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A THEORY OF RESTRICTED VARIABLES WITHOUT
EXISTENCE ASSUMPTIONS

MARGARET MURPHY PRULLAGE

1 Intvoduction The individual variables of ordinary first-order logic are
generally thought of as ranging over all the objects in a certain set, the
universe or domain of discourse, with no discrimination made among the
variables. In everyday mathematics, however, this is often not the case,
and some variables, usually distinguished by the use of different letters,
are restricted in their signification to some proper subset of the domain of
discourse. For example, the letters x, y, and z may refer to real numbers
in a formula such as x* - % = (x + y)(x - y), but there may also be formulas
of the sort ‘“For all integers m,....”” or ‘“There is a positive prime p,
such that . . ..”” Thus it is useful to formulate a logic which allows for the
restriction of variables to certain ranges as well as for the general
interpretation of variables.*

Bourbaki, in his treatment of logic in [1], allows for restricted
quantification by defining quantifiers 34x and V4x in terms of the existen-
tial quantifier 3, (34x)R being defined as (3x)(4 & R). Intuitively, if A and
R are formulas expressing properties of x, then (3x)(4 & R), meaning
“There is an x, such that A and R hold,” is equivalent to (34%)R,
interpreted as ‘“There is an x of kind A, such that R holds.”” In (34%)R, x
is restricted to objects satisfying A by the symbol J4. (V4X)R is defined
to be 1(34%)1R. The symbols I, and V4 might be used in a demonstration
if one is interested only in objects satisfying A, where A might express the
property of being an integer, or a positive prime. In [13], Rosser discusses
restricted variables in some detail; his approach appears to differ from
Bourbaki’s since he considers restricted variables rather than restricted
quantifiers. He uses Greek letters to refer to restricted variables; a might
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designate a variable subject to the restriction K, and the formula (Va)F(a)
is viewed as an abbreviation for the formula (Vx)(K(x) — F(x)). The letter
3 might denote a variable subject to the restriction L, and (V8)F(8) would
mean (Vx)(L(x) — F(x)). While Rosser, unlike Bourbaki, ostensibly attaches
the restriction to the variable, in effect he associates it with the quantifier
by declining to give any special significance to @ when it occurs free in a
formula. Rosser points out that this is contrary to the practice in ordinary
mathematics, but that he considers it undesirable to associate a restriction
with a in free occurrences because of some ambiguity in its interpretation.

In two papers published in 1957, cf. [3], Hailperin formulated a logical
theory 2%, which included restricted variables among the symbols of the
language and provided for their use in all places normally occupied by the
ordinary variables of predicate calculus, hereafter called proper variables.
This was accomplished by including the symbol v among the primitive
symbols as a term-builder, and allowing for the formation, from a proper
variable x and a formula P, of the expression vxP, called a restricted
variable. It was to be thought of as referring to ‘‘some individual such that
P.”” All free occurrences of x in P are bound by vx. There are other
examples of variable-binding operators used to construct terms in logic;
the best known are the €-symbol of Hilbert and Russell’s definite descrip-
tion operator 1. Both €xP and 1xP are meant to denote an individual
satisfying P, but they differ from each other and from wxP in some
respects. €xP is a constant, or at least a constant-form in case P has free
variables other than x; it designates a definite though unspecified member
of the set of all individuals in the domain satisfying P. The €-symbol is
appropriately interpreted by a choice function on the collection of all
subsets of the domain of discourse. A logic which includes the definite
description operator 1 must also include the equality predicate; in case
there is a unique individual satisfying P, 1xP denotes that individual, and
equality is needed to express that uniqueness. In case there is more than
one individual satisfying P, or no such individual, 1xP is an improper
description and must be handled in some fashion. Other term-building
symbols, less well-known, are Hilbert’s 7)-symbol, very similar to € but
differing from it in that the formula 3xP is required as an assumption or
derived formula before ®xP can be introduced as a term, and Bourbaki’s
T-symbol, which is like the €-symbol and is used by Bourbaki to define the
quantifiers 3 and V.

In all these cases the expression built from the initial symbol (€, 1, T,
or 1), operator variable and formula is a constant or a constant-form which
becomes a constant when all its free variables are bound or replaced by
constants. They are thus not available for use as quantifier variables.
v-expressions, however, are variables, and can be used in argument
places, in quantifiers and also as operator variables; though Hailperin does
not make use of them in the last-named context, they are so used in the
system which follows.

The way in which restricted variables are formed leads in a natural
way to a theory in which some variables may fail to denote actual objects;
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clearly, this occurs when the formula P in vxP is a contradiction, a
possibility which is not ruled out by the rules of formation. Thus, a logical
theory comprising restricted variables is best developed as a free logic,
that is, a logic in which some or all of the variables may fail to have
values. Traditionally, logic has excluded the empty set from the possible
domains of interpretation, but within the past twenty-five years the question
of the empty domain has begun to receive some attention. One of the first
papers to investigate those formulas of quantification theory valid in all
domains was by Mostowski. His system lacked several desirable features
and was modified by Hailperin, and later revised by Quine. The end result
was a standard logic, all the axioms of which were closed formulas valid in
all domains. The intended interpretation was that all universally gen-
eralized statements came out true in the empty domain, all existential ones
false. Next to receive attention were theories in which some of the
individual terms might not designate actual objects, although all individual
variables denoted members of the universe. The first system which
allowed for reasoning with names which might not denote was presented by
Hailperin and Leblanc in [4]; this was followed by the work of Hintikka, [5],
Lambert, [6], Schock, [14], van Fraassen, [16], and others. Some of these
logics were also valid for the empty domain, but all of them, with the
exception of that of Leblanc and Meyer, made use of a non-standard
predicate, either equality or the existence predicate. In [8] Leblanc and
Meyer proved that their system was sound and complete, and it is their
system which has been adapted in the following to the needs of a restricted
quantification theory. Hailperin in his original paper, [3], in effect excluded
empty ranges for variables by defining a deduction so that it included a
formula guaranteeing a non-empty range for each variable appearing in the
deduction.

In the next section formal definitions of essential notions are given.
Under the rules of formation which I adopt, an anomalous situation arises
in connection with the free variables of P, other than x, when vxP is used
in a formula. These variables are not bound by vx, nor are they free in the
usual sense, since once a meaning is given to vxP, the meaning of these
other variables is tied to the meaning of vxP. I thus distinguish a third
sort of occurrence of a variable in a formula, which is neither bound nor
free. This accomplishes the same purpose as Hailperin’s notion of
subordination, but puts no restrictions on the formation of terms and
formulas. This is all spelled out in the rules of formation for the
expressions of the system I call QK,. The axioms and single rule of
inference of 24K, are set forth, and several theorems are proved, most of
them in preparation for the completeness proof, many of them showing the
relations existing between different restricted variables.

Section 3 gives a semantic basis for 2K,. A model for 2K, is
considerably more complex than usual because of the potentially com-
plicated structure of the restricted variable, and it is defined inductively on
the structure of terms and formulas. Some facts about the relations
between variables in the model are proven. Finally, the notion of a valid
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formula is defined. In the final section the soundness and completeness of
2R, are demonstrated. 2R, is shown to be sound when it has been proven
that every axiom of Q#, is valid and that the rules of inference preserve
validity. The demonstration of completeness uses a Henkin-type proof; the
main result is that every consistent set of formulas of 2K, is verifiable,
that is, there is an interpretation under which every formula in the set
comes out true. In order to do this the language of 2K, is extended by the
addition of constants. This is accomplished by means of a ‘‘constant-
building’’ operator 0. The consistent set of formulas S is transformed into
a consistent set S’ by replacing free restricted variables by appropriate
constants, then S’ is extended to a maximal consistent set of formulas in a
systematic way, so that if any closed formula is not in this maximized set,
its negation is provable. The set thus constructed is used to define a model
for @R, in which every formula of S? is true; its domain is the set of
constants with existence condition deducible from the maximal consistent
set, and truth values for atomic formulas are determined by whether they
are deducible or not. Finally, a theorem on the eliminability of restricted
quantifiers is proved.

2 Syntax The primitive signs of @&, are: a countable number of proper
variables (the ordinary variables of first-order predicate calculus); for
each m, m=0,1,2,..., a countable number of m-place predicate
variables, among them the 0-place P,; the logical connectives 7 and —; the
indefinite description operator wv; the universal quantifier V; parentheses
( and ); and comma ,. The letters x, y, 2z, sometimes with primes or
subscripts, are used to refer to proper variables, and Greek letters a, 3, y,
8, again sometimes primed or subscripted, to refer to variables in general.
P and @, with or without superscripts, indicate m-place predicates.

The expressions of the language, which include both variables and
formulas, are defined as follows:

(i) A proper variable is a variable.

(ii) If P"” is an n-place predicate, and a,, ..., @, are variables, then
P*(a,, . .., a,) is an atomic formula. An atomic formula is a formula.

(iii) If A is a formula, then 1A is a formula.

(iv) If A and B are formulas, then (A — B) is a formula.

(v) If @ is a variable and A is a formula, then vaA is a restricted variable.
A restricted variable is a variable.

(vi) If o is a variable and A is a formula, then (Va)A4 is a formula.

(vii) Only those strings of symbols which are variables or formulas by
virtue of (i)-(vi) are expressions.

Occasionally, for the sake of convenience, (A & B) is used to abbrevi-
ate the formula 1(4 — 1B), (A v B) to abbreviate (1A — B), and (3a)A for
1(Va)1A. The formula (P,— P, is indicated by ¢, 1(P,— P, by f.
Parentheses are omitted when no confusion results from their omission, in
accordance with the usual conventions. When a symbol appears as one of
the signs of an expression, such an appearance is called an occurrence.
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Similarly, an expression may occur in a second expression when the
symbols of the first occur concurrently in the second. The length of an
expression is the number of primitive signs occurring in it, a symbol being
counted each time it occurs.

As indicated in the introductory section, three kinds of occurrence of a
variable in an expression are distinguished: free, adherent and bound.
Adherent occurrences result when there are free variables other than x in
P, and the restricted variable vxP is formed; the free variables of P other
than x are adherent in vxP, and in expressions containing vxP. Adherent
variables cannot be bound by V or w, but they are freed from adherence
when the restricted variable in which they adhere is bound by the universal
quantifier. The formal definition is as follows:

(i) An occurrence of a variable in an expression is either free, adherent
or bound, and these three classes of occurrence are mutually exclusive.

(i) An occurrence of -a variable in an argument place of a predicate is a
free occurrence of that variable.

(iii) Each free occurrence of a variable @ in a formula A is a bound
occurrence in the expression vaA. Each adherent (respectively, bound)
occurrence of a variable 8 in A or in ¢ is an adherent (respectively, bound)
occurrence in vaA. If B8 is not a, then each free occurrence of B8 in A is an
adherent occurrence in vaA.

(iv) If @ is a variable and B is a formula, then every free occurrence of a
in B is bound in (Va)B. If B is different from a, then a free (adherent,
bound) occurrence of B in B is free (adherent, bound, respectively) in
(Ya)B, except that when @ is v...vyC ... A (there may be only one v
preceding ), and B is free in C (and thus adherent in @), such adherent
occurrences of 3 are free in (Va)B.

(v) Free, adherent, and bound occurrences of a variable in 14 and (A — B)
correspond respectively to free, adherent and bound occurrences in A
and B.

To aid in defining the closure of a formula, and for later use in the
inductive definition of a model, the notion of the level of an expression is
defined as follows:

(i) If @ is a proper variable, then the level of a, I(a), is 0.
(ii) If a is a restricted variable ¥ BB, then I(a) is 1 + max{l(a;): a; occurs in

V3B

(iii) If B is a formula, then I(B) = max {I(2;): @; occurs in B}.

The level of a formula is an indicator of the complexity of the structure of
the variables occurring in the formula. It aids in the definition of the
closure of a formula, as follows: a closure for a formula B is the formula
(Va)(Va,) . .. (Va,)B, with a;, @s, . . ., @, a complete list of all variables
occurring free or adherent in B, in non-decreasing order of level.
Arranging the variables in non-decreasing order according to level
guarantees that in the closure no variable has a free or adherent
occurrence since, for example, a variable a;., adherent in @, has level less
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than I(a), and when it is freed by (Va,) it is bound by the earlier quantifier
(Yay-;). The interchange of quantifiers cannot in general be allowed,
although quantifiers on the same level may be permuted; as an example,
(Yx)(YvyP(x, ))Q and (VvyP(x, v))(Vx)Q are not equivalent, since x has a
free occurrence in the second formula but not in the first. An expression
is said to be closed if no variable has a free or adherent occurrence in it.
Closed v-expressions will be referred to as v-terms.

The variable a is said to be substitutible for B in an expression E if the
occurrences of @ in E resulting from the replacement of B by a are free
where and only where B is free in E. If a is substitutible for 8 in a formula
B, then the formula resulting from the replacement of 3 in each free
occurrence by a is denoted by B, [@]. Generally, when this notation is used
it is assumed that the substitution is permissible. In case B has no free
occurrences of 8, Bg[a] is B; and when a is substitutible for 8, and y for a,
(Bg[a),ly] is Bsly].

Finally, I need to define the notion of an alphabetic variant; two
variables are alphabetic variants if either (i) they are both proper
variables, or (ii) they are restricted variables of the form vaA and v 3B,
such that a and 8 are alphabetic variants and B is 4,[8].

The axioms of 2K, are as follows:

Al If B is a tautology, then B is an axiom.

A2 A,[vaiA] — (Va)A.

A3 (Va)(A — B) — ((Va)A — (Ya)B).

Ada (Ya)B — (1(VB)f— Bu[B)), wheve 8 is an alphabetic variant of a.

Adb (Va)B — (1(Va)1A — B,[vaal.

A5 (VvaB)1(Va)1B.

A6 (YvaA)B — (VA)(A4[Bl — B,,alB)), where B is an alphabetic variant of a
not occurving free in (VvaA)B.

A7 If A is an axiom, then (Va)A is an axiom,

The only rule of inference is modus ponens, MP: from A and A — B,
infer B.

A devivation of a formula A from a (possibly empty) set of formulas S,
is a finite sequence of formulas B,, . . ., B,, such that B, is A, and for each
i, either B; is an axiom, a member of S, or the result of applying MP to two
earlier formulas in the sequence. If S is empty, the derivation of A is
called a proof, and A is a theorem. The notation S+A means that there is
a derivation of A from S; A means that A is a theorem. It is clear that if
A is an axiom, or a member of S, then S+ A.

A set of formulas S is said to be inconsistent if S«f; S is consistent if
it is not inconsistent. The following two theorems concerning consistency
are standard, and their proofs are omitted. They are included here for
later use in the completeness proof.

Theorem 2.1 If S U{ 1A} is inconsistent, then S+ A.

Theorem 2.2 Jf S+A and S +1A, then S is inconsistent.
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Other standard theorems which will be used are the following:

Theorem 2.3 (The Deduction Theorem) If S is a set of formulas, and A and
B formulas such that S U{A}+B, then S-A — B.

Since the only rule of inference is MP, the proof of the deduction
theorem presents no special difficulties and is omitted, as are the next two
proofs.

Theorem 2.4 If SFA — Band S+-B — C, then S+-A — C.
Theorem 2.5 If S —(Va)(A — B) and S —(Va)A, then S ~(Va)B.

I also will want to use a simple version of the generalization rule:
Theorem 2.6 If A, then -(Va)A, for any variable a.

Since there is not a set S of assumption formulas which might impose
conditions on the variable a, this is an almost immediate consequence of

AT.
The following theorems have special reference to restricted quantifi-
cation theory: '

Theorem 2.7 If S ~(Va)f, then S ~(Va)B for any formula B.

Proof: f— B is an axiom because it is a tautology, therefore, by A7,
(Ya)(f — B) is an axiom, so S -(Va)(f— B). Then, if S +(Va)f, it follows by
2.5 that S ~(Va)B.

Theorem 2.8 If a and a' are alphabetic variants, and a' does not occuyr free
in (Va)B, then —(Va')((Ya)B — B,la']).

Proof: (1Byla'l — 1(Va)B) — ((Va)B — B,y[a']) is a tautology, hence an
axiom. By A7, its generalization

(Va) (1 Byla'] —~ 1(Va)B) — ((Ya)B — B,[a'])
is an axiom; also,
(Vvai1B)(1(Va)B) — (Va')(1B,[a'] — 1(Ya)B)

is an instance of A6, and since (Vv a1B)1(Va)B by A5, H(Va')(1B,[a'] —
71(Va)B) follows by MP. Then, ~(Ya')((Va)B — B,[a']) follows from

~(Va")((1Bg[a'l — 1(VYa)B) — (Va)B — By[a'))
and |
F(Va')(1B,[a'] = 1((Va)B))
by 2.5.

This is the restricted variable analogue of Leblanc and Meyer’s
Axiom of Specification, adopted from Lambert, which distinguishes their
free logic from other theories.

Theorem 2.9 If a' is an alphabetic variant of a not occurving free in (Va)B,
then -(Va)B — (Ya"\B,[a'].
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Proof: By 2.8, ~(Va')((Va)B — B,[a']). From A3 by MP, —(Va')(Va)B —
(Va')By[a']. Since a' does not occur free in (Va)B, ((V&)B)y[vai1(va)B] is
(Va)B, and thus (Va)B — (Va')(Va)B is an instance of A2. From above,
(Va")(Va)B — (Va')B,[a'], therefore, by 2.4, ~(Ya)B — (Va')B,[a'].

Theorem 2.10 If vaA does not occur free in (Va)B, then -(Va)B —
(YvaA)B,[vaAl.

Proof:
F(Va)B — (1(Ya)14 — B,[vaAd)) — (1(Va)14 — ((Va)B — B,[vaAl)

because it is a tautology, and

(Va)B — (1(Ya)1A — BylvaA))
is an instance of A4, therefore

F1(Va)14 — ((Va)B — B,[vaAl)
by MP. By2.6,

F(YvaA)(1(Va)14 — ((Ya)B — By[vaA));

and (VvaA)1(Va)lA is an instance of A5, therefore, by 2.5, ~(VvaA)((Va)B —
By[vaA]). Then by A3,

~(VvaA)(Va)B — (VvaA)B,[vaAl,

and by A2, ~(Va)B — (VvaA)(Va)B, since vaA does not occur in (Va)B.
Thus —H(Ya@)B — (YvaA)By[vaA].

As an immediate consequence of 2.9 and 2.10,

Theorem 2.11 If o' is a variant of a, and B' is B,[a'], then +(Va)A —
(Vva'B")A,[va'B').

The next theorem could be considered a converse of A6; it relates two
levels of quantification.

Theorem 2.12 ~(Ya)(A — B) — (YvaA)B,[vaAl.
Proof: By 2.10,
+(Va)(4A — B) — (VvaA)(A — B),[vadl],
therefore,
F(Va)(A — B) — ((VvaA)A,[vaA] — (YvaA)B,[vaAl).
Using tautologies,
F(YvaAd)A[vaA]l — ((Ya)(A — B) — (YvaA)B,[vaA)).

1A4,[vaA]l — (Va)1A is an instance of A2, hence F1(Va)1A — A, [vaAl, and
by 2.6, (VvaA)(1(Va)lA — A,[vaA]). But (VvvaA)1(Va)1A is an axiom,
hence (Vva A)A,[va A, therefore,

~(Va)(A — B) — (VvaA)B,[vaA].
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Before stating and proving the next theorem, I need to make some
observations and introduce some notation for future use. If B is a
restricted variable, it has the form vaA, where a may be either a proper
or restricted variable. a is said to be nested in 8 in this case, and the
depth of nesting is 1. If a in turn is a restricted variable vy C, then y is
nested in @ and also in B, which has the form vvyCA. Whenever 3 can be
written as a string of » v-symbols, followed by a variable a, followed by a
string of n formulas, a is said to be nested in B8 to depth n, and the notation
v"a{A,} is used to indicate the structure of 8.

Theorem 2.13 +(Va)B — (VB)B,|[B) for every B in which a is nested.

Proof: The proof is by induction on the depth to which a is nested in 8, that
is, on the length of the sequence of y-symbols preceding a. If n = 1, then 8
is vaA for some A, and —(Va)B — (VvaA)B,[vaA] by 2.10. Assume as
hypothesis for the induction, that the theorem holds for every variable in
which a is nested to depth less than n. Let f be the variable v”a{A4,}. This
can be written as v(v" ' a{A,.,DA, or, letting v"'a{4,.,} be v, as vy A,.
By 2.10,

'-(VY)BL'([?’] - (VV')’An)(Ba[)’])y[V)’An],

that is, +(Vy)Bgly]l — (VB)B,[B]. By the induction hypothesis, ~(Va)B —
(Vy)Byly], and, therefore, by 2.4, ~(Va)B — (VB)B,[B8].

From the formation of restricted variables, it is clear that every
restricted variable has a proper variable nested in it. By means of 2.11
the above result can be extended to every 8 in which an alphabetic variant
of a is nested. In particular, I have the following theorem:

Theorem 2.14 If a is a vestricted variable, then —(Vx)A — (Va)A,[a].
Theorem 2.15 +(Va)1A4 — (VvaA)f.

Proof: +1A — (A — f), therefore, H(Va)(1A — (A —f)), so by A3 and MP,
~(Va)14 — (Va)(4 —f).

F(Va)(A —f) — (Vvad)(4 — f)[vadl,

and
F(VvaAd)A —f) — (Yvad)A,vaA] — (Yvad)f),
therefore,
-(Va)14 —((Vvad)A,[vaAd] — (VvaA)f).
But then,

F(VvaA)A,[vaA] — ((Va)1A — (VvaA)f),

and since —(VvaA)A,[vaA] by the proof of 2.12, it follows that -(Va)14 —
(Vva A)f.

Theorem 2.16 (VvaA)f— (Va)1A.
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Proof: ~(A,[a']l —f) — 1Aa[a'], because it is a tautology.
F(Va')((Asla'] = ) — 14,[a']),

therefore,
F(Va')(Ax[e'] = f) — (Va')144[a'].
By AS6,
F(Yvad)f — (Va')(A.[a'] - 1),
and thus

~F(Vvad)f— (Va")14,[a'].

But for suitable @ and a', —(Va")14,[a'] — (Va)1A4, therefore, —(Vva A)f —
(Va)1A.

3 Semantics A model for 2K, consists of a (possibly empty) set of
individuals D, called the universe or domain of discourse, together with a
mapping II which is defined for all m-place predicate variables, m =
0,1,2,..., such that for each P", II(P™) is a function from D", the set of
all m-tuples of elements of D, to {0,1}. Functions  and J are defined; b,
called a domain assignment, assigns a subset of D, possibly @, to each
variable of 2K,; J, called a value assignment or interpretation, assigns to
each variable a for which D(a) # @ a member of H(a), and to each formula
of 2R, either 1 or 0, 0 standing for falsehood and 1 for truth. The functions
D and S are defined inductively and simultaneously on the level of
expressions. J(a) is defined only for variables with non-empty domains,
called designating variables; when D(a) = @ a formula containing a cannot
be assigned a value in the usual fashion. In such cases atomic formulas
with free o are assigned a value arbitrarily, or in accordance with extra-
logical considerations, and the theory itself takes no stand as to the truth
or falsity of statements with non-designating variables, except that once
values have been assigned to atomic formulas, the values of composite
formulas are determined as usual. As to a formula of the sort (Va)A, it is
assigned the truth value 1 when D(e) =@®. Thus in the empty domain a
formula and its closure need not have the same value.

The definitions of b and J proceed as follows: Let D be a set of
objects (D may be @), and II a mapping which assigns to each m-place
predicate a function from D” to {0,1}. (If D is empty then the only function
from D" to {0,1} is the empty function.) A sequence {b,} of domain
assignments from variables to subsets of D is constructed, so that each b,
is defined on all variables of level less than or equal to #. Simultaneously
a sequence {J,} of value assignments is defined so that, if o is a variable of
level less than or equal to # and b, # @, then J,(a) is a member of D,(a),
and if B is a formula of level less than or equal to #n, J,(B) is either 0 or 1.
J;d denotes that value assignment which assigns the same individual to
every variable 8 # @ whose level is less than or equal to j that #; assigns to
B, and which assigns the individual d in ;(a) to a. Ji‘j also agrees with J;



A THEORY OF RESTRICTED VARIABLES 599

on all the atomic formulas of level less than or equal to j which contain a
non-designating variable. The following restrictions need to be made on
the values given to atomic formulas with non-designating variables:

Restriction R1 Let A be an atomic formula of level # in which a variable
with empty domain occurs, and let @ and 8 be variables of level less than
or equal to # such that J,(e@) = 3,(8), and B is substitutible for a. Then both
A and A,[B] contain a non-designating variable, so they both must be
assigned a value by J,; R1 requires that J,(4) = 3,(4,[8)]).

Restriction R2 Let B be an atomic formula of level # in which a variable
with empty domain occurs, let @ and B be variables of level less than or
equal to #» such that J,(a) and J,(8) are defined, and J,(B) is in D,(a).
Suppose a has a free occurrence in B and that 38 is substitutible for a.
3.5, is the assignment which agrees with J, on n or less-level expres-
sions, except that it assigns to @ the individual which 4, assigns to 8. R2
requires that 4,5, (B) = J.(Bo[B]). That is, B,[8] does not necessarily
have the same value as B; what counts in determining its value is the
individual to which 8 and a refer.

The sequences {b,} and {J,} are constructed as follows:
Do(a) = D, for every 0-level variable, i.e., for every proper variable.

If Dy(x) + D, let Jo(x) be a member of Dy(x), for every proper variable x.
Let B be a 0-level formula.

(i) If B is P(x,, ..., %¥,) and Dy(x;) 2D, then I(P(x,, . . ., X,)) =
H(P)(Io(x1)y « v oy Io(%2)). If Dolx;) = D, then let Jo(P(x,, . . ., x,)) be either
Oor 1.

(ii) Suppose B is 1A. Then Jy(B) = 1 if and only if J,(4) = 0.

(iii) Suppose B is A — C. Then J4(A — C) =0 if and only if J,(4) = 1 and
34(C) = 0.

(iv) Suppose B is (VX)A. If Dy(x) = D then Io((Vx)A) = 1. If Dy(x) + @, then
3o((¥x)A) = 1 if and only if Jgg(4) = 1 for every individual d in Dy(x).

D, and I, are thus defined for 0-level variables and formulas. Assume
as hypothesis for the inductive definition, that a domain has been assigned
to each variable of level less than or equal to n by .Jb,, and that for each
variable a of level less than or equal to % such that D,(a) + D, J.(a) is an
element of B,(a), and that for each formula B of level less than or equal to
7, 3,(B) has been determined. Let 8 be a restricted variable of level n + 1.
Supposing B to be vaA, the hypothesis of the induction applies to a and A,
since I(a) and I(A) are less than » + 1, and D,(a) is a subset, possibly
empty, of D. If D,(a) # D, then I,(a) belongs to D,(a), and whether D,(a) is
empty or not, J,(A) is either 0 or 1. Define

Dr(wad) = {din D,(): I.44) = 1},
and let
ab,,.H = .an ‘DZ+I.
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Thus Db,,, assigns a subset of D to every variable of level less than or
equal ton + 1, and agrees with D;, for ¢ less than z + 1, on all variables of
level i. If B,(a) = P, of course D,.,(vaA) =9 also. For every B of level
n + 1 such that 9,,,(8) # D, let J,.,(8) be a member of D,.,(8), and for a of
level z or less, let J,,;(a) be J,(a). Let B be a level-z + 1 formula:

(i) If B is P(ay, ..., @) and D, (a;) #P fori=1, ..., k, then 3,,,(P(a,,
cevy @) = I(P)(Ipas(@r), « - oy Ipia(@y)). If there is an i such that D, ,(a;) =
®, then let 9,.,(P(ay, . .., @;)) be 0 or 1, being sure to follow restriction
R1.

(ii) Suppose B is 1A. Then J4,,,(B) = 1 if and only if 4,,,(4) = 0.

(iii) Suppose B is (4 — C). Then J,.,(4 — C) =0 if and only if J4,,,(4) =1
and 4,,,(C) =0.

(iv) Suppose B is (Va)A. If D,,.(a) = @ then I, ,(Va)A) = 1. If D,,.(a) + D,
then J3,..((V@)4) =1 if and only if J,,,3(4) =1 for every d in D,,,(2). (In
determining J,,,3(A4) restriction R2 must be kept in mind.)

o0 0
Finally, let 3 = ”Uo.bﬂ and 9= U0 3.
- i=
It should be noted that whenever Jb,(a) = @ for some a of level %, there
are different interpretations possible depending on whether a particular
atomic formula containing o is assigned 0 or 1 by J#,. For example, it
would be possible for two interpretations 4 and J' to agree up to level &,
but 3, to be different from 3. Also, if two interpretations differ at some
level, the domain assignments associated with each of them may also differ
on some variables of higher level.
The following theorems give some information about models for 2K,;
some of them will be necessary for the completeness proof.

Theorem 3.1 Let a and B be variables and A a formula such that B is
substitutible for a in A, let D + O, and let D and I be such that D(a) + D.
Then 3y5()(A) = 1 if and only if 3(4,[B]) = 1.

Proof: 1f @ does not occur free in A, then A4,[B] is A, and since J,( and S
agree on all the free variables of A as well as on all atomic formulas with
non-designating variables, 3;()(4) = 3(4,[8)).

Suppose a occurs free in A. Let A be the atomic formula P(a,,..., az).
Since a occurs free in A, and an occurrence of a in some a; would not be a

free occurrence, some @; must be a. If H(a;) # P fori=1, .. ., k, then
JJ&)(P(QD LEECIEY) ak)) = JJ&)(P(QD PN IR ak)) a
= I(P)(Iy(py (@), - « 5 Iugy(@)s « « -5 Fs(@)(@r))

= H(P)(J(al)y e e ey j(B)’ LIRS J(ak))’

because 4 ,(‘g) agrees with J on all variables other than a, and J ,é’s)(a) = J(B)
in this case. Furthermore,

H(P)(’)(al)9 e ey J(B): L) J(ak))

IP@y, - - By ey @R))
(P, - - -, @x))alB)).
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Therefore, J,((A) = (Aq[B]). If there is some ¢ such that D(a;) = @, then
restrictions R1 and R2 insure that J,((A4) = J(A4[B]) for an atomic
formula A.

Assume that if B is a formula with fewer than » occurrences of 1, —,
and V, then J,0(B) = J(B, [8]). Let A be a formula with # occurrences of
1, —, and V. Suppose A is 1B. J,()(1B) = 1iff I,8)(B) =0 iff H(B,[B]) =0
iff J(‘lBa[ 1) = 1. Suppose Ais B— C. J,{)(B— C) =0 iff 3,5 (B) =1 and
I3 (C) =0 iff I(B,[B]) =1 and I(C4[B]) =0 iff I(BL[B] — C4[B]) = 0 iff

J((B — C),[B)) = 0 iff 9(A,[B)) = 0. Suppose, lastly, that A is (Vy)C. Since
a is free in (Vy)C, either @ has an adherent occurrence in y which is free in
(Vy)C, or a has a free occurrence in C. If a is not adherent in v, then the
only free occurrences of a in A are its free occurrences in C. In this case,
((V9)C)4[Bl is (V) CylB]. It D(y) = P then I((Vy)C4[B]) = 1 and ﬂy(ﬁ)((VV)C)
1. If D(y) # @, then J,(B)((Vy)C) = 1iff for every d in D(y), J,(B)J(C) =1 iff
for every d in D(y) Jd,(ﬁ)( ) = 1 iff, by the induction hypothesis, Jd(Ca[ ]) =
1 for every d in D(y) iff J((Vy)C [ ]) = 1. If a is adherent in y and free in
(Vy)C, then there is a variable v5D with a free in D, such that ¥6D is y or
nested in y. Suppose ¥3D isy. Then ((Vy)C),[B] is (Vw6 D4[B])C,,, [B,¥5Dy[B]]
or, for brevity, (Vy')C' Now, J,(ﬁ)((vy)c) = 1 iff for every d in D 0 (y),

J(B)‘,(C) =1, where 9,3 denotes the domain assignment associated with
3,8 . Is(malC) = 1 iff ﬂd,(m(C) =1 iff SJ(C,[B]) =1. I((vy"C") =1 iff for
every d in D(y"), 34(C") = that is, iff for every d in D(¥6D,[8]),
2lfl(c, [B, voD,[8)) = 1.

D(V5D,[B]) = {d" in 2(0): le(pa[g]) =1}

= {d' in c‘b)g;)(é): ‘,SIJ(B)(D) = l}‘

= {d' in .‘b,(ﬁ)(&): j}gﬂ)dsl(D) = 1}

= 33?3)( VGD).
That is, B,{0) = D(G'). Now, JIJ6)= 310", and JI}(B) = 3](8), so
(G [8) = 3{'(C, 1B, ¥']) and B () = D(y"), therefore,

{din D("): 3J(C") = 1} ={din D,5)(): IJ(Ca[B)) = 1}

Thus 3,0 ((Vy)C) = J((Vy')C"), or 8,8 ((Vy)C) = J((V¥)C),[B]), when y is
voD. If vo6D is nested in y an inductive argument on the depth of v6D
proves the theorem in this case.

Theorem 3.2 If a and B are alphabetic variants, then D(a) = D(B).

Proof: The proof is by induction on the structure of @ and 8. If @ and B are
both proper variables, then D(a) =D = D(B). Suppose a is vy C and 8 is
v6D. Since a and $ are variants, y is a variant of 6 and D is Cy[é].

D(@) = D(vyC) ={d in D(y): HJ(C) = 1}
and
D(B) = D(voD) = {d" in D(G): Ig(C,[8]) = 1}

By the induction hypothesis D(y) = .?)(tys) For every d in D(vy C) Jy( C) =
and since J4(6) = d, it follows that J,2(;)(C) = 1. Then by 3.1, J4( cy[a])
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so d is in D(v5D). A similar argument shows that D(v 6D) C D(vyC) and,
therefore, D(a) = D(B).

Theorem 3.3 If a is nested in B, then D(B) C D(a).
Proof: If Bis vaA, then
D(B) = D(vaA) = {din D(a): I5A4) = 1}

Thus any member of D(waA) belongs to D(e). Assume that if y is
V" a{A,.,} then D(y) C D(a). Now consider the variable v”a{A,} which can
be written in the form vy A, or (" 'a{A,.,)A,, and let B be v"a{4,}.

DP) = DwyA,) ={din D(): IJA4,) =1}

so if d is in D(B), then d belongs to BH(y). But by the induction hypothesis
D(y) € D(a), therefore, H(B) C D(a).

Theorem 3.4 If D(vad) 2D then $(A,[vaA]) = 1.

Proof: If D(vaA) #+ D, then J(vaA) must be a member of D(vaA) which is
{din D(a): I3(4) =1}, Then I(vaA) belongs to D(a), and Iy5(A4) = 1, so
by 3.1, 3(A,[vad]) = 1.

Finally, some essential definitions are included here. Let D be a set
of individuals, and II a mapping from m-place predicate variables to the set
of functions from D™ to {0,1}. A formula A is said to be valid in D if and
only if J(A) = 1 for every value assignment J defined over D. A is valid if
it is valid in every domain D. A set S of formulas is verifiable if there is
a domain D, and an assignment # defined over D, such that #(4) = 1 for
every A in S.

4 The completeness of 2R, In this section &, is shown to be sound and
semantically complete. A theory is sound if every theorem of the theory is
a valid formula; K, is shown to be sound when it has been proved that
every axiom is valid, and that the sole rule of inference, MP, preserves
validity. A theory is semantically complete if every valid formula is
provable.

First, the proof that the axioms of 2K, are valid:

1. Clearly, those axioms which are such by virtue of being tautologous are
valid.

2. The formulas which are instances of A,[va14] — (Va)A are valid in the
empty domain, because in that case DH(a) = @ and thus for any J, J((Va)A) =
1, so whether J(4,[va1A])=1 or 0, J(A4,[va1A] — (Va)A) = 1. By the
same reasoning, instances of this axiom are valid in any non-empty domain
for which  and J are such that D(a) = . Thus, if A2 is not valid, there is
a non-empty domain D, a domain assignment » and a value assignment J
over D, such that D(a) # @ and I(4,[va1A] — (Ya)A) =0. Then it must be
the case that J(4,[va1A]) =1 and $((Va)4) =0. Either D(wa14)=9 or
D(valA) +@. If D(valA) = P, and thus {d in D(a): I5(14) = 1} is empty, it
follows that there is no individual d in ®(a) for which #3(14) =1 and,
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therefore, for every d in Jb(a), )j('lA) = 0 or, for every d in H(a), J4(A) =
1. Then J((Va)A) =1, contrary to assumption. Thus D(walAd) P, so
J(vaA) is defined and belongs to D(val1A4). Now, D(vald) ={d in D(a):
J3(14) = 1}, and since J(va14) is in Dwal4), Iypen(1A) =1 and thus
Iywarafd) =0. Then by 3.1, $(A4,[vai4]) =0, contrary to assumption.
Therefore, J(A,[val1A] — (Va)A) # 0, and A2 is valid.

3. Again, instances of (Va)(A — B) — ((Va)A — (Va)B) are valid in @, and
they are also valid in any non-empty domain D over which b and J are
defined so that p(a) = ®. Thus, if A3 is not valid, there is a non-emipty
domain D and assignments  and J over D such that D(a) + 9, J((Va)(4A —
B)) =1, and J((Va)A — (Va)B) =0. J((Va)A — (Ya)B) =0 iff J((Va)A4) = 1
and #((va)B) =0, and J((Va)B) = 0 iff for some d in H(a), I4(B) =0. But
J((Ya)(A — B)) = 1, so for this d, JJ(4 — B) = 1; and since J((Va)A) = 1,
35(A) = 1. But if J3(4) =1 and I3(4 — B) =1, I3(B) must be 1, contrary
to the above. Thus the assumption that A3 is not valid leads to a contradic-
tion, so A3 is valid.

4. If D = @, then for every 3, 3((VB)f) = 1 and 3((Va)14) = 1, so #(1(VA)f) =
0 and J(1(Va)14)=0. So $(1(VR)f — Bu[B]) =1 and #(1(Va)1A — By[vaAl) =
1, therefore,

I((Ya)B — (W(VB)f — B,[B])) = 1
and
J((Va)B — (1(Va)1A — By[va Al) =1,

thus Ada and A4b are validin @. If D # 9, but D and J# are defined so that
D(a) =P, the same argument applies, because D(B) = H(@) and thus
J((vB)f) = 1. So, if A4 is not valid, there is a non-empty domain D and
assignments » and J over D such that #((Va)B) =1and either (a) J(1(VB)f) =
1 and J(B,[B]) =0, or (b) J(1(Va)1A) =1 and I(B,[vaAl])=0. If D(a) #+ D
then D(B) # D and J(B) is in D(a), because a and B are alphabetic variants.
Since J((Va)B) =1, J3(B) =1 for every individual d in D(a); in particular
JJ(OE;)(B) = 1. But then by 3.1, J(B,[B8]) = 1, contrary to assumption (a). If
#(1(Va)1A) = 1 then J((Va)14) =0, so for some d in DH(a), J5(14) =0,
hence for some d in B(a), I5(4) =1. Thus D(vad) +P, so I(vad) is
defined and belongs to H(vaAd) C D(a), and since J((Va)B) =1, J,(,,";A)(B) =
1, and thus J(B,[vaA]) = 1 contrary to assumption (b). Therefore, Ada and
A4b must be valid.

5. Axioms of the form (VvaA)7(Va)14 are true whenever D(vad) = @, so
let D be a non-empty domain and b and J assignments defined over D such
that D(vaA) is not empty, and I((VvaA)1(Va)TA) =0. Then for some d in
DdvaAd), Y (1(Va)14) = 0, so for this d J*44(Va)14) = 1, therefore,
3"%4%8(14) = 1 for every d' in D(a). Thus there is a d in D(vaA) such that
for every d' in D(a), 3°5§(4) =0. But J(vaAd) belongs to D(a), so it
follows that 3”§%,%4)(4) = 0 and, therefore, that I¥4(A.[vaA]) = 0. But this
is impossible by 3.4. Therefore, A5 is valid.

6. In any domain over which b and J are defined so that D(B) = P,
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J((VwaA)B — (VB)(AalB] — B,ealB]) = 1.

So assume that D is not empty and D(8) # ©. If A6 is not valid in D, then
J((VvaA)B) = 1 and

I((YB)(Au[B] — B,q4lB)) =0,

so there is some d in D(B8) such that JS(AG[B]) =1 and ﬂg(B,aA[B]) =0. If
J((Yva A)B) = 1, then either (i) DWwaA) =9, or (ii) D(wad) #P and for
every d' belonging to D(wad) S*;(B)=1. But in case (i), there is no
individual d in B (@) such that J3(A) = 1, hence no d in D(8) = D(a) such that
35 (4,[8)) = 1; therefore, 3((VB)(A4[B] — B,aalB)) = 1. In case (ii), J":IA(B) =
1 for every d' in D(va A). But J(B) belongs to D(va A) since J(B) is in D(a)
and J,((A4) = 1 because 384,08 =1 and Jf,ﬁ;)(A) = 3,0 (A). Therefore,

vaA

I35 (B) = 150 I3(B,qalB]) = 1 which contradicts the assumption that
J((VB)(Aa[B] = BaalB])) = 0.

Therefore, A6 is valid.

7. A7 is actually a rule for generating axioms from formulas which are
specified as axioms by Al through A6. The proof that it is valid is by
induction on the number of uses of the rule. Suppose that (Va)A is an axiom
which has not been generated by a use of A7. Then (Va)A is an axiom by
reason of schemas Al through A8, so it is valid. Now, assume that if (VB)B
is an axiom by virtue of fewer than n uses of A7, then it is valid. Let (Vo)A
be an axiom generated by # uses of A7. If (Va)A is not valid, then there is
a non-empty domain D and assignments D and J over D such that B(a) + @
and J((Va)Ad) =0. Then for some d in D(a), JS(A) = 0. But A must be an
axiom generated by fewer than n uses of A7, so A is valid in D, and since
}Z is a value assignment over D, JZ(A) must be 1, contrary to the above.
Therefore, A7 is valid.

Finally, I need to show that the rule MP preserves validity, that is, if
A and A — B are valid, then B is valid. If B were not valid, there would be
some (possibly empty) domain D and a value assignment J over D, such
that #(B) =0. Since A is valid, J(4) = 1 and, therefore, (4 — B) = 0. But
A — B was assumed to be valid. Thus B must be valid.

That Q4&,, is sound is now clear. For if A is a theorem of &, there is

a proof of it, say B;, ..., By-;, A. If A is an axiom then the proof of A
consists of the single formula A, and since A is an axiom it is valid.
Suppose that B,, ..., B,.;, are valid and that A follows from B; and B; by

MP. Then since MP preserves validity, A is valid.

The main result of this section is that every consistent set of formulas
of K, is verifiable. The theorem that every valid formula is provable,
and thus that K&, is semantically complete, follows from this with the aid
of some easily established lemmas. The proof that a consistent set S of
formulas is verifiable is carried out by constructing a model of 24, from
syntactic materials; the domain of individuals consists of all those
expressions which actually refer to individuals. In 2K, these expressions
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are among the variables, but since variables are used for quantification as
well as to refer to specific individuals, some confusion can result unless
the variables used for these two purposes are distinguished somehow. This
is accomplished by extending the language by the addition of constant-like
expressions which will be used only in free and adherent occurrences in
formulas, while the variables are reserved for use in quantifiers and as
v-operator variables. The axioms will be extended to include those
instances with constant terms in places occupied by free variables, and the
definition of a model adapted to take the constants into account. It is from
among these constant terms that the individuals of the model I construct
will be obtained.

The language of 2K, is enlarged as follows, by the addition of special
constants called o-terms, in such a way that to each variable a unique
special constant is associated:

(i) For each proper variable x, x° is a o-term.
(ii) For each restricted variable, (vaA)’ is the g-term gotten by replacing
every free or adherent variable by its corresponding o-term, and replacing
each v not immediately preceded by V or v by 0.

A o-term has no free or adherent occurrences of a variable; any individual
expression occurring in a g-term is either a o-term or a variable bound by
V,v,oro.

Next, the axioms are extended to include formulas with o-terms, which
are instances of Al through A6. In particular, the formulas

Auloa14] — (Va)4,
(Va)B — (1(VB)f — B,4[B°)),
(Va)B — (1(Va)1A — B,loaA))

are axioms. The extended theory is called 2K, and the symbol }z means
provable in 2K, .

24K, is a conservative extension of 2&,, in the sense that if A is a
formula of 4, which is a theorem of 2R,, then A is a theorem of 2K,.
For if Iz A, then there is a sequence of formulas of 2K, which is a proof of
A. In each formula of this sequence replace each ¢ by v, and replace each
x7 by x, for any proper variable x. If the original formula was an axiom of
2R, the resulting formula is an axiom of QK,, and the transformed
sequence is a proof of A in 2K,,.

The definition of a model must be modified to take o-terms into
account. Clearly, the level of any o-term ought to be 0. Since a o-term
replaces its corresponding variable, I require that for any o-term a’ $(a°)
belongs to D(a) whenever D(a) + . If D(a) = P then a’is a non-designating
constant, and J(a’) is not defined.

The following theorem can now be proved:

Theorem 4.1 If S is a consistent set of formulas, then S is vevrifiable.

Proof: Let S be a consistent set of formulas of 2K,. Let S’ be the set of
formulas obtained from S by replacing each non-bound occurrence of a
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variable in a formula of S by its corresponding o-term. Let A,, A,, A,, . ..
be a list of all the closed formulas of 2K,, that is, A; has no non-bound
occurrences of variables, although it may have free or adherent occur-
rences of 0-terms. Define a sequence of sets of closed formulas of 2K, as
follows:

s =8°,
S; U{A;, 1}, if S; U{A; ..} is consistent,
Siy1 =
S; U{14;,.}, if S; U{A;,,}is inconsistent.
o0
Let Soo = U s,‘.
=0

Theorem 4.2 S; is consistent for i =0,1,2, .. ..

Proof: S,is S° If S’ is not consistent, then Stz f. But f is a formula of
2R, so the derivation of f from S’ can be transformed into a derivation of f
from S by replacing o-terms in the formulas of the derivation by the
corresponding variables. But then Sk f, which is impossible since S is
consistent by hypothesis. Therefore, S° is consistent.

Assume that for some % greater than or equal to 1, S;_, is consistent.
Sp is either Si., U{A,} or S, U {‘IAk}, depending on whether or not
Sp-1U{A,} is consistent. If S; is S;., U{A4,}, then S, is consistent. So
suppose S; is Sp-; U{14,}. In this case S;-, U{A,} is inconsistent, so by
definition S;.; U {A, }t=f. By the deduction theorem S;.,tz A, — f. (Ax—f) —
(t — 1Ag) is a tautology, so S, l7 (A —f) — (¢ — 14,) and thus, by MP,
Spitgt— 1A,. But Sy, t, so S, l# 1A, If Sp were inconsistent, that is,
if Sp, U {'IA k} were inconsistent, it would follow by 2.1, that S;_;lz A;. But
then Sp.,lz14, and S;_;tv Az, so by 2.2, S,-; is inconsistent, contrary to
assumption. Thus S, is consistent if S,_, is consistent, so S; is consistent
for every i.

Theorem 4.3 S, is consistent.

Proof: If S» is not consistent, then S.lrf, and there is a sequence
By, Bz, . . ., By of formulas such that B, is f, and each B; is either a
formula in S.,, an axiom of 2K, or the result of MP applied to formulas B;
and Bj — B; preceding B;. If B; is an element of S, then either B; is in S7
or B is A;, for some k;. Let K =0 if no B; is an 4;,, otherwise, let K be
the largest of all the integers k; such that B; is A4, ;- Then, each B; is
an axiom, a member of Sk, or the result of MP, so B;, By, ..., Byis a
derivation of f from Sk, and Skls f. But this is impossible since Sk is
consistent. Therefore, S, is consistent.

Theorem 4.4 Let A be a closed formula of 2R.. If A is not in S, then
Stz TA.

Proof: Since A is a closed formula of 2K, it occurs in the list A,, 4,,
A, . ... Suppose it is the k’th formula A,. If 4, does not belong to S,
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o0
then A, does not belong to _UOSi, hence A, is not a member of any S;. In
iz

particular, A, is not a member of S;. But since Sy is either S;_, U{4,} or
Si-1U{14,}, and A; is not in S, S must be S,_; U{14,}. Then 14, belongs
to Sg, so 14, belongs to S, , and, therefore, Stz 14, or S, t7 1A.

Theorem 4.4 shows that S is a maximal consistent set of formulas.

Theorem 4.5 If 1(Va)A is a closed negated quantification such that
Seo t 1(YQ)A, then theve is a constant s such that Sy t& 1A4,4[s].

Proof: Ag[ea1A] — (VYa)A is an axiom S0 SewlzAgz[0a14]— (Ya)A. Then
Seo - 1(VO)A — T AG[0T1A], so if Sw k& 1(Va)A, then by MP, S Iz 14,[0a14].
0a1A is the desired constant s.

Now a model for K, can be constructed. The domain of the model has
as its individuals those closed expressions of QR; which actually designate
specific individuals. These are the 0-terms whose corresponding variables
have non-empty domains; the non-emptiness of D(va A) is expressed by the
formula (Ja)A, and the non-emptiness of B(x) by (3x)f. Thus D is defined
as follows:

x’is in D if and only if S, Iz 1(Vx)f,
D =
oa A is in D if and only if S, I= (V@)1 A.

The truth value of an atomic formula depends on whether or not the

formula is derivable from S.. Thus the mapping II from predicates to
functions from D” to {0, 1} is defined as follows:

I(P)(S1y . . ., Sp) = 1 if and only if Se &7 P(Sy, . . ., Sn).

Then D and J are defined inductively and simultaneously as before,
except that I require J(s) = s for every designating o-term s. If the domain
of the variable corresponding to s is empty, then J(s) is not defined. When

P(sy, ...,S,) is a closed formula which contains non-designating constants,
(S1y - + . S,) is not in D" so II(P) is not defined for this n-tuple. In this
case, J(P(Sy, .« ., Sy)) = 1iff Stz P(Sy, . . ., Sp).

If A is any closed atomic formula of K7, it is evident that J(A) = 1 if
and only if Swlz A. If A is P(S;, ..., S,) and some s; is non-designating,
then J(P(Sy, ..., Sn)) =1 iff Sl P(Sy, ..., S,) by definition, while if
every s; is a designating constant, then (s,, . . ., s,) belongs to D”, and

I(P(S1, « v vy Sn)) = I(PYHI(S1),s « « oy I(SH))
= H(P)(sl’ oo ey S'l)
= 1iff Sl P(Sy, . . ., Sn).

In order to prove that J(A) = 1 iff Stz A, for any closed formula A of
2R?, the following theorems are necessary:

Theorem 4.6 For every closed negation 1A of 2R, , Seo tz 1A if and only if
it is not the case that Stz A.
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Proof: If A is not derivable from S, then 4 does not belong to S, because
if it did, it would follow that SotrA. But if A is not a member of Se,
Sotz 1A by 4.4. If Solsg 1A and Solz A, then S would be inconsistent,
contrary to 4.3. Therefore, if So 7 14, it is not the case that Stz A.

Theorem 4.7 Fov every closed implication A — B of 2R, Stz A — B if
and only if eithev So bz B 0¥ 10t Stz A.

Proof: If Swle A — B, then either Swols A or not Swls A, and if Swlz A then
Stz B by MP. Therefore, either S, t7 B or not Stz A. Conversely, if not
Sw 7 A, then by 4.6, Swls 1A. Solzg 1A — (1B — 1A), so by MP Sw t7 1B —
71A, and since So (1B — 1A) — (A — B), Swlg A — B. If SelzB, then
Swlz A — B because So t7 B — (A — B).

Theorem 4.8 If So t7 (VX)A, then for every o-tevm a° such that So t=1(Va)f,
Seo l7 Ac[].

Proof: Suppose a°is y°. By Ada,
Seo b (VXA — (U(VY)f — Ax[¥°)),

S0 if Sw lz (VX)A, then Seo tr1(Vy)f— A.[y°]. But if »? is such that
Seo k7 1(V9)f, then Swo l7 Ax[y?]. Suppose a’is 0 3B. By Adb,

Seo tz (VB)A — (1(VB)1B — AgloBB]),

and by 2.14, Sw tz7 (VX)4A — (VB)A.[B]. So if Sw Iz (VX)A, then S« t7 (VB)A,[B],
and thus Selz 1(VB)1B — Agz[0BB]. If 08B is such that Sw tz 1(V¥BB)f, it
follows from 2.15 that S, t= 1(VB) 1B and, therefore, that S, t= Aglo BB].

Theorem 4.9 If vaA is nested in y and Swo +1(Vy)1C, then Switz Ayloy Cl.

Proof: Let y be v"vaA{B,}. In the course of the proof of 2.12, it was
shown that ~(VvaAd)A.vaAd]l. By 2.13, Swlz(YVad)A,[vaA]l — (Vy)A.[y]
since vaA is nested in y and, therefore, Se Iz (V)A4,[y]. By Adb,

Se t7 (VY)Ae[y] = (1(¥)1C = AqloyC)),
thus S, 7 1(Vy)1C — A,[oyC]. But if S, t7 1(Vy)1C then Stz A4[0y C].

Theorem 4.10 If A is a closed formula of 2R, then S« tz A if and only if
J@A) =1.

Proof: The proof is by induction on the number of occurrences of 1, —,
and V in A. The theorem has already been proved for the case n = 0; that
is, for closed atomic formulas of the form P(S;, ..., Sy); Seo 5 P(Sy, « ««y Su)
iff #(P(s,, ..., S,)) =1. Assume that the theorem holds for formulas with
fewer than »n occurrences of 1, —, and V. Let A be a formula with »n
occurrences of 1, —, and V.

(i) Suppose A is 1B. J#(1B) =1 iff J(B) =0 iff it is not the case that
Selz B iff S, I5 1B, by 4.6.

(ii) Suppose A is B— C. J(B— C) =0 iff #(B) = 1 and J(C) = 0 iff Seo tz B
and not S, 7 C iff it is not the case that S, 7 B — C, by 4.7.
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(iii) Suppose A is (VB)B. The proof that S 7 (VB)B iff J((VB)B) = 1 is by
induction on the structure of B. Suppose B is a proper variable x. If
S« 7 (V%) B, then for every g-term a” such that S t& 1(Va) f, S & B,[a°], by
4.8, and thus for every such o-term, J(B,[a’]) =1 by the induction
hypothesis. Then by 3.1, Ja’f,(B) =1 because J(a%) = % But the o-terms
for which S, fz 1(Va)f, or equivalently, S, tz 1(Vy)1C, are precisely the
o-terms which are members of D, and since b(x) = D, Juf,(B) = 1 for every
o-term a°in D(x). Therefore, J((Vx)B) = 1.

If it is not the case that S, ls (VX)B, then S tz 1(Vx)B, and from 4.5,
Se l& 1B, [0x1B]. Therefore, it is not true that S, lv B.[0x1B], so by the
induction hypothesis #(B,.[0x71B]) =0. But 0x71B belongs to D, which is
D (x), because So Iz 1(YX)B, and 3,,55(B) = 0 by 3.1; thus, there is a 0-term
ox1B in D(x) such that 3., 5(B) = 0 and, therefore, #((Vx)B) = 0.

Assume as induction hypothesis for this part of the proof, that for
every variable y in which x is nested to depth less than #n, iff Sy t5 (Vy)D
then J((Vy)D) = 1. Let Abe (VvyC)B. If So lv (Vv yC)B then, using MP and
AB, Su tz (V¥ (Cyly'] — vac['y']) for an alphabetic variant 4’ of y. By the
induction hypothesis,

(VYN (Cyly'l = B, Ly D) = 1,
and, therefore, for every s in D(y'),
IL(Cyly' 1= B,y = 1.
Then by 3.1, for every s in B(y),
3(Cy[s] = B,yels) = 1.

Now, for s' in D, s’ belongs to D(wyC) iff s' is in D(y) and II(C) = 1;
therefore, for every s’ in H(yyC),

3(Cys" = B, [s") = 1.

Also, since 3(C)=1, I(Cy[s"]) =1, so for every s' in D(vy C), J(B,yc[s']) =
1, and thus 3%°(B) = 1. Therefore, ((Vvy C)B) = 1.
If it is not the case that Se k7 (Vvy C)B, then S k7 1(Vvy C)B, hence

Soo k5 1 vac[c(v y C)1B], therefore, it is not the case that Seo I?Byyc[o(v y C)1B).

At this point in the proof I wish to separate from it the following
theorem:

Theorem 4.11 For every vaviable a which is nested in a 0-teym s in D, s
belongs to D(a).

Proof: If a is a proper variable x, and s is 0xA, then s belongs to JD(x).
Suppose a is the restricted variable vyB and s is 0¢(¥yB)A. s belongs to
D(y) and, by 4.9, S tv B,[6(vyB)A], therefore, J(B,[s]) = 1, thus JI(B) = 1
and, therefore, o(v yB)A belongs to D(vyB). If @ is vy C, then y has a proper
variable nested in it to a depth less than the depth ¥ is nested in @, so by
the induction assumption o(vy C)A belongs to D(y). Again, by 4.9,
S k7 Cy[o(vy C)A], so letting s be o(vyC)A, J(Cy[s]) = 1 and, therefore,
27(C) = 1. Thus s belongs to D(vy C).
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Continuing with the proof of 4.10, by 4.11, ¢(¥y C)1B belongs to
D(wyC), and I(B,,c[e(wyC)1B]) =0, therefore, J,(',’,}XCC).,B(B) =0. That is,
there is a 0-term s = @(¥y C)1B in DH(vy C) such that *7°(B) = 0; therefore,
J({(vvyC)B) = 0.

It is now possible to complete the proof of 4.1 and show that S is
verifiable. First, S, is verifiable, because if A belongs to S, then Stz A,
so J(A) = 1. Clearly S%is verifiable, since it is a subset of S,. Let A be a
formula of S. It differs (possibly) from its corresponding formula A° in S°
in having free or adherent variables in places where A’ has 0-terms. In the
model just constructed for 2K, the assignments for variables were not
specified; the only requirement was that J(a) be a member of D(a)
whenever D(a) # @. So the formulas of S which are not in S° will be
verifiable if, for every a occurring free or adherent in a formula of S, J is
defined so that $(a) = a’. In this case $(4) = J(4°) because J(a) = J(a?).

Theorem 4.12 2R, is semantically complete.

Proof: Let A be a valid formula of 2&,. For every domain D and for every
J over D, J(A) = 1, therefore, $(14) =0 and {14} is not verifiable. So by
the contrapositive of 4.1,{1A4}is not consistent, and thus {14} f. By the
deduction theorem,+14 — f, and since H(1A —f) — (t— A), by MP-¢ — A.
But ¢ is a tautology, hence ¢, and therefore A.

The final theorem of this section shows, as would be expected, that
restricted quantifiers can be eliminated. This result is accomplished by
associating with each closed formula A of 2K, a formula A* of ordinary
quantification theory, called the y-less transform of A, and showing that A
if and only if FA*. Hailperin proved this result in [3] for his less
general variables. The present proof makes use of the completeness of
QK ,, which has just been demonstrated, without reference to the provable
equivalence of A and A*.

Let A be a closed formula of QK,. (A thus has no free or adherent
occurrences of restricted variables.) The w-less transform of A is
constructed as follows:

Assume that the proper variables have been arranged in some fixed
order. Let (Va;) be the left-most restricted quantifier occurring in A, and
let B be its scope. Since a, is restricted it has the form v"x {C,l} for some
proper variable x and formulas C,, . . ., C». Replace (V¥"x{C,})B in A by

(V9)(C1xy] = Covsc,[¥] = - - . = Coyrrefe, 3 [¥] = Baly)),

where y is the first proper variable not occurring in (Va;)B. The resulting
formula has one less restricted quantifier than A. If A has only one
restricted quantifier then this resulting formula is A*. If A has more than
one restricted quantifier then repeat the process on the resulting formula,
moving from left to right. Assuming that A has n restricted quantifiers, at
the end of n replacements a formula without restricted quantifiers is
obtained; this formula is A*, the v-less transform of A. Assuming a fixed
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ordering of proper variables, this A* is uniquely determined. As an
immediate consequence of the construction of A*, the following hold:

(A*)* is A*, and if A is v-less then A* is A4,

(A — B)* is A* — B*,

(1A)* is 1A%,

((Vx)B)* is (Vx)B*,

(Ya)B)* is (VI)ALy] = . .. = Afrs gy A[9] = BE[y]), where ais v”x{4,}.

By reason of the completeness theorem, ~A if and only if A is valid,
and -A* if and only if A* is valid; thus, in order to prove A iff ~A*, it is
sufficient to show that A is valid iff A* is valid. If A were valid and A*
were not valid, there would be a domain D and an interpretation # over D
such that J(A) =1 and 3(A*) =0; thus I shall show that for every D and
every J over D, J(A) = J(A*).

Let A be a closed formula of 2&,, D a domain of individuals, and 4 a
value assignment and b a domain assignment over D. It is clear from the
facts stated above about the v-less transform of formulas built up from the
logical symbols 1, —, and V, that it is sufficient to consider only formulas
whose initial symbol is a restricted quantifier. The proof proceeds by
induction on the number of restricted quantifiers in A. If A has no
restricted quantifier then A* is A, so J(4) = #(A*). Assuming that the
theorem holds for formulas with fewer than » restricted quantifiers, let A
be a formula with # restricted quantifiers. Suppose A is (Va)B, where B
has fewer than # quantifiers and a is ¥"x{C,}. From the above, ((Ya)B)* is

V) (CEIY] = Chuc vl = - . . = Chrrac, [yl = BIDY)).
J((Va)B) =0 iff for some individual d in D(a), IF(B) = 0. D(a) = D(¥"x{C.}),
and

D) c DWW x{Coa}) C. .. C DWxC,) C D),

so if d is in BD(a), then d belongs to D(vix{C;}) for i=1,2,...,n-1,and
d belongs to D(x). Therefore, J3(C,) =1 and J"’j{c"}(C i) =1 for i=
1,2,...,n-1,s0 I)(Crly]) = 1 and Jﬁ(cm.,ix{ci}[y]) =1fori=1,2,...,
n - 1. But each C;, as well as B, has fewer than n restricted quantifiers
and, therefore, J}(BI[y]) =0, JYCLIY]) =1 and I(Clyyixeyly) =1 for
i=1,2,...,n -1, Therefore,

“’Z(Cfx[y] ... C:v"'lx{cn_l}b)] - B:[y]) =0
for some d in b(y), so
IEyCHI = ... = Chrvge, ] — Baly]) =0,

and thus J(((Va)B)*) = 0.
A similar argument shows that #((Va)B) =0 if J#(((Va)B)*) =0, and
thus the following theorem is proven:

Theorem 4.13 If A is a closed formula of 2R, and A* is its v-less trans-
form, then —A if and only if FA*.
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