Notre Dame Journal of Formal Logic Volume XVIII, Number 4, October 1977 NDJFAM

A NOTE ON SUZUKI'S CHAIN OF HYPERDEGREES

P. G. ODIFREDDI

In his very important work [5] Suzuki found some interesting results about Π_1^1 implicitly definable sets. Precisely he proved that (in the notations of Rogers [4] which we freely use)

1 If
$$\{A\} \in \Pi_1^1$$
 and $\{B\} \in \Pi_1^1$, then

1a
$$A \leq_h B$$
 or $B \leq_h A$

and

1b
$$A \leq_h B \text{ iff } T^A \leq_h B \text{ iff } \lambda^A \leq \lambda^B$$

2 If
$$\{A\} \in \Pi_1^1$$
, then $\{T^A\} \in \Pi_1^1$.

Otherwise stated, the hyperdegrees of Π_1^1 implicitly definable sets are well-ordered in a chain $\{a_\alpha\}_{\alpha<\alpha_0}$ such that

3 a_0 is the hyperdegree of Δ_1^1 sets

and

4 $a_{\alpha+1} = a_{\alpha}' = the hyperjump of <math>a_{\alpha}$.

Suzuki left open the characterization of α_0 , that we now obtain* using some results of Moschovakis (see [4], p. 416):

Proposition α_0 is $\omega(\Delta_2^1)$, that is the least ordinal which is not a Δ_2^1 -ordinal.

Proof: We split it in two parts:

(a) $\alpha_0 \leq \omega(\Delta_2^1)$. Given $\{A\} \in \Pi_1^1$ let w_A be a tree for A ([4], p. 432), that is $w_A \in \mathsf{T}^X$ iff X = A. There exist a unique X (viz. A) s.t. $w_A \in \mathsf{T}^X$, so that $\|w_A\|^2 = (\min_{\substack{w_A \in T^X \\ A}} \|w_A\|^2 = \|w_A\|^A$. Then Lemma 1 of [4], p. 432, says that if $\{A\} \in \Pi_1^1$ and $\{B\} \in \Pi_1^1$ we have $\|w_A\|^2 \leq \|w_B\|^2 \Longrightarrow A \leq_h B$, and by Suzuki's

^{*}This work is part of the research program of the G.N.S.A.G.A. group of the Italian C.N.R.

result 1a quoted at the beginning, $B \leq_h A \Rightarrow \|w_B\|^2 \leq \|w_A\|^2$. But the ordinals $\|x\|^2$ for $x \in T^2$ have order type $\omega(\Delta_2^1)$ (see [4], p. 417), so $\alpha_0 \leq \omega(\Delta_2^1)$.

(b) $\omega(\Delta_2^1) \leq \alpha_0$. Suzuki [5] gives a method to obtain, for every Π_1^1 implicitly definable well-ordering with ordinal β , a subchain of $\{a_\alpha\}_{\alpha<\alpha_0}$ with length β . Because the ordinals $\|x\|^2$ with $x \in \mathsf{T}^2$ are cofinal with the Δ_2^1 -ordinals ([4], p. 417), and considering trees instead of well-orderings—as usual—, it is sufficient to prove that if $x \in \mathsf{T}^2$ then there exist an A s.t. $\{A\} \in \Pi_1^1 \land x \in \mathsf{T}^A \land \|x\|^2 = \|x\|^A$. But by definition $x \in \mathsf{T}^2$ iff $(\exists A)(x \in \mathsf{T}^A \land \|x\|^2 = \|x\|^A)$, and from $\|x\|^2 = \|x\|^A$ iff $(\forall B) \sim (x \in \mathsf{T}^B \land \|x\|^B \leq \|x\|^A)$ we have by [4], 16.XXXV and 16.XX, that $x \in \mathsf{T}^A \land \|x\|^2 = \|x\|^A$ is a $\Pi_1^{1,A}$ expression. So if there exist an A which satisfies it, also there exist such an A with $\{A\} \in \Pi_1^1$ by the Kondo-Addison theorem ([4], 16.XLV).

So we have two important chains:

- (α) one chain of Turing degrees, of length $\omega(\Delta_1^1)$, such that every Δ_1^1 set is T-reducible to some element of the chain, and converse (see [4], section 16.8):
- (β) one chain of hyperdegrees, of length $\omega(\Delta_2^1)$, such that every Δ_2^1 set is h-reducible to some element of the chain, and converse (see [4], section 16.7).

Of course, the major difference between the two cases is that the first chain is defined from below, and in fact admits degree-theoretic definitions from below (see for example [1]), whether it is unknown if the same holds for the second chain. Partial results on this important problem have been obtained by Richter [3] and Kechris [2].

REFERENCES

- [1] Jockusch, C. G., and S. G. Simpson, "A degree-theoretic definition of the ramified analytical hierarchy," *Annals of Mathematical Logic*, vol. 10 (1975), pp. 1-32.
- [2] Kechris, A. S., "The theory of countable analytical sets," Transactions of the American Mathematical Society, vol. 202 (1975), pp. 259-297.
- [3] Richter, W., "Constructive transfinite number classes," Bulletin of the American Mathematical Society, vol. 73 (1967), pp. 261-265.
- [4] Rogers, H., Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill (1967).
- [5] Suzuki, Y., "A complete characterization of the Δ½ functions," Bulletin of the American Mathematical Society, vol. 70 (1964), pp. 246-253.

Istituto di Matematiche Complementari Università di Turino Turin, Italy