
535

Notre Dame Journal of Formal Logic
Volume XVIII, Number 4, October 1977
NDJFAM

PATHOLOGIES IN THE ED-REGRESSIVE SETS OF ORDER 2

SETH CATLIN

1 Introduction Ed-regressive sets of order n were introduced in [1].
Concerning ed-regressive sets of order 2, it is natural to ask which
properties they share with the infinite regressive sets. In this paper, six
of the well-known properties of (infinite) regressive1 sets and (infinite)
regressive isols are shown not to hold for the two-dimensional case. They
are:

(1) Every (infinite) retraceable set is the range of exactly one retraceable
function.
(2) Every (infinite) separable subset of a regressive set is regressive.
(3) If A is a (infinite) regressive isol, then so is A - 1.
(4) If a is retraceable and β is an infinite separable subset of a, then a and
β are Turing equivalent.
(5) If a and β are infinite regressive sets, and a c 0, then a ^* β.
(6) If T is a (infinite) regressive isol, and On is a recursive function, then
Στan is a regressive isol.

2 Preliminaries It is assumed that the reader is familiar with degrees of
unsolvability and the main properties of regressive sets. The set of
non-negative integers will be denoted by E. For meE, v{m) will be
{0, 1, . . ., m - l}. For any function b from En into E, pb will denote the
range of b. For functions / and g, fg{x) will denote f(g(x)). Define j(x, y) =
(x +y)(x + y + l)/2 + x. It is well known that j is one-one, recursive, and
maps E x E onto E. Therefore, the functions k(x) and l(x), defined by
j(k(x), l(x)) = x are well-defined and recursive. If we let j2 =j, then, for
n> 2, define j n + 1 by

Then each j n is recursive, one-one, and maps £wonto E. Define, for n ^ 2,
the functions knΛ(x), . . ., kn,n(x) by

jn(Ki(x), KM), -, KΛx)) = n.

Req a will denote the recursive equivalence type of a. p* is a function
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defined by p*{x) = (μn)(pn+1(x) = pn(x)). If p is partial recursive, so is p*.
If a and β are sets, then a ^j β means a is Turing reducible to β, a =Ύ β
means a ^τ β and β ^T α, and α <τ |3 means α^τ |3 but not a =τ β. And a ^ β
means that there is a partial recursive function p (x) such that p is defined
on a, p(a) - β, and p is one-one on a.

A collection δ of ordered pairs is called an initial set if, given that
(xi, yi> ^ (x29 y2) and (x2, y2) e δ, then (#1, 3>i) € δ. A function axy is a regres-
sive function of order 2 if axy is one-one, the domain of axy is an initial set,
and there are partial recursive functions p(x) and q{x) such that p(axy) =
ax.γ>y and q(θχy) = aXty-.γ for all x and y for which axy is defined. Then the
functions />(#) and #(#) are called regressing functions for a. A regressive
set of order 2 is the range of a regressive function of order 2. A function
is an ed-regressive function of order 2 if it is regressive of order 2 and
has domain E x E. A set is an ed-regressive set of order 2 if it is the
range of an ed-regressive function of order 2. We will use the following
notations:

reg2 = {a: a is a regressive set of order 2}
Edreg2 = {a: a is an ed-regressive function of order 2}

Edregsi2 = {a: a e Edreg2 and a is strictly increasing}
edreg2 = {a: a = pa for some a e Edreg2}

edregsi2 = {a: a = pa for some ae Edregsi2}

3 The theorems In this section there will be six major theorems, each
showing the failure of the two-dimensional analogue of the statement of the
same number in the introduction.

Theorem 1 If βe edregsi2, then there are exactly tf0 functions in Edregsi2 which
have range β.

Proof: Let be Edregsi2 with pb = β. Define functions xn and yn by

(1) bXι,yi < bx2,y>2 < . . .

and β = {bχvyl9 bX2,y2, . . .}. There is an infinite collection of pairs (xi9 y )
such that neither (xiy y{) ^ (xi+1, yi+1) nor (xi+1, yi+1) ^ (xi9 y{), since,
otherwise, there would be a pair (xj,yj) with Xj > 0 and (Xj,yj) ^ (#;+1,3^+1) ^
. . ., which implies that the set {b0>n: ne E} is finite, a contradiction. Say
that these pairs are {xiv y{l), (ΛΓ, 2, yi2), . . .. Now, for each j ^ 1, define

( ) ( H - " ' V 1 i f {Xf y) = {Xίj' yij)

h*>y = \ bxij yij i f (χ> y) = (xij+u y^+ύ
\bXfy otherwise

It is clear that pb; = β (j ^ 1). Moreover, since mΦ n implies (xim, yim) Φ
(xin, yin), it is easily seen that the δ( ; ) are distinct. Thus, if it can be
shown that

(a) each b; is an increasing function,

and

(b) each δ(/) e Edreg2,
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the proof that there are at least tf0 such functions will be complete.

Re (a): Note that, by (1) and the definition of b{j),

b x v y ι < bχ2)y2 < . . . < b x i lty . γ < b x ξ y.

(2)

Let (#«, 3̂ ) < (AT*, 3;̂ ). By (1) and the fact that bxy is an increasing function,

u < υ. By (2), bψutyu< bx'lyv unless u = ί, and i; = z, + 1. But {xip yt.) <

(χi +i> 3V+i)> s o eitner w Φ ij or v Φ ij + 1.

Re (b): It is clear from the definition of δ ( / ) that it is everywhere defined.
Let p(x) and q{x) be regressing functions for bxy. Since bxy and bjy are
identical, except for a finite number of differences, it is clear that a finite
number of modifications of each of p(x) and q(x) can be made to produce
regressing functions for b; .

We will now see that there are at most tf0 functions in Edregsi2 which
have range β. Let axy and bxy be distinct members of Edregsί2 such that
pa = pb = β, and let (p, q) be an ordered pair of regressing functions for axy.
Since axy Φ bxy, there are distinct ordered pairs (xl9 yλ) and (x2, y2) such that
aXl,yi = bX2>y2. If (p, q) is also a pair of regressing functions for bxy, then

Xi = P*(aχlfyι) = P*(bχ2>y2) = x2

and

yi = ? * ( « * P ) Ί ) = ^*(6χ2.y2) = 3̂ 2,

a contradiction. Hence, distinct members of Edregsi2, each with range β,
have distinct ordered pairs of regressing functions. Since there are tf0

ordered pairs of partial recursive functions, it follows that there can be at
most No members of Edregsi2 which have range β. Q.E.D.

In the above proof, if one deletes (a) and its proof, and replaces each
occurrence of "Edregsi2" with "Edreg2", the proof becomes a proof of

If j3eedreg2, then there are exactly ^functions in Edreg2 which have range β,

a fact that is also true of infinite regressive sets.

Lemma 1 Let fι(x), f2(x), . . .,/«(#) be any n functions, and let aι, a2, . . .,
am be any m infinite sets. Then there exist elements xγ, . . ., xm in al9 . . .,
am, respectively, such that, for 1 ̂  i^ m, we have

(3) Xi i{fj(xkh l^j*zn, 1 < k ^ m , i Φ k, fj(xk) defined}.

Proof: (by induction on m) If m = 1, then, for 1 ̂  i ^ m, the set on the
right in (3) is empty, and any member x1 of aι satisfies (3). Let m = k + 1
and assume that, given any k infinite sets βly . . ., βk, there are elements
xl9 . . ., Xk in βi, . . ., βk, respectively, such that, for 1 ̂  i ^ k,

(4) Xi /{/,(*/): 1 ̂  j* n, 1 ̂  I ̂  k, iΦ I, /y(^) defined}.

We will show next that there is an infinite sequence of mutually disjoint
^-tuples, each satisfying (4). This will be done inductively as follows:
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By the inductive hypothesis, there is a &-tuple (x\, . . ., xi) satisfying
(4). Now suppose that (x\y . . ., xl), . . ., (xl, . . ., xi) is a collection of
mutually disjoint ^-tuples, each of which satisfies (4). Define the sets

yι = Oii - {xi: 1 ^ s < k, 1 < t < j},

for 1 *si *£&. Then y!, . . ., γk are all infinite, so by the inductive hy-
pothesis, there is another k-tuple

\Xι , . . ., Xk ) ,

disjoint from the others, which satisfies (4) and where #/+1eyf c α, (1 ^
i ^ k). Thus, we have an infinite sequence (x\, . . ., xl), (xl, . . ., ΛΓ|), . . .,
of ^-tuples which are mutually disjoint, where each satisfies (4), and where
xjeaiϊ (1 ^i ^ k, j ^ 1).

Now consider the first n + 1 of these ^-tuples, namely (x\, . . ., x%),...,
(x"+1, . . ., ΛΓ|+1). Select Λ:fe+1 from αfe+1 so that Λτfe+1 is not a member of the
set

{fj(xi): H j ^ n , U ί ^ , l ^ ^ + l, / W) defined}.

This is possible since α&+i is infinite. The set δ, defined by δ =
{fi(%k+i), ->fn{%k+i)} has at most n (defined) members, so at least one of
the n + 1 mutually disjoint k-tuples, (x\, . . ., xl), . . ., « + 1 , . . ., %l+ι), will
have no components in δ. Let (x\, . . ., Λ:|) be such a fe-tuple. Then we have
the following facts, for 1 ̂  i ^ k:

(a) x?έ{fι(Xs): 1 ̂  l^ n, 1 < s < k, i Φ s, fι(xq

s) defined},

since the &-tuple (x\, . . ., xq

k) satisfies (4).

(b) *fc+i/{/j(*f): K Z < n } ,

since x^+i was selected to have this property.

(c) x?fl{Mxk+ih l^l^n},

because of the manner in which q was selected.
Hence, if we let xγ = x\, . . ., x^ = xl, we have, combining (a), (b), and

(c), that the numbers xu x2, . . ., Xk+i satisfy (3), and this completes the
proof. Q.E.D.

Definition: If• pi(x), p2(x), . . ,Pn(χ) are partial recursive functions, then
the set {x0, xu . . ., xm} is said to be (pu p2, . . ., pn)-unrelated for t
generations (t ^ 1), if, for r, s ^ m, one has/i/2 . . . fj(xr) = %s only if r = s,
where each fc e {pl9 p2, . . ., pn} and 1 < j < t.

Lemma 2 Let axy be a regressive function of order 2 with regressing
functions p{x) and q(x). If subset a of pa is closed under the functions p(x)
and q(x), and a has a subset β, consisting of n elements which are (p, a)-

unrelated for ί 1 generations, then a has at least I J elements.

Proof: Let β = {aXl,yi, . . ., aχn,yn} We consider two cases:
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Case (i): Xi < Xj and y% ̂ yj, for some i Φ j . Then, if we apply the re-
gressing functions p(x) and q{x) to ax.ty , as many times and in whatever
manner as is necessary to arrive at aXi,yi, it follows that we will obtain

along the way ( j distinct elements of a, since a is closed under p(x)

and q(x), and the numbers aXi>yi and ax.,y. are (/>, ^-unrelated for ί 1

generations.

Case (ii): i Φ j implies that either both Xi < Xj and yι > yj or both Xi > Xj
and yι < yj. Define the sets βi (1 ^ i ^ n) by βi = {«*,-, y ί , aXi,yi_v . . ., 0* ,o}.
The sets ft- are pairwise disjoint non-empty subsets of a with card βi =

n n n ι * \

yi + 1 , so card a ^ ΣJ card βi = ΣJ (yj + 1) ^ Σ) z = ( }, the last inequality
ί=l ί=l ί = l \ ώ /

holding since the 3;f 's are distinct. Q.E.D.

Theorem 2 There is a set in edreg2 which has an infinite separable subset

that is not medreg2.

Proof: Let {(pu <7X), (/>2, &)> •} be an enumeration of all ordered pairs of
distinct partial recursive functions. Define the function cxy as follows:

(i) c00 = j5(0, 0, 0, 0, 0), Coi = j5(0, 1, 0, 0, 0), c 1 0 = j 5 ( l , 0, 0, 0, 0).
(ii) Assume that, for k ^ 1, c x y is defined for all x and y with # + 3; ̂  k.
Define cxy (x + y = k + 1) by

cxy = j 5 ( x , y> dχy> eXy, bxy),

where

_ (cx-i,y if Λ : > 0
^ y " } 0 if * = 0 ,

_ (cx,y^if y>0
6χy }0 i f y = O ,

and where the numbers o x y (for Λ: + 3; = k + 1) are chosen so that

(a) each of the numbers cxy (for x + y = k + 1) is larger than all of the
numbers pr(cuv) and qr(cuί), where u + υ < k and r ^ k,

and

(b) the numbers cxy (for # + y = fc + 1) are (pk, #&)-unrelated for ί J

generations.

That the above selection of the bxy (for x + y = k + 1) is possible can be
seen by appealing to Lemma 1, where the functions /Ί, . . . , / „ are the

functions hλ hz . . . Λ7 , such that j *£ ί ^ j and each hi is either pk or ^ ,

and the sets au . . ., am are the sets ω x y(for x + y = k + 1) defined by
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ω*y = {w: (3b) [w = jb(x, y, dxy, exy, b) and
w > max {x: (x = pr{cUv) or x = qr{cuv)) and
u + v ^ k and r ^ k}]}.

The function cxy e Edreg2, since it is clearly everywhere defined, and the
recursive functions p(x) and q(x), defined by

A M = $Ks(x)iϊk5tl(x)>0
PW-\x i f * B f l U ) = 0 ,

and

n(Λ - J^.Λ*) if fe5f2W > 0
* W " }* if KM = 0,

are readily seen to be regressing functions for cxy.
Define a = pc - {c00}. Then a is clearly a separable subset of pc. We

will complete the proof by showing that α?/edreg2. Suppose that αeedreg2.
Let «xyeEdreg2, such that a = pa. Let pn and qn be regressing functions for
a. Let an = {cxy: 0 < x + y < n}. Since each c x y with Λ: + 3; > w is larger than
any member of either £w(αw) or qn(an), we see that the set an is closed under
both pn and #w. Define α?« = {cxy: Λ: + y = n}. By the definition of cxy, the n + 1

members of α£ are (/?w, ^w)-unrelated for 1 generations. By Lemma 2,

αw has at least ί 1 elements. But card an = card {c10, c01} + card {c20, c n ,

c02} + card a'n= 2 + 3 + . . . + (n + 1) = ( ) " ^ T h i s ^ s a contradiction.

Therefore, α/ edreg2. Q.E.D.

It is easy to show that, if α e edreg2 (cz e reg2) and a ^ β, then β e edreg2 (β e
reg2). Thus, we can define A to be an ed-regressive {regressive) isol of
order 2 if it is a recursive equivalence type which is composed of immune
ed-regressive (regressive) sets of order 2.

Theorem 3 There is an ed-regressive isol C of order 2, such that C - 1 is
not an ed-regressive isol of order 2.

Proof: Let {yi, y2, . . .} be an enumeration of the infinite r.e. sets. Then
define cxy as in the proof of Theorem 2, except that (a) is replaced by

(af) each of the numbers cxy (for x + y = k + 1) is larger than all of the
numbers tk, Pr(cuv), qΛcuv), where u + v ^ k, r ^ k, and 4 is some member of
Yk which is larger than all of the numbers cmn with m + n^ k.

As is the proof of Theorem 2, cxye Edreg2. Moreover, since none of the
sets γk is a subset of pc, pc is immune. Let C = Req pc. Then C is an
ed-regressive isol of order 2, but C - 1 = Req (pc - {c00}) is not. Q.E.D.

In the proof of Theorem 2, supposing that ae edreg2 led to a contradic-
tion. But all that was used was that a e reg2, so we have also proved

Theorem 2A There is a set in reg2 which has an infinite separable subset
which is not in reg2.
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Theorem 3A There is a regressive isol C of order 2, such that C - 1 is not
a regressive isol of order 2.

Lemma 3 If axye Edreg2, OL = pa, and β and γ are subsets of a such that

(i) β is a separable subset of α,
(ii) given auve β, there is an ars e γ such that u **r and v ^ s,
(in) there is an effective way of finding, for any xe E, two numbers ux and
vx, such that xe β iffx- aUχ,vx,

then β ̂ T y.

Proof: Let xe E. Assume any question "yeγ?" can be answered. Let ux

and vx be the numbers such that xeβ iff x = aUχ,Vχ. Let p and q be
regressing functions for a. Start asking " O e y ? " , " l e y ? " , etc., until a
number y has been found such that ye y, p*(y) ̂  ux, and q*(y) ̂  vx. Then it
is clear that

xeβ iίί xe{pmqn(y): m ̂  p*(y) and n ̂  q*(y)},

so β^j y. Q.E.D.

Theorem 4 There exists a set β in edregsi2 which is the union of&0 pairwise
disjoint, mutually separable subsets, each of which is in edresgϊ2 but is of
lower Turing degree than β.

Proof: Let α0, α1} . . . be a sequence of sets with the property that, for no
n

neE do we have an+ι ^T U α, . This is possible because there are un-
ί=0

countably many degrees, and each degree has at most countably many
predecessors. Assume without loss of generality that, for each ne E, 0^an

and 1 e an. For each ne E, define δw by

δn = {j(n, x): xean- {1}}\J{1}.

Then it is clear that an =τ δn for each ne E, and the sets δ0 - {l}, δλ - {l}, . . .
are mutually separable. For ie E, define the function d^ to be the strictly
increasing total function that ranges over δ, . Now define, for ie E, the
function bψ by b^ = 4 ί } = 1 and b^ = j(b(j], 4+i). Then the function f{x),
defined by

UWif^i
nX)~\x iix=l

is a retracing function for each of the sets βn = pδ .

As in [6], Theorem T2, δn =Ύ βn for each ne E, so the sets β0, βi, . . . have
the property that

n

(5) for no ne E do we have βn+1 ^ τ U β;.
i = 0

Moreover, the sets β0 - {l}, βλ - {l}, . . . are mutually separable. Define
the function cmn inductively as follows:

F o r m = 0: co,n = j 5 (0, n, b(

n

0), b(

n°\ b(

n

o))
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TVx~ *M \ Λ I cm,Q = H\mi 0? cm-l,O> cm-l,O> ^0 )

For m > 0: < . , Λ Λm)\
[cm,n+i = J5\m, n + 1, c O T _ 1 > w + 1 , c O T , n , 0 « + J .

Note that cOTW is everywhere defined and strictly increasing. Define γ = pc
and, for each reE, γr = {cmn: m ^ r}. We prove the following statements:

(a) ce Edregsi2 (and, thus, γ e edregsi2),
n

(b) for neE,γn=τ\) βiy
i = 0

n

(c) for ne E, βn^Ί[) βiy

i=0

(d) for ne E, γn+i =τ γn+1 - γn,
(e) for neE, γn<Ί γn+1 - γn,
(f) Ύo < τ Ύi - Ύo Ξ τ Ύι < τ Ύ2 " Ύi =τ Ύ2 < τ . . ..

Re (a): Define the functions p(x) and ̂ (ΛΓ) by

Λ/ \ _ ίfe.θU) if fe,iW ^ 0
P W " } ^ if k5fl(x) = 0,

and

OB(0, ^5,2W - l,fk5,3(x),fk5.*(x)>fk5,B(χ)) KKiW = 0
(̂ΛΓ) = < fe5(4W if fes.iM * 0 and &5,2M ^ 0

( x otherwise.

Then p(x) and q{x) are partial recursive, and, as the reader can verify, are
regressing functions for cmn, so cmne Edregsi2.

Re (b): Let x, ne E, and let r = k5 x(x) and s = k5 2(x). If r > n, then xίγn.
n

If r*£n, assume one can answer any question "ye\J β, ? " Now ask
n n i=0

"OeU βiV\ ^ l e U βi?», etc., until all of the elements b(

v

u) have been
i=0 i=0

found such that u^r and v ^ s. This i s possible s ince, for z = by,
f*(z) = v, and the s e t s β0 - {l}, βλ - {l}, . . . , βn - {l} a r e mutually s e p a r a b l e .
Now use the definition of the function c to construct cr>s. Then xeγn iff

x- cr s . Thus, yw ^ T V /3«. Now let x, ne E, and a s s u m e we can answer any
ί = 0 w w

question "yeγn?" If ff*{x\x) Φ 1, then # / U β, . If x= 1, then ΛreU β, .
ί=0 ί=0

Otherwise, let v = f*(x). Let w = kl(x). Then ΛΓ€ U ft iff
ί = 0

v Φ 0, u^ n, and x = bv

u = k5t5(cuv).

Since we can effectively find ctt2, by asking "Oeγn?", "Uγn?", etc., and
using the functions p, q, k5ιl, and k5 2, we have an effective test for deciding

n n

whether x is i n U βim Thus, U β{ < τ y».

Re (c): This is immediate from
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x e βn iff
n

x e U β{ and either x = 1 or both Λ: =£ 1 and H(#) = n.
i=0

Re (d): This is an immediate consequence of Lemma 3.

Re (e): γn ^j γn+1 - γn is a consequence of Lemma 3. Suppose γn =τ γn+1 - yw.
Then, by (b), (c), and (d),

n+l n

βn+l ^T U βi ^ T Ύn+l ^T Ύn+i ' Ύn ̂ T Ύn ̂ T U β, ,

which contradicts (5). Hence, γn < τ yw+1 - yw for each ne E.

Re (f): This is immediate from (d) and (e).

The sets γ0, γ1 - γ0, γ2 - γι9 . . . form a denumerable collection of
pairwise disjoint, mutually separable subsets of γ, and their union is y.
Each is retraceable (retracing function for each is q(x)) and, therefore, is
in edregsi2 ([l], comment following Proposition 1). In view of (f) and the fact
that each is separable in y, they are all of lower degree than y. Q.E.D.

Lemma 4 Ifot,βe edregsi2 and a <* β, then β ̂ τ α.

Proof: Let p(x) be a partial recursive function whose domain includes a,
such that p(x) is one-one on a. Assume we can answer any question
"y ea?" Let ze E. Since βe edregsi2, there is a function bxy in Edregsi2 such
that β = pb. Define δ by

δ = {bxy: x ^ z and y ̂  z}.

Note that zeβ iff zeδ. Answer the questions "Oea?", "lea?", . . . until

a number k i s found such that kea and p(k) = buv where u ^ z and υ ^ z.

Then apply the r e g r e s s i n g functions for b to buv in o r d e r to generate δ.
1 Q.E.D.

Theorem 5 There exist sets a, β e edreg2 such that a is an infinite separable
subset of β, but a <£* β.

Proof: Let a = y0 and β = y in the proof of Theorem 3. If a ̂ * β, then β ̂ j a
by Lemma 4. Q.E.D.

If T is a regressive isol and tn is a regressive function whose range is
oo

in T, then Σ/τ an is defined [2], for any total function an, to be Req U j(tn,
n=0

v{aj)). A natural way to extend this definition to the order 2 case is:

If T is an ed-regressive isol of order 2, txye Edreg2, pte T, and axy is a total
function of two variables, define

OO OO

TJJ amn = Req U U j{tmn, viOmn)).
m=0 n=0

This definition is easily seen to be independent of the choice of 4.
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Theorem 6 It is not the case that, if bmn is a recursive function, and T is
an ed-regressive isol of order 2, then Σ/τ amn is an ed-regressive isol of
order 2.

Proof: Let txy be the function cxy in the proof of Theorem 2. Let T = Req pt.
Define bmn by

(lifm+nϊO
mn " (0 if m +n = 0.

Then bmn is recursive, and aeΣ/j bmn, where a is the set of = {cxy: x + y > 0}
in the proof of Theorem 2. Since α?/edreg2, we have that T is an ed-
regressive isol of order 2, but Σ/τ bmn is not. Q.E.D.
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