53 is an immune α-bigraph.

Re (b). If 53 were an ω-bigraph, we could, given any vertex x of 53 different
from s0, compute the unique (hence minimal) path which joins x and s0.
Then the enumeration s0, ί0, tu su s2, . . . of the set a U β = σ U τ would be
regressive. However, the set σ U T is not regressive; hence 53 is not an
ω-bigraph.

Remark: Note that 53 is a tree, in fact, a one-way infinite path. Thus
there exists an immune α-tree which is not an ω-tree.

4 Protective bigraphs

Definition 2 A protective plane is an ordered triple Π = (α, λ, inc.) con-
sisting of two disjoint sets a and λ and an incidence relation inc. so that the
three classical axioms hold.

The elements of a are called the points, those of λ the lines of Π. With
every projective plane Π = (a, λ, inc.) we associate the functions L and P:

δL= (ax of)", δP= (λ x λ)~,
L(a, b) = the line through a and b,

P(l, m) = the point in which I and m intersect.

We also write a- b for L(a, b) and I Π m for P(l, m).

Definition 3 A projective ω-plane is a projective plane Π = (a, λ, inc.),
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where α|λ and the functions L and P have partial recursive extensions.

Π is called isolic (immune), if the sets a and λ are isolated (immune).

Definition 4 A projective bigraph is a graph 53 = {v, η) for which there

exist sets a and λ such that

(a) v - a U λ, where a and λ are disjoint,

(b) can (x, y) e η => [x e a and y e λ] or [x e λ and y e a],

(c) the relation inc. defined by:

x inc. y <#=#> can (x, y) e η, for x, y e v,

is such that Π = (a, λ, inc.) is a projective plane.

If the projective bigraph 53 and the projective plane Π are related in

this manner and min(αu λ)eα, we say that 53 and Π are associated. The

condition min(α U λ) e a guarantees that a and λ are uniquely determined by

the bigraph 53 and cannot be interchanged. Note that every projective

bigraph is connected.

Proposition 3 Let the projective plane Π = (a, λ, inc.) and the projective

bigraph 53 = {v, η) be associated. Then Π is a projective ω -plane if and only

if 53 is anω- bigraph.

Proof: Assume the hypothesis.

(a) Suppose that Π is a projective ω-plane. Choose distinct elements

a, be a; from now on we keep a and b fixed. Let p and q be distinct vertices

of 53, say, p < q. We distinguish four cases. Since α|λ we can effectively

decide which of these four cases holds.

Case 1 P, qea. Then 6{p, q) = 2, for if p q = r, the path (p, r, q) is a

minimal path from p to q. Since r = L(p, a) can be computed from p and q,

so can the path (p, r, a).

Case 2 p, qe λ. If s = p Γ) q, the minimal path (p, s, q) from p to q can be

computed from p and q.

CaseS pea,qeλ. Then

ά{p>q)- \3, i f n o t k i n c . * ] .

If p inc. q, (p, a) is the only minimal path from p to q. Suppose not[p inc. q]

and assume p Φ a. Define s = (p -a) Πq. Then (p, p a, s, q) is a minimal

path from p to q; it can be computed from p and q, because P and L have

partial recursive extensions. If p = a, put s = (p - b) Γ) q; then {p, p b, s, a)

is a minimal path. Given p and q we can by [2, §3, (e)] effectively decide

whether p inc. q. Hence we can compute a minimal path from p to q.

Case 4 pe λ, qe a. This is the dual of Case 3.

(b) Suppose that Φ = (u, η) is a projective ω -bigraph. Let a and λ be related

to v as described in Definition 4 and let min(α U λ)ea. We wish to prove:
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(i) α?|λ, (ii) the function P has a partial recursive extension, (iii) the
function L has a partial recursive extension. Note that (ii) is the dual of
(iii). Let x = min(αUλ). Then xea and for 3>e(αUλ) - (x) we have:
ye a##>d(#, y) = 2. Since *B is an co-graph we can compute ό(x, y); thus a\λ.
We now prove (iii). Let p and q be distinct points of Π with p < q. Then
there is exactly one vertex x of S3 so that can(p, x) and can (q, x) belong to 77,
say, x = r; moreover, r = L(£, q). The only minimal path from p to # is
(/>, r> Φ Since (/>, r, a) can be computed from p and (7, so can r = L(p, q).
Thus L has a partial recursive extension.

Let the protective ω-bigraph Φ = (v,η) and the projective ω -plane
Π = (a, λ, inc.) be associated. For pe a, le λ we define «/ as the set of all
points on I and λp as the set of all lines through p. By ([2], p. 2) there is a
unique recursive equivalence type [see 1, Section 1] Ji such that

Reqo:/ = Req λp = M + 1, for all pea, le λ,
Reqα = Req λ = Ji2 + M + 1,

the so-called order of Π. It follows that

Req v = Req (a U λ) = 2 Req (α) = 2(Λέ
2
 + Λέ + 1),

Req 7] = (Jί+ 1 ) U
2
 + Jί + 1).

Clearly, J^ ̂  Ji2 + M + 1. Thus, if we write Λ for the collection of all isols,
we have

Π isolic =Φ Ji e Λ =Φ Req v, Req η e A =Φ 53 isolic,
S3 isolic => 2(M2 + M + 1) e A=Φ Me A^> Πisolic.

Also, Π is infinite if and only if 53 is infinite, so that

(7) Π immune ##>53 immune.

Proposition 4 There are exactly c ω-bίgraphs. Among these exactly c are
immune.

Proof: Every graph is of the form d* = (v, 77), where v, η c ε; hence there
are at most c graphs and at most c ω-bigraphs. Thus we only need to show
that there are at least c immune ω-bigraphs. It follows from ([2], p. 7)
that there exists a family of c immune ω-planes which are mutually
nonisomorphic. We may assume that all these planes satisfy min(α U λ) e α,
since every immune ω -plane is isomorphic to an immune ω -plane in which
oea. Using (7) we conclude that there are at least c immune ω-bigraphs.
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