# THE AXIOMS FOR LATTICOIDS AND THEIR ASSOCIATIVE EXTENSIONS 

BOLESŁAW SOBOCIŃSKI

By definition, cf., e.g., [1], p. 23, a latticoid is an algebraic system satisfying the following formulas: ${ }^{1}$

A1 [ab]: $a, b \in A$.จ. $a \cap b=b \cap a$
A2 $\quad[a b]: a, b \in A . \supset . a \cup b=b \cup a$
A3 $\quad[a b]: a, b \in A$... $a=a \cap(a \cup b)$
A4 [ab]:a,b $\in A$.Ј. $a=a \cup(a \cap b)$
The addition of each (but, obviously, not both) of the following two formulas:
N1 [abc]:a, b, $c \in A$.ว. $a \cap(b \cap c)=(a \cap b) \cap c$
N2 [abc]:a,b,cєA.Ј. $a \cup(b \cup c)=(a \cup b) \cup c$
as a new axiom to $\{A 1 ; A 2 ; A 3 ; A 4\}$ generates two different systems which can be called latticoid with meet-associative law and latticoid with joinassociative law, respectively.

In this note it will be shown that, although these three systems are rather weak, their respective axiom-systems can be shortened considerably. Namely, I shall prove that:

Any algebraic system

$$
\mathfrak{A}=\langle A, \cup, \cap\rangle
$$

where $\cup$ and $\cap$ are two binary operations defined on the carrier set $A$, is either a latticoid or a latticoid with meet-associative law or a latticoid with join-associative law, if it satisfies respectively one of the groups of postulates (A), (B), and (C) which are given below:
(A) For latticoids:

B1 $\quad[a b c d f]: a, b, c, d, f \in A . \supset . c \cap((a \cup b) \cap d)=((b \cup a) \cap((f \cap d) \cup d)) \cap c$
B2 $\quad[a b]: a, b \in A . \supset . a=(a \cup b) \cap a$

[^0](B) For latticoids with meet-associative law:

E1 [abcdef]:a,b,c,d,e,fєA.ว.eЧ(((aคb)คc)Чd)
$=(((b \cap c) \cap a) \cup((f \cup d) \cap d)) \cup e$
E2 $[a b c]: a, b, c \in A$.ว. $a=((a \cap b) \cap c) \cup a$
(C) For latticoids with join-associative law:

$=(((b \cup c) \cup a) \cap((f \cap d) \cup d)) \cap e$
F2 $[a b c]: a, b, c \in A$.つ. $a=((a \cup b) \cup c) \cap a$
Remark I: It should be noted that the forms of postulates given in (A), (B), and (C) are suggested by Kalman's postulate system for lattices, cf. [2]. But, obviously, the deductions presented below differ in several points from Kalman's.

1 Proof of (A): Since it is self-evident that axioms A1, A2, A3, and A4 imply $B 1$ and $B 2$, it remains only to prove that the former formulas are the consequences of the latter. Hence, let us assume B1 and B2. Then:

B3 [ac]: $a, c \in A . \supset . c \cap a=(a \cup a) \cap c$
PR [ac]:Hp(1).ग.
$c \cap a=c \cap((a \cup(a \cup a)) \cap a)=(((a \cup a) \cup a) \cap(((a \cup a) \cap a) \cup a)) \cap c$
$[1, B 2, b / a \cup a ; B 1, b / a \cup a, d / a, f / a \cup a]$ $=(((a \cup a) \cup a) \cap(a \cup a)) \cap c=(a \cup a) \cap c$
$[B 2, b / a ; B 2, a / a \cup a, b / a]$
B4

$$
[a]: a \in A . \supset . a=a \cap a
$$

[B2, b/a; B3, $c / a]$
B5 [a]: $a \in A$.ว. $a=a \cup a$
$[B 2, b / a ; B 3, c / a \cup a ; B 4, a / a \cup a]$
A1 [ab]: $a, b \in A . \supset . a \cap b=b \cap a$
PR [ab]:Hp(1).J.

$$
\begin{array}{rlr}
a \cap b & =a \cap(b \cap b)=a \cap((b \cup b) \cap b) & {[1 ; B 4, a / b ; B 5, a / b]} \\
& =((b \cup b) \cap((b \cup b) \cap b) \cup b)) \cap a \quad & {[B 1, a / b, c / a, d / b, f / b \cup b]} \\
& =(b \cap(b \cup b)) \cap a=(b \cap b) \cap a=b \cap a &
\end{array}
$$

$[B 5, a / b ; B 2, a / b ; B 5, a / b ; B 4, a / b]$
B6 [abdf]:a, $b, d, f \in A . \supset .(a \cup b) \cap d=(b \cup a) \cap((f \cap d) \cup d)$
PR [abdf]:Hp(1)...

$$
\begin{aligned}
(a \cup b) \cap d & =((a \cup b) \cap d) \cap((a \cup b) \cap d) \quad[1 ; B 4, a /(a \cup b) \cap d] \\
& =((b \cup a) \cap((f \cap d) \cup d)) \cap((a \cup b) \cap d) \quad[B 1, c /(a \cup b) \cap d] \\
& =((b \cup a) \cap((f \cap d) \cup d)) \cap((b \cup a) \cap((f \cap d) \cup d))
\end{aligned}
$$

$$
[B 1, c /(b \cup a) \cap((f \cap d) \cup d)]
$$

$$
=(b \cup a) \cap((f \cap d) \cup d)
$$

$$
[B 4, a /(b \cup a) \cap((f \cap d) \cup d)]
$$

$B 7 \quad[a b c]: a, b, c \in A . \supset . c \cap a=c \cap((a \cap b) \cup a)$
PR [abc]: $\mathrm{Hp}(1)$. . .

$$
\begin{aligned}
& c \cap a=(c \cup c) \cap a=(c \cup c) \cap((b \cap a) \cup a)=c \cap((a \cap b) \cup a) \\
& \quad[1 ; B 5, a / c ; B 6, a / c, b / c, d / a, f / b ; B 5, a / c ; A 1]
\end{aligned}
$$

B8 $\quad[a b d]: a, b, d \in A . \supset .(a \cup b) \cap d=(b \cup a) \cap d$
PR [abd]: $\mathrm{Hp}(1) . \supset$.

$$
\begin{aligned}
(a \cup b) \cap d & =(b \cup a) \cap(((d \cup b) \cap d) \cup d) \\
& =(b \cup a) \cap(d \cup d)=(b \cup a) \cap d
\end{aligned}
$$

$[1 ; B 6, f / d \cup b]$ $[B 2, a / d ; B 5, a / d]$

A2 $\quad[a b]: a, b \in A . \supset . a \cup b=b \cup a$
PR [ab]: $\mathrm{Hp}(1) . \supset$.

$$
a \cup b=(a \cup b) \cap(a \cup b)=(b \cup a) \cap(a \cup b)=(a \cup b) \cap(b \cup a)
$$

$$
[1 ; B 4, a / a \cup b ; B 8, d / a \cup b ; A 1, a / b \cup a, b / a \cup b]
$$

$$
=(b \cup a) \cap(b \cup a)=b \cup a \quad[B 8, d / b \cup a ; B 4, a / b \cup a]
$$

A3

$$
[a b]: a, b \in A \text {.Ј. } a=a \cap(a \cup b)
$$

[B2; A1, $a / a \cup b, b / a]$
A4 [ab]:a,bєA.ว. $a=a \cup(a \cap b)$
PR [ab]:Hp(1).ग.

$$
\begin{aligned}
& a=a \cap a=a \cap((a \cap b) \cup a)=((a \cap b) \cup a) \cap a \\
& \quad[1 ; B 4 ; B 7, c / a ; A 1, b /(a \cap b) \cup a] \\
& =((a \cap b) \cup a) \cap((a \cap b) \cup a)=(a \cap b) \cup a=a \cup(a \cap b) \\
& {[B 7, c /(a \cap b) \cup a ; B 4, a /(a \cap b) \cup a ; A 2, a / a \cap b, b / a]}
\end{aligned}
$$

Since it is shown above that $A 1, A 2, A 3$, and $A 4$ are the consequences of $B 1$ and $B 2$, the proof is complete.

Remark II: We have to note that axioms B1 and B2 are inferentially equivalent to the following two formulas:

```
C1 [abcdf]:a,b,c,d,f\inA.\supset. c\cup((a\capb)\cupd)=((b\capa)\cup((f\cupd)\capd))\cupc
```

C2 $[a b]: a, b \in A$.ว. $a=(a \cap b) \cup a$

We omit here a proof of this fact, since it is completely banal.
2 Proof of (B): Since it is obvious that formulas E1 and E2 are the consequences of axioms $A 1, A 2, A 3, A 4$, and $N 1$, we have only to prove that the former formulas imply the latter. Therefore, let us assume E1 and E2. Then:

E3 [ae]: $a, e \in A . \supset . e \cup a=(a \cap a) \cup e$
PR [ae]:Hp(1)...
$e \cup a=e \cup((a \cap(a \cap a)) \cap a) \cup a) \quad[1 ; E 2, b / a \cap a, c / a]$
$=((((a \cap a) \cap a) \cap a) \cup((((a \cap a) \cap a) \cup a) \cap a)) \cup e$
$[E 1, b / a \cap a, c / a, d / a, f /(a \cap a) \cap a]$
$=((((a \cap a) \cap a) \cap a) \cup(a \cap a)) \cup e \quad[E 2, b / a, c / a]$
$=(a \cap a) \cup e$
$[E 2, a / a \cap a, b / a, c / a]$
A4
$[a b]: a, b \in A . \supset . a=a \cup(a \cap b)$
PR [ab]: $\operatorname{Hp}(1) . \supset$.
$a=((a \cap b) \cap(a \cap b)) \cup a=a \cup(a \cap b)[1 ; E 2, c / a \cap b ; E 3, a / a \cap b, e / a]$
E4 [a]: $a \in A$.ว. $a=a \cap a$
PR [a]: $\mathrm{Hp}(1) . \supset$.
$a=((a \cap a) \cap(a \cap a)) \cup a=(a \cap a) \cup((a \cap a) \cap(a \cap a))=a \cap a$
[1; $E 2, b / a, c / a \cap a ; E 3, e /(a \cap a) \cap(a \cap a) ; A 4, a / a \cap a, b / a \cap a]$
A2
[ab]: $a, b \in A . \supset . a \cup b=b \cup a$
$[E 3, a / b, e / a ; E 4, a / b]$
E5 [a]: $a \in A$.ว. $a=a \cup a$
$[A 4, b / a ; E 4]$

PR [abcdf]: $\mathrm{Hp}(1) . \supset$.
$((a \cap b) \cap c) \cup d=(((a \cap b) \cap c) \cup d) \cup(((a \cap b) \cap c) \cup d)$

$$
[1 ; E 5, a /((a \cap b) \cap c) \cup d]
$$

$$
\begin{aligned}
&=(((b \cap c) \cap a) \cup((f \cup d) \cap d)) \cup(((a \cap b) \cap c) \cup d) \\
& {[E 1, e /((a \cap b) \cap c) \cup d] } \\
&=(((b \cap c) \cap a) \cup((f \cup d) \cap d)) \cup(((b \cap c) \cap a) \cup \\
&((f \cup d) \cap d)) \\
&=((b \cap c) \cap a) \cup((f \cup d) \cap d) \\
& {[E 5, a /((b \cap c) \cap a) \cup((f \cup d) \cap d)] }
\end{aligned}
$$

E7 [abc]:a, b, ceA.ग. $c \cup a=c \cup((b \cup a) \cap a)$
PR [abc]: $\mathrm{Hp}(1) . \supset$.
$c \cup a=(c \cap c) \cup a=((c \cap c) \cap c) \cup a=((c \cap c) \cap c) \cup((b \cup a) \cap a)$
$[1 ; E 4, a / c ; E 4, a / c ; E 6, a / c, b / c, d / a, f / b]$
$=(c \cap c) \cup((b \cup a) \cap a)=c \cup((b \cup a) \cap a) \quad[E 4, a / c ; E 4, a / c]$
E8 [ab]: $a, b \in A$.ว. $a=(b \cup a) \cap a$
PR [ab]:Hp(1).ग.
$\left.\begin{array}{rl}a= & a \cup a=a \cup((b \cup a) \cap a)=((b \cup a) \cap a) \cup a \\ \quad[1 ; E 5 ; E 7, c / a ; A 2, b /(b \cup a) \cap a]\end{array}\right] \begin{gathered}((b \cup a) \cap a) \cup((b \cup a) \cap a)=(b \cup a) \cap a \\ \quad[E 7, c /(b \cup a) \cap a ; E 5, a /(b \cup a) \cap a]\end{gathered}$
E9 $\quad[a b c d]: a, b, c, d \in A . \supset .((a \cap b) \cap c) \cup d=((b \cap c) \cap a) \cup d$
PR $\quad[a b c d]: H p(1) . \supset$.

$$
\begin{array}{rlr}
((a \cap b) \cap c) \cup d & =((b \cap c) \cap a) \cup((d \cup d) \cap d) & {[1 ; E 6, f / d]} \\
& =((b \cap c) \cap a) \cup d & {[E 8, a / d, b / d]}
\end{array}
$$

E10 [abc]: $a, b, c \in A$.จ. $(a \cap b) \cap c=(b \cap c) \cap a$
PR [abc]: $\operatorname{Hp}(1) . \supset$.

$$
\begin{aligned}
(a \cap b) \cap c & =((a \cap b) \cap c) \cup((a \cap b) \cap c) & {[1 ; E 5, a /(a \cap b) \cap c] } \\
& =((b \cap c) \cap a) \cup((a \cap b) \cap c) & {[E 9, d /(a \cap b) \cap c] } \\
& =((a \cap b) \cap c) \cup((b \cap c) \cap a) & {[A 2, a /(b \cap c) \cap a, b /(a \cap b) \cap c] } \\
& =((b \cap c) \cap a) \cup((b \cap c) \cap a) & {[E 9, d /(b \cap c) \cap a] } \\
& =(b \cap c) \cap a & {[E 5, a /(b \cap c) \cap a] }
\end{aligned}
$$

A1 [ab]: $a, b \in A . \supset . a \cap b=b \cap a$
PR [ab]: $\mathrm{Hp}(1) . \supset$.
$a \cap b=(a \cap a) \cap b=(b \cap a) \cap a=((b \cap b) \cap a) \cap a$ [1; E4; E10, $a / b, b / a, c / a ; E 4, a / b]$
$=((b \cap a) \cap b) \cap a=(b \cap a) \cap(b \cap a)=b \cap a$
$[E 10, a / b, c / a ; E 10, a / b \cap a, c / a ; E 4, a / b \cap a]$
A3 $\quad[a b]: a, b \in A . \supset . a=a \cap(a \cup b)$
PR [ab]:Hp(1).Ј.
$a=(b \cup a) \cap a=a \cap(b \cup a)=a \cap(a \cup b) \quad[1 ; E 8 ; A 1, a / b \cup a, b / a ; E 5]$
N1 [abc]:a,b, cєA.Ј. $a \cap(b \cap c)=(a \cap b) \cap c$
PR [abc]:Hp(1)...
$a \cap(b \cap c)=(b \cap c) \cap a=(a \cap b) \cap c$
$[1 ; A 1, b / b \cap c ; E 10]$
Since it is shown above that $E 1$ and $E 2$ imply $A 1, A 2, A 3, A 4$, and $N 1$, the proof is complete.

Remark III: It should be noted that the proof of $A 1$ given above, i.e., that $E 4$ and $E 10$ hold $A 1$, is due to Padmanabhan, $c f$. [4], but the deductions presented here differ from his.

3 Proof of (C): Since it is obvious that axioms A1, A2, A3, A4, and N2 imply $F 1$ and $F 2$, it remains only to prove that the latter formulas hold the former. But, since $F 1$ and $F 2$ are duals of $E 1$ and $E 2$ respectively, it is self-evident that the deductions, which are exactly analogous and dual to the proofs presented in section 2, will show at once that $A 1, A 2, A 3, A 4$, and N2 are the consequences of $F 1$ and $F 2$. Thus, we have

$$
\{A 1 ; A 2 ; A 3 ; A 4 ; N 2\} \rightleftarrows\{F 1 ; F 2\}
$$

4 The mutual independence of axioms contained in each of the sets $\{B 1 ; B 2\},\{C 1 ; C 2\},\{E 1 ; E 2\}$, and $\{F 1 ; F 2\}$ is established by using the following algebraic table: ${ }^{2}$

M1

$$
\begin{array}{c|cc}
\cup & \alpha & \beta \\
\hline \alpha & \alpha & \alpha \\
\beta & \alpha & \alpha
\end{array}
$$

| $\cap$ | $\alpha$ | $\beta$ |
| :--- | :--- | :--- |
| $\alpha$ | $\alpha$ | $\beta$ |
| $\beta$ | $\alpha$ | $\beta$ |

M2

M13

$$
\begin{array}{c|cc}
U & \alpha & \beta \\
\hline \alpha & \alpha & \beta \\
\beta & \alpha & \beta
\end{array}
$$

$$
\begin{array}{c|cc}
\cap & \alpha & \beta \\
\hline \alpha & \alpha & \alpha \\
\beta & \alpha & \alpha
\end{array}
$$

$$
\begin{array}{c|cc}
\cup & \alpha & \beta \\
\hline \alpha & \alpha & \alpha \\
\beta & \alpha & \alpha
\end{array}
$$

$$
\begin{array}{l|ll}
\cap & \alpha & \beta \\
\hline \alpha & \alpha & \alpha \\
\beta & \alpha & \beta
\end{array}
$$

$\mathfrak{M 4}$

935

| $\cup$ | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ | $\eta$ |
| :---: | :--- | :--- | :--- | :--- | :--- |
| $\alpha$ | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ | $\eta$ |
| $\beta$ | $\beta$ | $\beta$ | $\eta$ | $\delta$ | $\eta$ |
| $\gamma$ | $\gamma$ | $\eta$ | $\gamma$ | $\delta$ | $\eta$ |
| $\delta$ | $\delta$ | $\delta$ | $\delta$ | $\delta$ | $\eta$ |
| $\eta$ | $\eta$ | $\eta$ | $\eta$ | $\eta$ | $\eta$ |


| $\cap$ | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ | $\eta$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | $\alpha$ | $\alpha$ | $\alpha$ | $\alpha$ | $\alpha$ |
| $\beta$ | $\alpha$ | $\beta$ | $\alpha$ | $\beta$ | $\beta$ |
| $\gamma$ | $\alpha$ | $\alpha$ | $\gamma$ | $\gamma$ | $\gamma$ |
| $\delta$ | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ | $\delta$ |
| $\eta$ | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ | $\eta$ |


| $\cup$ | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ | $\eta$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | $\alpha$ | $\alpha$ | $\alpha$ | $\alpha$ | $\alpha$ |
| $\beta$ | $\alpha$ | $\beta$ | $\alpha$ | $\beta$ | $\beta$ |
| $\gamma$ | $\alpha$ | $\alpha$ | $\gamma$ | $\gamma$ | $\gamma$ |
| $\delta$ | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ | $\delta$ |
| $\eta$ | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ | $\eta$ |


| $\cap$ | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ | $\eta$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | $\alpha$ | $\beta$ | $\gamma$ | $\delta$ | $\eta$ |
| $\beta$ | $\beta$ | $\beta$ | $\eta$ | $\delta$ | $\eta$ |
| $\gamma$ | $\gamma$ | $\eta$ | $\gamma$ | $\delta$ | $\eta$ |
| $\delta$ | $\delta$ | $\delta$ | $\delta$ | $\delta$ | $\eta$ |
| $\eta$ | $\eta$ | $\eta$ | $\eta$ | $\eta$ | $\eta$ |

Namely:
(a) B1 and B2 are mutually independent, since:

[^1]( $\alpha$ ) $\mathfrak{M 1}$ verifies $B 2$, but falsifies $B 1$ for $a / \alpha, b / \alpha, c / \alpha, d / \beta$, and $f / \beta$ :
(i) $\alpha \cap((\alpha \cup \alpha) \cap \beta)=\alpha \cap(\alpha \cap \beta)=\alpha \cap \beta=\beta$, (ii) $((\alpha \cup \alpha) \cap((\beta \cap \beta) \cup \beta)) \cap \alpha=$ $(\alpha \cap(\beta \cup \beta)) \cap \alpha=(\alpha \cap \alpha) \cap \alpha=\alpha \cap \alpha=\alpha$.
( $\beta$ ) $\mathfrak{M} \mathfrak{3}$ verifies $B 1$, but falsifies $B 2$ for $a / \beta$ and $b / \beta$ : (i) $\beta=\beta$, (ii) $(\beta \cup \beta) \cap$ $\beta=\alpha \cap \beta=\alpha$.
(b) C1 and $C 2$ are mutually independent, since:
( $\alpha$ ) $\mathfrak{M Z}$ verifies $C 2$, but falsifies $C 1$ for $a / \alpha, b / \alpha, c / \alpha, d / \beta$, and $f / \beta$ :
(i) $\alpha \cup((\alpha \cap \alpha) \cup \beta)=\alpha \cup(\alpha \cup \beta)=\alpha \cup \beta=\beta$, (ii) $((\alpha \cap \alpha) \cup((\beta \cup \beta) \cap \beta)) \cup \alpha=$ $(\alpha \cup(\beta \cap \beta)) \cup \alpha=(\alpha \cup \alpha) \cup \alpha=\alpha \cup \alpha=\alpha$.
( $\beta$ ) $\mathfrak{M} 3$ verifies $C 1$, but falsifies $C 2$ for $a / \beta$ and $b / \beta$ : (i) $\beta=\beta$, (ii) $(\beta \cap \beta) \cup$ $\beta=\beta \cup \beta=\alpha$.
(c) E1 and E2 are mutually independent, since:
( $\alpha$ ) $\mathfrak{M} 5$ verifies $E 2$, but falsifies $E 1$ for $a / \beta, b / \gamma, c / \delta, d / \eta, e / \eta$, and $f / \eta$ :
(i) $\eta \cup(((\beta \cap \gamma) \cap \delta) \cup \eta)=\eta \cup((\eta \cap \delta) \cup \eta)=\eta \cup(\eta \cup \eta)=\eta \cup \eta=\eta$, (ii) $(((\gamma \cap$
б) $\cap \beta) \cup((\eta \cup \eta) \cap \eta)) \cup \eta=((\delta \cap \beta) \cup(\eta \cap \eta)) \cup \eta=(\delta \cup \eta) \cup \eta=\delta \cup \eta=\delta$.
( $\beta$ ) $\mathfrak{M 3}$ verifies $E 1$, but falsifies $E 2$ for $a / \beta$ and $b / \beta$ : (i) $\beta=\beta$, (ii) $((\beta \cap \beta) \cap$
$\beta) \cup \beta=(\beta \cap \beta) \cup \beta=\beta \cup \beta=\alpha$.
(d) F1 and F2 are mutually independent, since:
( $\alpha$ ) $\mathfrak{M} 4$ verifies $F 2$, but falsifies $F 1$ for $a / \beta, b / \gamma, c / \delta, d / \eta, e / \eta$, and $f / \eta$ :
(i) $\eta \cap(((\beta \cup \gamma) \cup \delta) \cap \eta)=\eta \cap((\eta \cup \delta) \cap \eta)=\eta \cap(\eta \cap \eta)=\eta \cap \eta=\eta$, (ii) (( $(\gamma \cup$
$\delta) \cup \beta) \cap((\eta \cap \eta) \cup \eta)) \cap \eta=((\delta \cup \beta) \cap(\eta \cup \eta)) \cap \eta=(\delta \cap \eta) \cap \eta=\delta \cap \eta=\delta$.
( $\beta$ ) $\mathfrak{M 3}$ verifies $F 1$, but falsifies $F 2$ for $a / \beta$ and $b / \beta$ : (i) $\beta=\beta$, (ii) $((\beta \cup \beta)$ $\cup \beta) \cap \beta=(\alpha \cup \beta) \cap \beta=\alpha \cap \beta=\alpha$.

5 It is well known ${ }^{3}$ that a latticoid with meet-associative law and a latticoid with join-associative law are two different systems. We can prove it easily using tables $\mathfrak{M} 4$ and $\mathfrak{M 5}$. Namely:
(1) $\mathfrak{M 4} 4$ verifies $A 1, A 2, A 3, A 4$, and $N 1$, but falsifies $N 2$ for $a / \beta, b / \gamma$, and $c / \delta:(i) \beta \cup(\gamma \cup \delta)=\beta \cup \delta=\delta$, (ii) $(\beta \cup \gamma) \cup \delta=\eta \cup \delta=\eta$.
(2) $\mathfrak{M} 5$ verifies $A 1, A 2, A 3, A 4$, and $N 2$, but falsifies $N 1$ for $a / \beta, b / \gamma$, and $c / \delta:$ (i) $\beta \cap(\gamma \cap \delta)=\beta \cap \delta=\delta$, (ii) $(\beta \cap \gamma) \cap \delta=\eta \cap \delta=\eta$.
Thus, the systems $\{A 1 ; A 2 ; A 3 ; A 4 ; N 1\}$ and $\{A 1 ; A 2 ; A 3 ; A 4 ; N 2\}$, although they are duals, are different.

## REFERENCES

[1] Birkhof, G., Lattice Theory, third (new) edition, American Mathematical Colloquium Publications, Providence, Rhode Island, vol. XXV (1967).

[^2][2] Kalman, J. A., "A two-axiom definition of lattices," Revue Roumaine de Mathématiques Pures et Appliquées, vol. 13 (1968), pp. 669-670.
[3] Kolibiar, M., 'On the axiomatic of modular lattices,', (in Russian), Czechoslovak Mathematical Journal, vol. 6 (81), (1956), pp. 381-386.
[4] Padmanabhan, R., ''On axioms for semilattices," Canadian Mathematical Bulleıın, vol. 9 (1966), pp. 357-358.

University of Notre Dame
Notre Dame, Indiana


[^0]:    1. Throughout this paper $A$ indicates an arbitrary but fixed carrier set. The socalled closure axioms are assumed tacitly.
[^1]:    2. Concerning $\mathfrak{M}_{1}$ and $\mathfrak{M} \boldsymbol{3}$, $c f$. [3], pp. 385-386. It is self-evident that the tables $\mathfrak{M 5}$ and $\mathfrak{M} 4$ are isomorphic with the diagram given in [1], p. 22, figure 5 , and its dual respectively.
[^2]:    3. Cf., e.g., [1], p. 22, Example 3.
