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THE ONE-ONE EQUIVALENCE OF SOME GENERAL
COMBINATORIAL DECISION PROBLEMS

CHARLES E. HUGHES and W. E. SINGLETARY

1 Introduction A general combinatorial decision problem may be defined
quite simply to be a family of related decision problems concerned with
some class of combinatorial systems. E.g., the general halting problem
for Turing machines is the family of halting problems ranging over all
Turing machines. Let Gλ and G2 be two general combinatorial decision
problems. Gγ is said to be one-one {many-one) reducible to G2 if there
exists an effective mapping ψ from the problems p in d into the problems
ψ(p) in G2 such that p is of the same one-one (many-one) degree as ψ(p).
(Actually if p is solvable we only require that ψ(p) be also solvable.) G±
and G2 are said to be one-one {many-one) equivalent if each is one-one
(many-one) reducible to the other. Recent research by the authors and
Overbeek [2, 3, 4, 5, 6, 7, and 10] has demonstrated the many-one equiva-
lence of a large number of general combinatorial decision problems. In
this paper* we will show that some of these general decision problems are
in fact one-one equivalent. Our method of proof, which has been used by
Cleave [l] to study "system functions", is to show that each non-recursive
instance of the general decision problems under consideration is a
cylinder. Since many-one equivalence of cylinders implies one-one equiva-
lence, the desired results are achieved.

2 Cylinders and their properties Let R be an arbitrary recursively
enumerable (r.e.) set. R is called a cylinder if the decision problem for
membership in R is of the same one-one degree as that for the set of pairs
{(x, n)\xe R and n is a natural number}. That is to say, R is a cylinder if it
may be placed in an effective one-one correspondence with the cartesian
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product of itself cross the natural numbers. Cylinders may also be defined
by the following characterization due to Young [11]. R is a cylinder if there
exists an effective method / which, when applied to an arbitrary natural
number x, produces an infinite r.e. set Sx such that Sxis wholly contained in
R, or in the complement of R, depending upon whether xeR, or xfίR,
respectively. It is this latter characterization that we will use. Our
reason for discussing cylinders is due to the following property possessed
by them.

Property 1 Let Dx and D2 be an arbitrary pair of cylinders. If the decision
problem for membership in Dγ and that for D2 are of the same many-one
degree, then they are of the same one-one degree. (See, for example,
Rogers [9], p. 89.)

From Property 1 we attain Property 2 below which forms the basis for
the results presented here.

Property 2 Let d and G2 be an arbitrary pair of general combinatorial
decision problems such that each non-recursive instance of Gι and G2 is a
cylinder. If Gι and G2 are many-one equivalent, then they are one-one
equivalent.

3 Background In order to simplify the statement of results in this and the
following section we introduce some useful abbreviations. MD shall denote
the general derivability problem for Turing machines, Aw, Pw, and Tw the
general word problems for Markov algorithms, tag systems and Thue
systems, respectively, MH, AH, and PH the general halting problems for
Turing machines, Markov algorithms and tag systems, respectively, Mc

and Ac the general confluence problems for Turing machines, and Markov
algorithms, respectively, T& the general decision problem for Thue
systems with axiom, and finally PC and IC the general decision problems
for partial propositional calculi and partial implicational propositional
calculi, respectively. The following summarizes the results on many-one
equivalences which we require.

Theorem 1 The general decision problems MD, MH, Mc, Aw, AH, Ac, Pw,
Pti, Tψ, TA, PC, and IC are many-one equivalent.

Proof: For most of these general decision problems a sketch of the proof
of their equivalence was given in [4]. A formal proof is obtained by
combining together, in the manner of [4], the Turing machine results of [6],
Markov algorithm results of [2], tag systems results of [3], Thue systems
results of [7] and [5], and the partial calculi results of [10],

4 One-one equivalences The following series of lemmas leads us to the
desired results on the one-one equivalence of the general decision
problems cited in Theorem 1.

Lemma 1 Let D be a non-recursive instance of any of the general decision
problems considered here. Then there is an infinite r.e. set S in the
complement of the set associated with D.
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That is, for example, if M is a Turing machine whose halting problem is
unsolvable, then there is an infinite r .e. set Sof immoral configurations of
M.

Proof: This theorem in effect says that no instance D may be of the same
one-one degree as a simple set. (See Post [8] for a description and proof
of the existence of such r.e. sets which contain no infinite r.e. sets in their
complements.) This theorem was proved for AH in [2], TA in [5], and PC
and IC in [10]. The proofs for MH and Pn are exactly as for AH. Those for
MD, MCy Aw, Ac, Pw, and Tw are analogous to that for TA.

Lemma 2 Let D be a non-recursive instance of MD, Aw, or Pw. Then D is
a cylinder.

Proof: Let CΊ and C2 be an arbitrary pair of configurations (words). The
following procedure will generate an infinite r .e. list of pairs i? such that if
<C3, C4) e R then C3 derives C4 iff Cx derives C2. This clearly shows that D
is a cylinder.

Let M be the Turing machine, Markov algorithm or tag system
associated with D. Using the rules of M, list pairs (C, C2> where Cλ

derives C until (i) (C2, C2) is listed or (ii) no new pairs may be found and
case (i) has not been fulfilled. If neither case (i) nor (ii) ever occurs then
Ci does not derive C2 and the specified procedure lists an infinite set of
pairs (C, C2) where C does not derive C2. If case (i) occurs then Cλ derives
C2. Continue the above procedure by listing all pairs (C3, C4) such that C3

derives C4. Clearly this is an r.e. set and therefore satisfies our needs.
Finally if case (ii) occurs then d does not derive C2. Continue the above
procedure by listing the infinite r.e. set S whose existence has been proven
in Lemma 1. This set satisfies our requirements since each member is a
pair (C3, C4> where C3 does not derive C4.

Lemma 3 Let D be a non-recursive instance of MH, AH, or P w . Then D is
a cylinder.

Proof: Let C be an arbitrary configuration (word). The following pro-
cedure will generate an infinite r.e. list R such that if d e R then Ci is
mortal iff C is mortal. This clearly shows that D is a cylinder.

Let M be the Turing machine, Markov algorithm or tag system
associated with D. Using the rules of M list configurations (words) Ci
where C derives C\ until (i) d is terminal or (ii) no new Ci's can be found
due to the system M looping when started on C. If neither (i) nor (ii) is
ever satisfied then C is immortal and the above will list an infinite number
of other immortal elements. If (i) holds then continue the process by listing
all mortal words. If (ii) holds list the set S whose existence was shown in
Lemma 1.

Lemma 4 Let D be a non-recursive instance of Mc or Ac. Then D is a

cylinder.

Proof: Let Ci and C2 be an arbitrary pair of configurations (words). The
following procedure will generate an infinite r .e. list of pairs R such that
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if (C3, C4}eJR then C3 and C4 conflue iff Cγ and C2 conflue. This clearly
shows that D is a cylinder.

Let M be the Turing machine or Markov algorithm associated with D.
Using the rules of M list pairs <C3, C4) where Cι derives C3 and C2 derives
C4 until (i) a pair is listed such that C3 = C4 or (ii) no new pairs may be
found and case (i) has not been satisfied. The rest of the proof is exactly
the same as the last part of the proof of Lemma 2 except that everywhere
derivability is discussed we replace such a phrase by its confluence
analogue.

Lemma 5 Let D be a non-recursive instance of Tw. Then D is a cylinder.

Proof: Since C1 derives C2 in some Thue system iff C2 derives Cu the
word problem for Thue systems can be analyzed as was the confluence
problem for other systems in Lemma 4.

Lemma 6 Let D be a non-recursive instance of TA. Then D is a cylinder.

Proof: This can be shown in the same manner as Lemma 5.

Lemma 7 Let D be a non-recursive instance of PC or IC. Then D is a
cylinder.

Proof: Let M be the calculus under consideration and let W be an arbitrary
wff of the (implicational) propositional calculus. Let ply p2, . . . be the set
of all propositional variables. Let W contain some n distinct variables
Piv Pj29 - -> Pin- Wi, i ^ 1, is defined to be the substitution instance of W
obtained by simultaneously rewriting variable pjχ as pi, pj2 as pi+1, . . ., pjn

as pi+n-x. Then Wi is deducible in M iff W is deducible. Hence {Wi\ie
(1, 2, . . .)} is an infinite r.e. set each member of which is deducible or not
depending upon whether or not W is deducible.

Theorem 2 The general decision problems MD, MH, Mc, Aw, AH, Ac, Pw,

PH, Tw, TA> PC, and IC are one-one equivalent.

Proof: This theorem is a direct consequence of Theorem 1, Lemmas 2
through 7 and Property 2.
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