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PATHOLOGIES IN THE ED-REGRESSIVE SETS OF ORDER 2

SETH CATLIN

1 Introduction Ed-regressive sets of order n were introduced in [1].
Concerning ed-regressive sets of order 2, it is natural to ask which
properties they share with the infinite regressive sets. In this paper, six
of the well-known properties of (infinite) regressive' sets and (infinite)
regressive isols are shown not to hold for the two-dimensional case. They
are:

(1) Every (infinite) retraceable set is the range of exactly one retraceable

function.

(2) Every (infinite) separable subset of a regressive set is regressive.

(3) If Ais a (infinite) regressive isol, then so is A - 1.

(4) If a is retraceable and 3 is an infinite separable subset of a, then @ and

B are Turing equivalent.

(5) If @ and B are infinite regressive sets, and a C 3, then a <4 8.

(6) If T is a (infinite) regressive isol, and a, is a recursive function, then
T, iS a regressive isol.

2 Preliminaries It is assumed that the reader is familiar with degrees of
unsolvability and the main properties of regressive sets. The set of
non-negative integers will be denoted by E. For meE, v(m) will be
{0, 1,...,m- 1}. For any function b from E” into E, pb will denote the
range of b. For functions f and g, fg(x) will denote f(g(x)). Define j(x, y) =
(x +9)(x+9 +1)/2 + x. It is well known that j is one-one, recursive, and
maps E x E onto E. Therefore, the functions k(x) and I(x), defined by
j(k(x), l(x)) = x are well-defined and recursive. If we let j, = j, then, for
n = 2, define j,., by

jn+1(x17 X2y o o L¥) xﬂ+1) =j(jﬂ(xl3 x2y e s ey xn)a xn+1)-

Then each j, is recursive, one-one, and maps E” onto E. Define, for n = 2,
the functions %, (%), . . ., ky,.(x) by

jn(kn,l(x)7 kn,Z(x)’ e ey kn,n(x)) =n.

Req @ will denote the recursive equivalence type of a. p* is a function
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defined by p*(x) = (un)(p"*'(x) = p"(x)). If p is partial recursive, so is p*.
If @ and B are sets, then a <7t 8 means a is Turing reducible to B, a =1 B
means o <t Band B<ta,and a <y Bmeans a <t Bbutnot =7 3. Anda <, 3
means that there is a partial recursive function p (x) such that p is defined
on a, p(a) = B, and p is one-one on a.

A collection 6 of ordered pairs is called an énitial set if, given that
(%1, y) <{%2, y2) and (¥, ¥>) € 6, then (x,, y,) € 5. A function ay,is a regres-
sive function of ovder 2 if a,y is one-one, the domain of axy is an initial set,
and there are partial recursive functions p(x) and ¢(x) such that p(ax,) =
@yx:1,y and q(a«y) = Ay,y:1 for all x and y for which axy is defined. Then the
functions p(x) and ¢(x) are called vegressing functions for a. A regressive
set of order 2 is the range of a regressive function of order 2. A function
is an ed-vegressive function of ovder 2 if it is regressive of order 2 and
has domain E x E. A set is an ed-regressive set of ovder 2 if it is the
range of an ed-regressive function of order 2. We will use the following
notations:

reg, = {a: @ is a regressive set of order 2}
Edreg, = {a: @ is an ed-regressive function of order 2}
Edregsi = {a: a € Edreg, and a is strictly increasing}
edreg, = {a: @ = pa for some a € Edregz}
edregsi, = {a: @ = pa for some a ¢ Edregsi,}

3 The theorems In this section there will be six major theorems, each
showing the failure of the two-dimensional analogue of the statement of the
same number in the introduction.

Theorem 1 If B € edregsi,, then there are exactly R, functions in Edregsi, which
have range B.

Proof: Let be Edregsi; with pb = 8. Define functions x, and y, by
(1) bryyy < brgy, <o

and B = {bs,y,» bryy, - - .J. There is an infinite collection of pairs (;, ;)
such that neither (xi, yt) < (xi+1: yi+l> nor <xi+1, yi+1> < <xi’ yi>s Since’
otherwise, there would be a pair (x;,y;) with x; > 0 and (x;,y;) < (¥;+1,¥j+1) <
. . ., which implies that the set {bo,,,: ne E} is finite, a contradiction. Say
that these pairs are {¥,,, ¥,.), (Xiy; ¥ip), . . .. Now, for each j > 1, define

G bx,']-+1')’il.+1 if (x: y> = <xij$ yl])
bx,y = b"ii'yi]‘ if <x’ y) = <xij+1’ yi,’+l>
by,y otherwise

It is clear that pb(i) =8(=1). Moreover, since m # n implies Kipy Vi) #
(%i,, Vi), it is easily seen that the b are distinct. Thus, if it can be
shown that

(a) each b is an increasing function,
and
(b) each 5" ¢ Edreg,,
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the proof that there are at least 8, such functions will be complete.

Re (a): Note that, by (1) and the definition of 5%,

(1) ;) () ()
xl Y1 < b"z')’z <...< bxl i-1, }’t -1 < bx;]+l 3’:]+1

@ (7) ;)
<pr <ul . <.

*ij Vi "1'+2'yzi+2
Let (x,, y,,) < (x,,, y,,) By ( 1) and the fact that b, is an increasing function,
u<v. By (2), b <P ~unless u=4; and v=1i; +1. But (i), 93,) £
(xtlﬂ, ¥i; +l) so either u # i or v # %; + 1.

Re (b): It is clear from the definition of b that it is everywhere defined.
Let p(x) and g(x) be regressing functions for b,,. Since by and bi’; are
identical, except for a finite number of differences, it is clear that a finite
number of modifications of each of p(x) and g(x) can be made to produce
regressing functions for b7 .

We will now see that there are at most R, functions in Edregsi; which
have range B. Let axy and bxy be distinct members of Edregsi, such that
pa = pb = B, and let {p, g) be an ordered pair of regressing functions for ax,.
Since ayy # bxy, there are distinct ordered pairs (x,, y;) and (xz, ¥) such that
Ax,,y, = bxyy,. If (P, @) is also a pair of regressing functions for bxy, then

X, = P*(a"l’h) = p*(bxz’yz) = X,
and
Y = qX(ax,y,) = q*(bsy.y,) = V2,

a contradiction. Hence, distinct members of Edregsiz, each with range 3,
have distinct ordered pairs of regressing functions. Since there are R,
ordered pairs of partial recursive functions, it follows that there can be at
most 8, members of Edregsi, which have range . Q.E.D.

In the above proof, if one deletes (a) and its proof, and replaces each
occurrence of ‘‘Edregsi,’’ with ‘“Edreg,’’, the proof becomes a proof of

If B e edreg,, then there are exactly ¥, functions in Edreg, which have range 8,
a fact that is also true of infinite regressive sets.

Lemma 1 Let fi(x), fo(x), . . ., f.{x) be any n functions, and let ay, as, . . .,
an be any m infinite sets. Then theve exist elements x,, . . ., Xm in a,, . . .,
a,, respectively, such that, for 1 < i< m, we have

(3) x; £{fim): 1<j<m, 1<k<m,i#k, f;j(x) defined}.

Proof: (by induction on m) If m =1, then, for 1 <i<m, the set on the
right in (3) is empty, and any member x, of a, satisfies (3). Let m =k + 1
and assume that, given any k infinite sets B,, .. ., B, there are elements
X1, . . ., % in By, . . ., B, respectively, such that, for 1 < i<k,

(4) xf{filx): 1<jsn, 1<1<k, i+l fix) defined}.

We will show next that there is an infinite sequence of mutually disjoint
k-tuples, each satisfying (4). This will be done inductively as follows:
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By the inductive hypothesis, there is a k-tuple (x1, . . ., x%) satisfying
(4). Now suppose that (xi, ..., xd,..., (&l ..., %) is a collection of
mutually disjoint 2-tuples, each of which satisfies (4). Define the sets
Yis « o <5 Yk by

yi=a; - ¥ 1<ss <k, 1<t<j},

for 1<i<Pk. Then 9,,...,y, are all infinite, so by the inductive hy-
pothesis, there is another k2-tuple
@it ™,

disjoint from the others, which satisfies (4) and where xij ey, Ca; (1<
i< k). Thus, we have an infinite sequence (xi, . . ., %), (X3, . . ., XB), . - .,
of k-tuples which are mutually disjoint, where each satisfies (4), and where
xlea; 1<i<k,j=1).

Now consider the first n + 1 of these k-tuples, namely (x}, . . ., %), ...,

Gt L L, %2, Select x4, from @i, so that x,,; is not a member of the
set

{figh:1<j<m 1<t<k,1<i<n+1, fj(x]) defined}.

This is possible since ap4; is infinite. The set 6, defined by 6 =
{fil¥rs1), - . -, falxr+1)} has at most # (defined) members, so at least one of
the #» + 1 mutually disjoint k-tuples, (X}, . . ., X&), . . ., &7 ..., %2 ™h, will
have no components in 6. Let (x7, . . ., x) be such a k-tuple. Then we have
the following facts, for 1 <7 < k:

(@) x{fikh:1<l<n, 1<s<k,i#s,f;(x]) defined},
since the k-tuple (x{, . . ., xf) satisfies (4).

0 xenf{fi6D: 1<1<nl,

since x;.; was selected to have this property.

(C) xiqf{fl(xkﬂ): 1sis< ”},

because of the manner in which ¢ was selected.

Hence, if we let x, = x% ..., x, = x{, we have, combining (a), (b), and
(c), that the numbers x,, %, . . ., ¥z+; Satisfy (3), and this completes the
proof. Q.E.D.

Definition: If pi(x), pa(x), . . ., pu(x) are partial recursive functions, then
the set {x, %), ..., X,} is said to be (py, Ps, . . ., p,)-unvelated for t
gemerations (t > 1), if, for », s < m, one has f,f; . . . fj(x;) = x5 only if » = s,
where each f; e {p;, P2, . . ., Doy and 1 <j < ¢,

Lemma 2 Let axy be a regressive function of ordev 2 with regressing
Sfunctions p(x) and q(x). If subset a of pa is closed undev the functions p(x)
and q(x), and a has a subset B, consisting of n elements which ave (p, q)-

+1

unvrelated for (n ; 1) genevations, then a has at least (n 9 ) elements.

Proof: Let B ={ax,y, ..., a,y} We consider two cases:
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Case (i): x; <x; and y; <y, for some ¢ #j. Then, if we apply the re-
gressing functions p(x) and ¢(x) to ax;,y;, as many times and in whatever
manner as is necessary to arrive at ay,,,;, it follows that we will obtain

along the way (n ; 1) distinct elements of a, since a is closed under p(x)

and q(x), and the numbers a,,,; and Qxj,y; are (p, @)-unrelated for (n ; 1)

generations.

Case (ii): i #j implies that either both x; < x; and y; > y; or both x; > x;
and y; < y;. Define the sets B (1 <i<n) by Bi = {ax;y;, Cxjy;ys + « o5 Cxjofe
The sets B; are pa1rw1se dlSJOlnt non-empty subsets of a with card Bi =

yi +1, 80 card @ = Qcordﬁt—z(y,+1 _1.‘<n;1

holding since the y;’s are distinct. Q.E.D.

) the last inequality

Theorem 2 Theve is a set inedreg, which has an infinite sepavable subset
that is not in edreg,.

Proof: Let {(pl, 90, (P2, @2, . . } be an enumeration of all ordered pairs of
distinct partial recursive functions. Define the function c,, as follows:

(i) co = 345(0, 0,0, 0, 0), o, = 75(0, 1, 0, 0, 0), ¢, = j5(1, 0, 0, 0, 0).
(ii) Assume that, for & =>1, ¢,y is defined for all x and y with x + y < k.
Define ¢y (x + y = k + 1) by

Cxy = js(x, Y, dxy, Exy, bxy),
where

dow = cx_l,yifx>0
700 if x=0,

e, = Cx'y_lify>0
=90 if y=o0,

and where the numbers b,y (for x + y = & + 1) are chosen so that

(a) each of the numbers cxy (for ¥ +y =k + 1) is larger than all of the
numbers p,(c,,) and ¢,(c,,), where # + v <k and » <&,

and
(b) the numbers cy, (for ¥+ =k +1) are (p, g -unrelated for (k ; 2>
generations.

That the above selection of the b,, (for x + y = k + 1) is possible can be
seen by appealing to Lemma 1, where the functions fi, ..., f, are the

functions 4, k4, . . . kj, such that j< (k ; 2) and each k; is either p, or g,

and the sets a;, . . ., an are the sets w,,(for x + y = k + 1) defined by
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wey= {w: (3) [w = js(x, v, dxy, exy, b) and
w > max {x¥: (x = pr(cuw) or x = q,(Cyy)) and
u+v<kandr<k}]}L

The function cxy€ Edreg,, since it is clearly everywhere defined, and the
recursive functions p(x) and g(x), defined by

Nk s(x) if Bs,1(x) >0
px) = {x if ks,1(x) =0,

and

_ Yk, 4(x) if Es,5(x) >0
q(x) = {x if ks o(%) =0,

are readily seen to be regressing functions for cy,.

Define a = pc - {ceo}. Then @ is clearly a separable subset of pc. We
will complete the proof by showing that a fedreg,. Suppose that a e€edreg,.
Let a.yeEdreg,, such that a = pa. Let p, and g, be regressing functions for
a. Leta,={cxy: 0< x+y<n} Since each cxy with x + y > nis larger than
any member of either p(a,) or g,(a,), we see that the set a, is closed under
both p, and g,. Define a;, = {cxy: X +y = n}. By the definition of ¢y, them + 1

members of @ are (p,, ¢g,)-unrelated for (" ; 2) generations. By Lemma 2,

a, has at least (” ; 2) elements. But card @, = card {C10, Co1} + card {Cz0, C11,

Coz}+00fdaf'z=2+3+,..+(n+1)=(n;-z

Therefore, a £ edreg,. Q.E.D.

) - 1. This is a contradiction.

It is easy to show that, if a €edreg, (@ € reg,) and a ~ B, then Beedreg, (B¢
reg,). Thus, we can define A to be an ed-regressive (regressive) isol of
order 2 if it is a recursive equivalence type which is composed of immune
ed-regressive (regressive) sets of order 2.

Theorem 3 There is an ed-rég’ressive isol C of ovder 2, such thatC - 1 is
not an ed-vegressive isol of order 2.

Proof: Let {yi, vz, . . .} be an enumeration of the infinite r.e. sets. Then
define ¢,y as in the proof of Theorem 2, except that (a) is replaced by

(a') each of the numbers cxy (for ¥ + y= k + 1) is larger than all of the
numbers &, Pr(Cw), 9-(Cuv), Where u + v < k, ¥ < k, and £, is some member of
vk which is larger than all of the numbers c¢,, with m + n< k.

As is the proof of Theorem 2, ¢yy€ Edrego. Moreover, since none of the
sets y, is a subset of pc, pc is immune. Let C = Reqpc. Then C is an
ed-regressive isol of order 2, but C - 1 = Req (oc - {coo}) is not. Q.E.D.

In the proof of Theorem 2, supposing that a € edreg, led to a contradic-
tion. But all that was used was that a eregz, S0 we have also proved

Theorem 2A Theve is a sel in reg; which has an infinite separable subset
which is not in reg,.
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Theorem 3A There is a vegrvessive isol C of ovder 2, such that C - 1 is not
a regrvessive isol of ovder 2.

Lemma 3 If a,y € Edreg,, @ = pa, and B and y ave subsets of a such that

(i) Bis a separable subset of a,

(ii) given auy€ B, theve is an a,s €y such that u <v and v <s,

(iii) there is an effective way of finding, for any x¢ E, two numbers u. and
vx, Such that x e B iff x = ay,,o,,

then B <T Y.

Proof: Let xe E. Assume any question ‘‘yey?’’ can be answered. Let u,
and v, be the numbers such that xe¢p iff x=a,,,,. Let p and q be
regressing functions for a. Start asking ‘““0ey?’’, “ley?’’, etc., until a
number y has been found such that ye y, p*(y) = ux, and g*(y) = v,. Then it
is clear that

xeBiff xe{p"q"(y): m < p*(y) and n < g*(9)},
S0 B <T y. Q.E.D.

Theorem 4 There exists a set B3 in edregsi, which is the union of 8, pairwise
disjoint, mutually separable subsets, each of which is in edresgi, but is of
lower Tuving degvee than B.

Proof: Letagy, a,,...be a_sequence of sets with the property that, for no
ne E do we have a,,, <t ,an,-. This is possible because there are un-
iz

countably many degrees, and each degree has at most countably many
predecessors. Assume without loss of generality that, for each ne E, 0¢ a,
and lea,. For each ne E, define 6, by

on = {i(n, %): xea, - {1}}u {1}.

Then it is clear that a, =1 5, for each ne E, and the sets 8, - {1}, 5, - {1}, ...
are mutually separable. For ie E, define the function d$ to be the strictly
increasing total function that ranges over 6;. Now define, for ie E, the
function 5% by B =a$? =1 and b4, = §(0% ) d%?)). Then the function f(x),
defined by

x ifx=1

o) = {k(x) ifx#1

is a retracing function for each of the sets 8, = pb(”).
As in [6], Theorem T2, 8, =1 B, for each ne E, so the sets By, B, . . . have
the property that

n
(5) for no ne E do we have B,,; <t LJO B;.

Moreover, the sets B, - {1}, 8; - {1}, . . . are mutually separable. Define
the function ¢, inductively as follows:

For m = 0: ¢, = js (0, m, 8, b, o)
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. (m)
Cm,o0 =17Js (m, 0, ¢;m-1,0, Cm-1,05 by )

- 4 b(m
Cmn+1 = Js (m, n+1,Cu1,n+1, Cmyns ni1)

For m > 0: {
Note that cn.» is everywhere defined and strictly increasing. Define y = pc
and, for each 7€ E, y, = {cun: m <7}. We prove the following statements:
(a) ce€ Edregsi, (and, }hus, v € edregsiy),
(b) for ne E, y, =1 90 8,

n
(c) for ne E, B, <t L_Jo Bi,

(@) for ne E, vpi1 =T Ynt1 = Vny
(e) for ne E, v <1 Yni1 = Vur
@ vosvi-v=1rn<tsre-n=rr2<7...

Re (a): Define the functions p(x) and gq(x) by

_ Y ks, 3(x) if ks, 1(%) £ 0
pl) = {x if Fis 1) = 0

and

J5(0, Bs,2(x) = 1, fRs 3(x), fRs,4(x), fls,s(x)) if s, 1(x) = 0
q(x) = < ks, 4(x) if Bs,1(x) # 0 and %s »(x) # 0
x otherwise.

Then p(x) and ¢(x) are partial recursive, and, as the reader can verify, are
regressing functions for c¢,,, So c,, € Edregsis.

Re (b): Let x, ne E, and let 7 = k;,,(x¥) and s = k5 ,(x). If ¥ > n, then x£vy,.
If 7 < n, assume one can answer any question “yeU Bi ?” Now ask
“OeU Bi?2?, ¢“1 eU B:?”, etc., until all of the elements b,, have been

found such that #<% and v<s. This is possible since, for z= bf,“),

f*(2) = v, and the sets B, - {1}, B, - {1}, ..., B» - {1} are mutually separable.
Now use the definitionn of the function ¢ to construct c¢,s. Then xey, iff

x = ¢,s. Thus, vy, <t ,Uo Bi. Now let x, ne E, and assume we can answer any
1= n n

question ‘““yey,?”’ If f"(")(x) # 1, then x;!Uo Bi. If x=1, then ero Bi.
i= i=
n
Otherwise, let v = f*(x). Let u = kI(x). Then xe_U B; iff
=0

v+#0,u<n,and x = bf;u) = ks, 5(Cuv).

Since we can effectively find c,, by asking ““0e€y,?’’, ‘‘ley,?’’, etc., and
using the functionns b, 4, ks, 1, ,';md k5,2, we have an effective test for deciding

whether « is in yo 8. Thus,U g; <74,

Re (¢): This is immediate from
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x € B, iff

n
x€ Uo B; and either x = 1 or both x # 1 and kI(x) = n.
P

Re (d): This is an immediate consequence of Lemma 3.

Re (€): y, <T Ya+1 - ¥» iS a consequence of Lemma 3. Suppose y, =1 Yp+1 - Va-
Then, by (b), (¢), and (d),

n+1 ”

Br ST il—Jo Bi <1 Y+l ST Yo+l = Yo ST Vo ST lJo B,

i=
which contradicts (5). Hence, y, <1 ¥u+1 - ¥» for each ne E.
Re (f): This is immediate from (d) and (e).

The sets yo, ¥1 - Yos Y2 - ¥1, - . . form a denumerable collection of
pairwise disjoint, mutually separable subsets of y, and their union is y.
Each is retraceable (retracing function for each is ¢(x)) and, therefore, is
in edregsi; ([1], comment following Proposition 1). In view of (f) and the fact
that each is separable in y, they are all of lower degree than . Q.E.D.

Lemma 4 If a, B¢ edregsi; and a <4 B, then B <t a.

Proof: Let p(x) be a partial recursive function whose domain includes a,
such that p(x) is one-one on a. Assume we can answer any question
“yea?” Let ze E. Since B¢ edregsi,, there is a function b,, in Edregsi, such
that 8 = pb. Define & by

6 ={byy: x<zand y<z}

Note that ze B iff ze 6. Answer the questions ‘“0ea?’’, “lea?’, ... until
a number k is found such that kea and p(k) = b,, where #>2z and v > z.
Then apply the regressing functions for b to b,, in order to generate §.

'
Q.E.D.

Theorem 5 There exist sets a, B€edreg, such that a is an infinite separabdle
subset of B, but a Zx B.

Proof: Let a =y, and B = y in the proof of Theorem 3. If a <4 3, then B <7 a
by Lemma 4. Q.E.D.

If T is a regressive isol and ¢, is a regressive function whose range is
o0
in T, then 2ir a, is defined [2], for any total function @, to be Req Uo (2,
n=
v(a,)). A natural way to extend this definition to the order 2 case is:

If T is an ed-regressive isol of order 2, #,€Edregz, pt€ T, and axy is a total
function of two variables, define

ET Amn = Req”LJO }:Joj(tmn, V().

This definition is easily seen to be independent of the choice of #.
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Theorem 6 It is not the case that, if bu. is a vecursive function, and T is
an ed-vegressive isol of ovder 2, then 20T Gmn IS an ed-regrvessive isol of
ovder 2.

Proof: Let i, be the function cxy in the proof of Theorem 2. Let T = Req pt.
Define b, by

b = lifm+n=+0
™ 10if m +n=0.

Then by, is recursive, and a €2t by, where a is the set a = {exy: ¥ +y > 0}
in the proof of Theorem 2. Since afedreg,, we have that T is an ed-
regressive isol of order 2, but Z;T bun is not. Q.E.D.
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