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A THEORY OF RESTRICTED VARIABLES WITHOUT
EXISTENCE ASSUMPTIONS

MARGARET MURPHY PRULLAGE

1 Introduction The individual variables of ordinary first-order logic are
generally thought of as ranging over all the objects in a certain set, the
universe or domain of discourse, with no discrimination made among the
variables. In everyday mathematics, however, this is often not the case,
and some variables, usually distinguished by the use of different letters,
are restricted in their signification to some proper subset of the domain of
discourse. For example, the letters x, y, and z may refer to real numbers
in a formula such as x2 - y2 = (x + y)(x - y), but there may also be formulas
of the sort "For all integers m, . . . ." or "There is a positive prime p,
such that . . .." Thus it is useful to formulate a logic which allows for the
restriction of variables to certain ranges as well as for the general
interpretation of variables.*

Bourbaki, in his treatment of logic in [l], allows for restricted
quantification by defining quantifiers 3Ax and V̂ ΛΓ in terms of the existen-
tial quantifier 3, (3A%)R being defined as (3x)(A & R). Intuitively, if A and
R are formulas expressing properties of x, then (3x)(A & R), meaning
"There is an x, such that A and R hold," is equivalent to (3A%)R,

interpreted as "There is an x of kind A, such that R holds." In (3A%)R, X

is restricted to objects satisfying A by the symbol 3Λ {^AX)R is defined
to be Ί{3AX)~\R- The symbols 3A and VΛ might be used in a demonstration
if one is interested only in objects satisfying A, where A might express the
property of being an integer, or a positive prime. In [13], Rosser discusses
restricted variables in some detail; his approach appears to differ from
Bourbaki's since he considers restricted variables rather than restricted
quantifiers. He uses Greek letters to refer to restricted variables; a might
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designate a variable subject to the restriction /Γ, and the formula {Va)F(a)
is viewed as an abbreviation for the formula (Vx)(K(x) —* F(x)). The letter
β might denote a variable subject to the restriction L, and (Vβ)F(β) would
mean (Vx)(L(x) — F(x)). While Rosser, unlike Bourbaki, ostensibly attaches
the restriction to the variable, in effect he associates it with the quantifier
by declining to give any special significance to a when it occurs free in a
formula. Rosser points out that this is contrary to the practice in ordinary
mathematics, but that he considers it undesirable to associate a restriction
with a in free occurrences because of some ambiguity in its interpretation.

In two papers published in 1957, cf. [3], Hailperin formulated a logical
theory Q9V which included restricted variables among the symbols of the
language and provided for their use in all places normally occupied by the
ordinary variables of predicate calculus, hereafter called proper variables.
This was accomplished by including the symbol v among the primitive
symbols as a term-builder, and allowing for the formation, from a proper
variable x and a formula P, of the expression vxP, called a restricted
variable. It was to be thought of as referring to "some individual such that
P." All free occurrences of x in P are bound by vx. There are other
examples of variable-binding operators used to construct terms in logic;
the best known are the 8-symbol of Hubert and Russell's definite descrip-
tion operator 1. Both ExP and ΛxP are meant to denote an individual
satisfying P, but they differ from each other and from vxP in some
respects. ExP is a constant, or at least a constant-form in case P has free
variables other than x; it designates a definite though unspecified member
of the set of all individuals in the domain satisfying P. The 8-symbol is
appropriately interpreted by a choice function on the collection of all
subsets of the domain of discourse. A logic which includes the definite
description operator Λ must also include the equality predicate; in case
there is a unique individual satisfying P, ΛxP denotes that individual, and
equality is needed to express that uniqueness. In case there is more than
one individual satisfying P, or no such individual, ΛxP is an improper
description and must be handled in some fashion. Other term-building
symbols, less well-known, are Hubert's η-symbol, very similar to £ but
differing from it in that the formula 3xP is required as an assumption or
derived formula before ηxP can be introduced as a term, and Bourbaki's
T-symbol, which is like the ε-symbol and is used by Bourbaki to define the
quantifiers 3 and V.

In all these cases the expression built from the initial symbol (8, 1, T,
or rj), operator variable and formula is a constant or a constant-form which
becomes a constant when all its free variables are bound or replaced by
constants. They are thus not available for use as quantifier variables.
i/-expressions, however, are variables, and can be used in argument
places, in quantifiers and also as operator variables; though Hailperin does
not make use of them in the last-named context, they are so used in the
system which follows.

The way in which restricted variables are formed leads in a natural
way to a theory in which some variables may fail to denote actual objects;
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clearly, this occurs when the formula P in v xP is a contradiction, a
possibility which is not ruled out by the rules of formation. Thus, a logical
theory comprising restricted variables is best developed as a free logic,
that is, a logic in which some or all of the variables may fail to have
values. Traditionally, logic has excluded the empty set from the possible
domains of interpretation, but within the past twenty-five years the question
of the empty domain has begun to receive some attention. One of the first
papers to investigate those formulas of quantification theory valid in all
domains was by Mostowski. His system lacked several desirable features
and was modified by Hailperin, and later revised by Quine. The end result
was a standard logic, all the axioms of which were closed formulas valid in
all domains. The intended interpretation was that all universally gen-
eralized statements came out true in the empty domain, all existential ones
false. Next to receive attention were theories in which some of the
individual terms might not designate actual objects, although all individual
variables denoted members of the universe. The first system which
allowed for reasoning with names which might not denote was presented by
Hailperin and Leblanc in [4]; this was followed by the work of Hintikka, [5],
Lambert, [6], Schock, [14], van Fraassen, [16], and others. Some of these
logics were also valid for the empty domain, but all of them, with the
exception of that of Leblanc and Meyer, made use of a non-standard
predicate, either equality or the existence predicate. In [8] Leblanc and
Meyer proved that their system was sound and complete, and it is their
system which has been adapted in the following to the needs of a restricted
quantification theory. Hailperin in his original paper, [3], in effect excluded
empty ranges for variables by defining a deduction so that it included a
formula guaranteeing a non-empty range for each variable appearing in the
deduction.

In the next section formal definitions of essential notions are given.
Under the rules of formation which I adopt, an anomalous situation arises
in connection with the free variables of P, other than#, whenι/#P is used
in a formula. These variables are not bound by vx, nor are they free in the
usual sense, since once a meaning is given to vxP, the meaning of these
other variables is tied to the meaning of vxP. I thus distinguish a third
sort of occurrence of a variable in a formula, which is neither bound nor
free. This accomplishes the same purpose as Hailperin's notion of
subordination, but puts no restrictions on the formation of terms and
formulas. This is all spelled out in the rules of formation for the
expressions of the system I call Q}<RV. The axioms and single rule of
inference of SLΛV are set forth, and several theorems are proved, most of
them in preparation for the completeness proof, many of them showing the
relations existing between different restricted variables.

Section 3 gives a semantic basis for QSlv. A model for QRV is
considerably more complex than usual because of the potentially com-
plicated structure of the restricted variable, and it is defined inductively on
the structure of terms and formulas. Some facts about the relations
between variables in the model are proven. Finally, the notion of a valid
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formula is defined. In the final section the soundness and completeness of
SLRV are demonstrated. SίΛv is shown to be sound when it has been proven
that every axiom of SiΛv is valid and that the rules of inference preserve
validity. The demonstration of completeness uses a Henkin-type proof; the
main result is that every consistent set of formulas of £IHV is verifiable,
that is, there is an interpretation under which every formula in the set
comes out true. In order to do this the language of QΛV is extended by the
addition of constants. This is accomplished by means of a " constant -
building" operator σ. The consistent set of formulas S is transformed into
a consistent set Sσ by replacing free restricted variables by appropriate
constants, then Sσis extended to a maximal consistent set of formulas in a
systematic way, so that if any closed formula is not in this maximized set,
its negation is provable. The set thus constructed is used to define a model
for j£Λ?v in which every formula of Sσ is true; its domain is the set of
constants with existence condition deducible from the maximal consistent
set, and truth values for atomic formulas are determined by whether they
are deducible or not. Finally, a theorem on the eliminability of restricted
quantifiers is proved.

2 Syntax The primitive signs of SiΛv are: a countable number of proper
variables (the ordinary variables of first-order predicate calculus); for
each ra, ra=0,l,2,..., a countable number of m-place predicate
variables, among them the 0-place Po; the logical connectives l and —»; the
indefinite description operator v; the universal quantifier V; parentheses
( and ); and comma ,. The letters x, y, z, sometimes with primes or
subscripts, are used to refer to proper variables, and Greek letters α, β, y,
δ, again sometimes primed or subscripted, to refer to variables in general.
P and Q, with or without superscripts, indicate m-place predicates.

The expressions of the language, which include both variables and
formulas, are defined as follows:

(i) A proper variable is a variable.
(ii) If Pn is an rc-place predicate, and al9 . . ., an are variables, then
Pn(a1, . . ., an) is an atomic formula. An atomic formula is a formula.
(iii) If A is a formula, then 1A is a formula.
(iv) If A and B are formulas, then (A —* B) is a formula.
(v) If a? is a variable and A is a formula, then vaA is a restricted variable.
A restricted variable is a variable.
(vi) If a is a variable and A is a formula, then (Va)A is a formula.
(vii) Only those strings of symbols which are variables or formulas by
virtue of (i)-(vi) are expressions.

Occasionally, for the sake of convenience, (A & B) is used to abbrevi-
ate the formula l(A -> IB), (AvB) to abbreviate (lA -> B), and (Ba)A for
Ί(Vα)ΊA. The formula (Po -»Po) is indicated by t, l(P0-> Po) by / .
Parentheses are omitted when no confusion results from their omission, in
accordance with the usual conventions. When a symbol appears as one of
the signs of an expression, such an appearance is called an occurrence.
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Similarly, an expression may occur in a second expression when the
symbols of the first occur concurrently in the second. The length of an
expression is the number of primitive signs occurring in it, a symbol being
counted each time it occurs.

As indicated in the introductory section, three kinds of occurrence of a
variable in an expression are distinguished: free, adherent and bound.
Adherent occurrences result when there are free variables other than x in
P, and the restricted variable vxP is formed; the free variables of P other
than x are adherent in vxP, and in expressions containing vxP. Adherent
variables cannot be bound by V or i/, but they are freed from adherence
when the restricted variable in which they adhere is bound by the universal
quantifier. The formal definition is as follows:

(i) An occurrence of a variable in an expression is either free, adherent
or bound, and these three classes of occurrence are mutually exclusive,
(ii) An occurrence of a variable in an argument place of a predicate is a
free occurrence of that variable.
(iii) Each free occurrence of a variable a in a formula A is a bound
occurrence in the expression vaA. Each adherent (respectively, bound)
occurrence of a variable β in A or in en is an adherent (respectively, bound)
occurrence in vaA. If β is not a, then each free occurrence of β in A is an
adherent occurrence in vaA.
(iv) If αf is a variable and B is a formula, then every free occurrence of a
in B is bound in (Va)B. If β is different from a, then a free (adherent,
bound) occurrence of β in B is free (adherent, bound, respectively) in
{Va)B, except that when α is v . . . VγC . . . A (there may be only one v
preceding y), and β is free in C (and thus adherent in a), such adherent
occurrences of β are free in (Vά)B.
(v) Free, adherent, and bound occurrences of a variable in Ί A and (A —> B)
correspond respectively to free, adherent and bound occurrences in A
and B.

To aid in defining the closure of a formula, and for later use in the
inductive definition of a model, the notion of the level of an expression is
defined as follows:

(i) If a is a proper variable, then the level of a, I (a), is 0.
(ii) If « is a restricted variable vβB, then l(a) is 1 + max {£(#,): a, occurs in
vβB}.
(iii) If B is a formula, then l(B) = mαχ{Z(α,): α, occurs in B}.

The level of a formula is an indicator of the complexity of the structure of
the variables occurring in the formula. It aids in the definition of the
closure of a formula, as follows: a closure for a formula B is the formula
(Vα?i)(Vα2) . . . (Van)B, with al9 a2, . . ., an a complete list of all variables
occurring free or adherent in B, in non-decreasing order of level.
Arranging the variables in non-decreasing order according to level
guarantees that in the closure no variable has a free or adherent
occurrence since, for example, a variable a^-i adherent in ak has level less
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than l(oik), and when it is freed by (Votί&) it is bound by the earlier quantifier
(Vα*.-!). The interchange of quantifiers cannot in general be allowed,
although quantifiers on the same level may be permuted; as an example,
(Vx)(VvyP(x, y))Q and (VpyP(x, y))(Vx)Q are not equivalent, since x has a
free occurrence in the second formula but not in the first. An expression
is said to be closed if no variable has a free or adherent occurrence in it.
Closed i/-expressions will be referred to as v-terms.

The variable a is said to be substitutible for β in an expression E if the
occurrences of a in E resulting from the replacement of β by a are free
where and only where β is free in E. If α? is substitutible for β in a formula
B, then the formula resulting from the replacement of β in each free
occurrence by en is denoted by ^ [ α ] . Generally, when this notation is used
it is assumed that the substitution is permissible. In case B has no free
occurrences of β, B$[a] is B; and when a is substitutible for β, and γ for α,
(Bβ[a])a[γ]isBβ[γl

Finally, I need to define the notion of an alphabetic variant; two
variables are alphabetic variants if either (i) they are both proper
variables, or (ii) they are restricted variables of the form vaA and vβB,
such that a and β are alphabetic variants and B is Aα[β].

The axioms of 21RV are as follows:

Al If B is a tautology, then B is an axiom.
A2 Aa[vonA] — (Vα)A.
A3 (Vα)(A -> 5 ) — {{Va)A — (Vα)J5).

A4a (Va)B —> (Ί (Vj3)/-» Ba[β]), where β is an alphabetic variant of a.
A4b (Va)B — (l(Va)iA — Ba[vaA]).
A5 (VvaB)i(Va)ΊB.
A6 (VvaA)B -> (Vβ)(Aα[β] -> BvaA[β])> where β is an alphabetic variant of a

not occurring free in {VvaA)B.
A7 If A is an axiom, then (Vα)Λ is an axiom.

The only rule of inference is modus ponens, MP: from A and A —> B,
infer B.

A derivation of a formula A from a (possibly empty) set of formulas S,
is a finite sequence of formulas Bu . . ., Bn, such that Bn is A, and for each
i, either Bi is an axiom, a member of S, or the result of applying MP to two
earlier formulas in the sequence. If S is empty, the derivation of A is
called a proof, and A is a theorem. The notation S t-A means that there is
a derivation of A from S; I-A means that A is a theorem. It is clear that if
A is an axiom, or a member of S, then S f-A.

A set of formulas S is said to be inconsistent if S \-f; S is consistent if
it is not inconsistent. The following two theorems concerning consistency
are standard, and their proofs are omitted. They are included here for
later use in the completeness proof.

Theorem 2.1 If S u {lA} is inconsistent, then ShA.

Theorem 2.2 If S ι- A and S f-Ί A, ί&£n S es inconsistent.
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Other standard theorems which will be used are the following:

Theorem 2.3 (The Deduction Theorem) If S is a set of formulas, and A and
B formulas such that S U{A}\-B, then S\-A -* B.

Since the only rule of inference is MP, the proof of the deduction
theorem presents no special difficulties and is omitted, as are the next two
proofs.

Theorem 2.4 If S \-A -> B and S\-B -> C, then S\~A -* C.

Theorem 2.5 If S \-(Va)(A — B) and S \-(Va)A, then S \-(Va)B,

I also will want to use a simple version of the generalization rule:

Theorem 2.6 If\-A, then v-(\foί)A, for any variable a.

Since there is not a set S of assumption formulas which might impose
conditions on the variable a, this is an almost immediate consequence of
A7.

The following theorems have special reference to restricted quantifi-
cation theory:

Theorem 2.7 If S h (Vα)/, then S h(\fa)B for any formula B.

Proof: f—> B is an axiom because it is a tautology, therefore, by A7,
(Vof)(/— B) is an axiom, so S i-(Vα)(/-» B). Then, if S HVα)/, it follows by
2.5 that S f-(Vα)£.

Theorem 2.8 If a and af are alphabetic variants, and ctr does not occur free
in (Va)B, then μ(Vα')((Vα)# — Ba[a']).

Proof: (lBa[ar] -> l(Va)B) -+ ((Va)B — Ba[af]) is a tautology, hence an
axiom. By A7, its generalization

(Va')((lBa[a'] - i(Vα)B) - ((Vα)£ - Ba[a']))

is an axiom; also,

(VvalB)(l(Va)B) -> (Vα')(Ί5α[αf] - Ί(Vα)5)

is an instance of A6, and since v-(VpalB)l(Va)B by A5, h(Vα')(Ί£α |y] ->
Ί(Vα)B) follows by MP. Then, h(Vczf)((Vα)5 -> 5α[o:f]) follows from

f-(V«0((Ί5jα'] - -ι(Vα)tf) - ((Vα)5 - Bβ[αf]))

and

i-(V(*f)(-|5α[α']- l((Vα)B))

by 2.5.

This is the restricted variable analogue of Leblanc and Meyer's
Axiom of Specification, adopted from Lambert, which distinguishes their
free logic from other theories.

Theorem 2.9 If aτ is an alphabetic variant of a not occurring free in (Va)B,
then f-(Vα:)£ - (Va')Ba[a'].
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Proof: By 2.8, h(Vα')((Vα)JB — Ba[ar]). From A3 by MP, h(Va')(Va)B ->
(W)£ α [α '] . Since α' does not occur free in (Va)B, ((Va)B)a?[vai(Va)B] is
(Vα)£, and thus (Vα)£ -» (Vαf)(Vα).B is an instance of A2. From above,
h(Vαf)(Vα)B -* (Vα')£jα'], therefore, by 2.4, h(Vα)£ — (Vα')£« [<*'].

Theorem 2.10 If vaA does not occur free in (Va)B, then μ(Vα)J5 —>

(Vi*αA)£α[>αrA].

Proo/:

KC/αJJB- (Ί(Vα)ΊA - J3β[vαA])) - (l(Va)iA - ((Vα)5 - jB^i αA]))

because it is a tautology, and

(Va)B - (Ί(VQ ) Ί A - Ba[vaA])

is an instance of A4, therefore

μi(Vα)Ί A - ((Vα)B - Bα[μαA])

byMP. By 2.6,

h (VvofA)(Ί(Vflf)Ίi4 -» ((Vα)^ -> 5jι/αA]));

and (Vi/α?A)Ί(Vα:)ΊA is an instance of A5, therefore, by 2.5, \-(VvaA)((Va)B -*
5ϊr[μαA]). Then by A3,

h(VyαA)(Vff)5-> (VμcrΛ)5α[yαA],

and by A2, H(Vα)5 —• (Vι>αA)(Vα)i?, since I Q A does not occur in (Va)B.
Thus h(V<*)£-> (VvaA)Ba[vaA\.

As an immediate consequence of 2.9 and 2.10 ,

Theorem 2.11 If a' is a variant of a, and B* is Ba[a']y then H(Vα)A ->

(WαffBf)Aα[vαffJBf].

The next theorem could be considered a converse of A6; it relates two
levels of quantification.

Theorem 2.12 \-(Va)(A — B) — (VyαA)J3α|>αA].

Proo/: By 2.10,

H(Vα)(i4 -> J5) — (Vvαil)(Λ — B)a[vaA],

therefore,

h(Vα)(A ->£)-> ((Vι/αA)Aα[vαfA] - (VvaA)Ba[vaA\).

Using tautologies,

h(Vι/o?A)Aα[i/QfA] - ((Vα)(i4 -* B) -^ {VvaA)Ba[vaA]).

lAa[vaA] —* (Vo:)ΊA is an instance of A2, hence HΊ(Vα)Ί A —> Aff[vαfA], and
by 2.6, h(Vi/Q!A)(Ί(VQf)ΊA — Aα[vαA]). But (VvaA)Ί(Va)lA is an axiom,
hence t-{VvaA)Aa[vaA]9 therefore,

h(Va)(A — B) — (War A)Bβ[vαA].



A THEORY OF RESTRICTED VARIABLES 597

Before stating and proving the next theorem, I need to make some
observations and introduce some notation for future use. If β is a
restricted variable, it has the form vaA, where a may be either a proper
or restricted variable, a is said to be nested in β in this case, and the
depth of nesting is 1. If a in turn is a restricted variable vy C, then y is
nested in a and also in β, which has the form vvγCA. Whenever β can be
written as a string of n i -symbols, followed by a variable α, followed by a
string of n formulas, a is said to be nested in β to depth n, and the notation
vna{An} is used to indicate the structure of β.

Theorem 2.13 H(Vα)l? -* (Vβ)Ba[β] for every β in which a is nested.

Proof: The proof is by induction on the depth to which a is nested in β, that
is, on the length of the sequence of i -symbols preceding a. If n = 1, then β
is vaA for some A, and h(Va)B —» (VvaA)Ba[vaA] by 2.10. Assume as
hypothesis for the induction, that the theorem holds for every variable in
which a is nested to depth less than n. Let β be the variable vna{An}. This
can be written as v(vn"1a{An.1})An or, letting vn'1a{An.^ be y, as vγAn.
By 2.10,

H(Vy)JBβ[y] - (VVγAn)(Ba[γ\)γ[vγAn]9

that is, H(Vy)£jy] -» (Vβ)Ba[β]. By the induction hypothesis, h(Va)B ->
(Vy)£α[y], and, therefore, by 2.4, h(Vα)£- (Vj3)5β[j3].

From the formation of restricted variables, it is clear that every
restricted variable has a proper variable nested in it. By means of 2.11
the above result can be extended to every β in which an alphabetic variant
of a is nested. In particular, I have the following theorem:

Theorem 2.14 If a is a restricted variable, then H(VΛΓ)A -* (Va)Ax[ά\.

Theorem 2.15 h(Va)ΊA -* (Vi/αA)/.

Proof: hlA — (A — / ) , therefore, h(Vα)(ΊA — (A —/)), so by A3 and MP,
h(Vα)iA-+ (Vα)(A-/).

h(Vα)(A - / ) - (Vι/αA)(A - / ) > α i ] ,

and

H(Vι;αA)(A - / ) -> ((Vι;αA)Aα[i;«A] -, (VvαA)/),

therefore,

h(Vo:)ΊA —((Vvo!A)i4α[vαA] — (Vi/aA)/).

But then,

[-(VvaA)Aa[vaA]-> ((Va)lA - (VI QIA)/),

and since h(Vvo!A)Aα[ι/Q!A] by the proof of 2.12, it follows that h(Va)lA -»
(VvαA)/.

Theorem 2.16 (VvaA)f-> (Va)lA.
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Proof: ι-(Λα[α'] ->/) —» Ί/lα[a'], because it is a tautology.

HVα')((4»[α'W) - iAa[a%

therefore,

hfya HAala ] - / ) - (Va')iAa[a'}.

By A6,

h(VvαA)/- (Vα')(A»[α'W),

and thus

h(Vvα;A)/-> (Vαf)iAα[α'].

But for suitable a and αf, h(Vα')ΊAα[α'] -> (Vα)Ί A, therefore, h(Vi/αA)/-*
(Vα)"lA

3 Semantics A model for <£J<#V consists of a (possibly empty) set of
individuals D, called the universe or domain of discourse, together with a
mapping Π which is defined for all m-place predicate variables, m =
0, 1,2,. . ., such that for each Pm, ϊl(Pm) is a function from Dm, the set of
all m-tuples of elements of D, to {0,1}. Functions JZ> and 3 are defined; 3),
called a domain assignment, assigns a subset of D, possibly φ, to each
variable of 21AV\ 3, called a value assignment or interpretation, assigns to
each variable a for which Jb(a) Φ φ SL member of Jb(aΐ), and to each formula
of SiΛv either 1 or 0, 0 standing for falsehood and 1 for truth. The functions
3> and 3 are defined inductively and simultaneously on the level of
expressions. 3 (a) is defined only for variables with non-empty domains,
called designating variables; when Jb(a) = φ a formula containing a cannot
be assigned a value in the usual fashion. In such cases atomic formulas
with free a are assigned a value arbitrarily, or in accordance with extra-
logical considerations, and the theory itself takes no stand as to the truth
or falsity of statements with non-designating variables, except that once
values have been assigned to atomic formulas, the values of composite
formulas are determined as usual. As to a formula of the sort (Vα)A, it is
assigned the truth value 1 when JZ>(α) = φ. Thus in the empty domain a
formula and its closure need not have the same value.

The definitions of JZ> and 3 proceed as follows: Let D be a set of
objects (D may be φ), and Π a mapping which assigns to each m-place
predicate a function from Dm to {0,1}. (If D is empty then the only function
from Dm to {0,1} is the empty function.) A sequence {-£„} of domain
assignments from variables to subsets of D is constructed, so that each JZ)W
is defined on all variables of level less than or equal to n. Simultaneously
a sequence {J7 } of value assignments is defined so that, if a is a variable of
level less than or equal to n and Jΰn Φ φ, then 3n(ά) is a member of 2)n(a),
and if B is a formula of level less than or equal to n, 3n{B) is either 0 or 1.
J/d denotes that value assignment which assigns the same individual to
every variable β Φ a whose level is less than or equal to j that J ; assigns to
β, and which assigns the individual d in Jbj(a) to a. 3 ^ also agrees withJy
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on all the atomic formulas of level less than or equal to j which contain a
non-designating variable. The following restrictions need to be made on
the values given to atomic formulas with non-designating variables:

Restriction Rl Let A be an atomic formula of level n in which a variable
with empty domain occurs, and let a and β be variables of level less than
or equal to n such that Jn(a) = Jn(β), and β is substitutible for a. Then both
A and Aa[β] contain a non-designating variable, so they both must be
assigned a value by Jn; Rl requires that Jn(A) = Jn(Aa[β]).

Restriction R2 Let B be an atomic formula of level n in which a variable
with empty domain occurs, let en and 0 be variables of level less than or
equal to n such that Jn(a) and Jn(β) are defined, and Jn(β) is in 2>n(a).
Suppose a has a free occurrence in B and that β is substitutible for a.
Jnjn(β) is the assignment which agrees with Jn on n or less-level expres-
sions, except that it assigns to a the individual which Jn assigns to β. R2
requires that Jnjn(β)(B) = Jn(Ba[β]). That is, Ba[β] does not necessarily
have the same value as B; what counts in determining its value is the
individual to which β and a refer.

The sequences {#„} and {Jn} are constructed as follows:

JBo(α) = D, for every 0-level variable, i.e., for every proper variable.

If 2>0(x) Φ 0, let J0(x) be a member of 3)0(x), for every proper variable x.
Let B be a 0-level formula.

(i) If B is P{xu . . ., xn) and Ao(*, ) * £>, then J0(P(xl9 . . ., xn)) =
Π(P)( J0(*i), . . ., J0(xn)). If *o(xi) = P, then let J0(P(*i, . . ., x»)) be either
Oor 1.
(ii) Suppose B is iA. Then J0(B) = 1 if and only if J0(A) = 0.
(iii) Suppose B is A -» C. Then J0(Λ -• C) = 0 if and only if J0(A) = 1 and
Jo(C)=0.
(iv) Suppose B is (VΛΓ)A. If JB0(#) = 0 then J0((VΛΓ)A) = 1. If Λo(^) ^ 0, then
J0((Vx)A) = 1 if and only if JOdU) = 1 for every individual d in JB0(#).

J&o and J o are thus defined for 0-level variables and formulas. Assume
as hypothesis for the inductive definition, that a domain has been assigned
to each variable of level less than or equal to n by Jbn, and that for each
variable a of level less than or equal to n such that -bn{a) Φ ft, Jn(a) is an
element of S>n{a), and that for each formula B of level less than or equal to
n, Jn(B) has been determined. Let j8 be a restricted variable of level n + 1.
Supposing β to be vaA, the hypothesis of the induction applies to a and A,
since l(a) and l(A) are less than n + 1, and 3bn(d) is a subset, possibly
empty, of D. If J>n(a) Φ 0, then Jn(a) belongs to Λn(a), and whether &n(a) is
empty or not, Jn(A) is either 0 or 1. Define

X+1(vaA) = {d in &n(a): Jn

a

ά(A) = 1},

and let
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Thus 3)n+1 assigns a subset of D to every variable of level less than or
equal ton + 1, and agrees with Jbi} for i less than n + 1, on all variables of
level i. If 3>n{a) = 0, of course J>n+1(vaA) = 0 also. For every β of level
n + 1 such that Λβ+1(|3) * 0 , let JΛ+1(|3) be a member of 3>n+1(β)9 and for a of
level rc or less, let Jn+1(a) be JΛ(α). Let B be a level-n + 1 formula:

(i) If B is P f o , . . ., ak) and J&Λ+1(αf) * 0 for z = 1, . . ., k, then Jn+1(P(a19

. . . , αA)) = Π(p)(Λ+i(αri), . . ., Λ+i(<**)). If there is an i such that ^ W O , ) =
0, then let J»+i(P(ofi, . . ., ak)) be 0 or 1, being sure to follow restriction
Rl.
(ii) Suppose B is lA. Then Jn+1(B) = 1 if and only if Jn+i(A) = 0.
(iii) Suppose B is (A — C). Then JΛ+1(A — C) = 0 if and only if Jn+ι(A) = 1
and Jn+1(C) = 0 .

(iv) Suppose B is (Vαf)A. If Aπ+i(αr) = 0 then Jβ+i((Vα)A) = 1. If Λn+1(α) * 0 ,
then Λ+1((Vα)A) = 1 if and only if Jn+1d(A) = 1 for every d in J2>w+1(α). (In
determining Jn+1%(A) restriction R2 must be kept in mind.)

oθ oo

Finally, let Λ = U 2>n and J = U J, .
«=0 ;=O

It should be noted that whenever Jbn(a) = 0 for some a of level w, there
are different interpretations possible depending on whether a particular
atomic formula containing a is assigned 0 or 1 by Jn. For example, it
would be possible for two interpretations J and Jr to agree up to level k,
but J^to be different from J'k. Also, if two interpretations differ at some
level, the domain assignments associated with each of them may also differ
on some variables of higher level.

The following theorems give some information about models for Q.<RV\
some of them will be necessary for the completeness proof.

Theorem 3.1 Let a and β be variables and A a formula such that β is
substitutible for a in A, let D Φ 0, and let 3> and 3 be such that 3){a) φφ.
Then Jj*β)(A) = 1 if and only if J(Aa[β]) - 1.

Proof: If a does not occur free in A, then Aa[β] is A, and since Jj^ and J
agree on all the free variables of A as well as on all atomic formulas with
non-designating variables, Jj^β)(A) = J(Aα[j3]).

Suppose a occurs free in A. Let A be the atomic formula P(ax,..., α^).
Since a occurs free in A, and an occurrence of a in some αrf would not be a
free occurrence, some α* must be a. If -&(<*;) Φ 0 for i = 1, . . ., k, then

Jj(β)(P(al9 . . ., ak)) = Jj(β)(P(al9 . . ., a, . . ., ak))
= ΠίPKJjfoto), . . ., J J (

β

β )(α), . . ., Jj<j»(ak))
= τi(p)(JM,. . ., J ( β ) , . . . , J ( a k ) ) 9

because J J ( ^ agrees with J on all variables other than a, and ^j(β)(α) = J(β)
in this case. Furthermore,

Π(P)(JK), . . ., J(/3), . . ., J(ak)) = J(P(au . . ., β, . . ., ah))
= J((P( β l > . . ., β*))β[β]).
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Therefore, Jj(β)(A) = J(Aa[β]). If there is some i such that JB(α/) = 0, then
restrictions Rl and R2 insure that J3^(A) = J(Aa[β]) for an atomic
formula A.

Assume that if B is a formula with fewer than n occurrences of Ί , —»,
and V, then Jjf^(B) = J(Ba[β]). Let A be a formula with n occurrences of
Ί , -», and V. Suppose A is IB. Jj(β)(lB) = 1 iff J3"β)(B) = 0 iff J(5β[/3]) = 0
iff J(ΊBa[β]) = 1. Suppose A is B ^ C. Jj(β)(B - C) = 0 iff J J (

α

3 )(£) = 1 and
Jj(

β

β)(C) = 0 iff J(£ β[j3])=1 and J(Cβ[β]) = 0 iff J(Bβ[β] - Ca[β]) = 0 iff
J{(B — C)a[β]) = 0 iff J(Aa[β]) = 0. Suppose, lastly, that A is (Vy)C. Since
a is free in (Vγ)C, either a has an adherent occurrence in y which is free in
(Vγ)C, or a has a free occurrence in C. If α is not adherent in y, then the
only free occurrences of a in A are its free occurrences in C. In this case,
((Vy)C)Jβ] is (Vy)Cβ[j3]. If Λ(y) = 0 then J((Vy)Cβ[β]) = 1 and JJ"β)((Vγ)C) =
1. If Λ(y) ̂  0 , then JJ(

α

β)((Vy)C) = 1 iff for every d in Jβ(y), JJ(

α

β)^(C) = 1 iff
for every d in Λ(y) Jd

y

J(

α

β)(C) = 1 iff, by the induction hypothesis, Jj(Cα[β]) =
1 for every d in J»(y) iff J((Vy)Cα[β]) = 1. If of is adherent in y and free in
(Vγ)C, then there is a variable vδD with a free inZ), such that vδD is y or
nested in y. Suppose vδD is y. Then ((Vγ)C)a[β] is (VvδDα[β])Cαιy[i3,vδZ)α[β]]
or, for brevity, (Vγ')C'. Now, JJ(

β

β)((Vy)C) = 1 iff for every d in ΛJ(

α

3)(y),
^jfβ)d(C) = 1, where 3) j(β) denotes the domain assignment associated with
Jjβ)- Jj(ββ)ϊ(C) = 1 iff J j ; p ) (C) = 1 iff JY

d(CM) = I- J((Vy')C) = 1 iff for
every d in .»(/), J^'(C') = 1, that is, iff for every d in Λ(vδDa[β]),
Jviϊ«W(Ca,γ[β,v6Da[β\)=*

MvδDa[β]) = {d' in Λ(δ): Jd

!'(Dβ[β]) = 1}
= {d' in ΛJ(

α

β)(δ): ^ ^ ) ( B ) = 1}
= {d'inA J (

β

p )(δ): J J (

e

$ )],(Z))=1}
= Λj^ίwδZ)).

That is, &£„&) = i ) ( r

Γ ) . Now, Jd

y(y) = J^γ'), and Jd

y(β) = Jγ

ά'(β), so

^d(Cj|3]) = JΪ'(C β ( y [ |3, / ] ) and 3>f(β)(γ) = JZ>(y'), therefore,

{d in MY1): Ji'(C) = 1} = {d in ΛJ(

α

β)(y): Jί(Ca[l3]) = i ) .

Thus Jj?p)((Vy)C) = J((Vy')C), or J^β)((Vy)C) = J(((Vy)C)β[β]), when r is
VδD. Ίi vδD is nested in γ an inductive argument on the depth of vδD
proves the theorem in this case.

Theorem 3.2 If a and β are alphabetic variants, then 3>{a) = 3>(β).

Proof: The proof is by induction on the structure of a and β. If a and β are
both proper variables, then Λ(α) = D = 3)(β). Suppose a is vγC and β is
vδD. Since a and β are variants, y is a variant of δ and D is C y[δ].

A(α) = Λ(i/yC) = {d in Λ(y): ~»d

y(C) = 1}

and

Λ(|3) = JZ>(!/5D) = {d1 in Λ(δ): Jd'(Cy[δ]) = 1}.

By the induction hypothesis 3>{γ) = Λ(δ). For every d in ί ( i / y C ) , Jj(C) = 1,
and since J j(δ) = d, it follows that Jjfo)(C) = 1. Then by 3.1, Jj(Cy[δ]) = 1,
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so d is in 3)(vδD). A similar argument shows that J)(v δD) c 3)(vγC) and,
therefore, 3> (a) = J&O).

Theorem 3.3 If a is nested in 0, then 3>(β) c J&(α).

Proof: \i β is voίAy then

Λ(β) = JB(ι>αA) = {d in j&(α): J>"(A) = 1}.

Thus any member of 3>(vaA) belongs to Λ(α). Assume that if y is
vn~ιa{An.^then 3>(γ) c J&(α). Now consider the variable vna{An] which can
be written in the form vγAn or v(i/w"1α{Aw.1})AW) and let β be i/wα:{Aw}.

Λ(β) = l>(VΎΛn) = {d in Λ(y) : Jd

y(Aw) = 1}

so if d is in JB(β), then d belongs to Λ(y). But by the induction hypothesis
JB(y) c i)(α), therefore, JZ>(β) c A(αr).

Theorem 3.4 # 2) {pa A) Φ φ then 3(Aa[paA]) = 1.

Proof: If Λ(μαf-A) * 0, then J(i>αA) must be a member of JZ>(i/αA) which is
{d in A (of): 3a

ό(A) = 1}. Then 3(paA) belongs to A(α), and J , ^ ) ^ ) = 1, so
by 3.1, J(Aa[vaA])=\.

Finally, some essential definitions are included here. Let D be a set
of individuals, and Π a mapping from m-place predicate variables to the set
of functions from Dm to {0, 1}. A formula A is said to be valid in D if and
only if J(A) = Ί for every value assignment 3 defined over D. A is valid if
it is valid in every domain D. A set S of formulas is verifiable if there is
a domain D, and an assignment 3 defined over D, such that 3(A) = 1 for
every A in S.

4 The completeness of SIR v In this section SiJlv is shown to be sound and
semantically complete. A theory is sound if every theorem of the theory is
a valid formula; SiRv is shown to be sound when it has been proved that
every axiom is valid, and that the sole rule of inference, MP, preserves
validity. A theory is semantically complete if every valid formula is
provable.

First, the proof that the axioms of <£<RV are valid:

1. Clearly, those axioms which are such by virtue of being tautologous are
valid.
2. The formulas which are instances of Aα[i/cπA] —» (Va)A are valid in the
empty domain, because in that case Jb(a) = φ and thus for any J, 3((Va)A) =
1, so whether 3(Aa[valA]) = 1 or 0, 3(Aa[valA] — (Vα)A) = 1. By the
same reasoning, instances of this axiom are valid in any non-empty domain
for which JZ> and 3 are such that £(a) = 0. Thus, if A2 is not valid, there is
a non-empty domain D, a domain assignment Jΰ and a value assignment J
over D, such that J)(a) Φ φ and 3(Aa[valA] -* (Vα)A) = 0. Then it must be
the case that 3{Aa[vaiA]) = 1 and J((Vα)Λ) = 0. Either 3>(vaiA) = Φ or
3){vonA) Φ 0. If 3>(var\A) = 0, and thus {d in &(a): 3a

d(lA) = 1} is empty, it
follows that there is no individual d in Λ(a) for which Jj(lA) = 1 and,
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therefore, for every d in &(a), J^(lΛ) = 0 or, for every d in &(a), Ja

ά(A) =
1. Then J((Vα)A) = 1, contrary to assumption. Thus Jb(valA) Φ 0, so
J(vaiA) is defined and belongs to 2>{valA). Now, J)(valA) = {d in Λ(α):
J°d(lA) = 1}, and since J(vaiA) is in JB (vαπA), Λ(I/«IΛ)(Ί^) = 1 and thus
Jj(VαiA)(A) = 0. Then by 3.1, J(Aa[vaiA]) = 0, contrary to assumption.
Therefore, J(Aa[palA] — (Vα)A) * 0, and A2 is valid.
3. Again, instances of (Va)(A -»£)-» ((Vcφ4 -» (Vαf)J5) are valid in 0, and
they are also valid in any non-empty domain D over which <2> and J are
defined so that Jb(a) = 0. Thus, if A3 is not valid, there is a non-empty
domain D and assignments JZ> and J over D such that &(a) Φ 0, J((Va)(A —>
£)) = ! , and J((Vcφ4 — (Vα)JB) = 0. J((Vcφ4 — (Vα)5) = 0 iff J((Va)A) = 1
and J((Vα)B) = 0, and J((Vα)J3) = 0 iff for some d in Jb(a), Jd(B) = 0. But
J((Vα)(i4 -» ^)) = 1, so for this d, Jj(A — B) = 1; and since J((Vcφ4) = 1,
J 2 ( A ) = 1. But if Ja

6(A) =1 and Ja

d(A -> J5) = 1, j j φ ) must be 1, contrary
to the above. Thus the assumption that A3 is not valid leads to a contradic-
tion, so A3 is valid.

4. If D = 0, then for every J, J((Vβ)/) = 1 and J((Va)lA) = 1, so J("l(V/3)/) =
0 and J(Ί(Vα)ΊA)=0. So J("Ί(Vj3)/-> 5α[β]) = 1 and J(Ί(Vθf)ΊA-> 5α[i;Q!A]) =
1, therefore,

J((Vα)B- ( l (Vβ)/-^[β])) = 1

and

J((Vθ!)J5 - (Ί (Vo?)ΊA - Ba[vaA])) = 1,

thus A4a and A4b are valid in φ. If D Φ 0, but Λ and J are defined so that
Jb(a) = φ, the same argument applies, because 3){β) = JB(α) and thus
J((V]3)/) = 1. So, if A4 is not valid, there is a non-empty domain D and
assignments JZ> and J over D such that J((Va)B) = 1 and either (a) J(1 (Vj3)/) =
1 and J{Ba[β]) = 0, or (b) J(Ί(VQ:)ΊA) = 1 and J(Ba[vaA]) = 0. If Λ(α) ^ 0
then J&(β) ^ 0 and J()3) is in &{a), because a and β are alphabetic variants.
Since J((Va)B) = 1, Jj(5) = 1 for every individual d inΛ(α); in particular
JJO3)(£) = 1. But then by 3.1, J(J3β[j3]) = 1, contrary to assumption (a). If
J(l(Va)-\A)= 1 then J((Vα)iA) = 0, so for some d in Λ(α), Jj(ΊA) = 0,
hence for some d in A(α), J^(A) = 1. Thus JZ)(i/α:A) ^ 0 , so J(vαfA) is
defined and belongs to Λ(vaA) c Λ(α), and since J((Vαf)JB) = 1, S3^aA)(B) =
1, and thus 3(Ba[vaA]) = 1 contrary to assumption (b). Therefore, A4a and
A4b must be valid.
5. Axioms of the form (Vi/<M)Ί(Vα)Ί.A are true whenever 3>(vaA) = 0, so
let D be a non-empty domain and *b and 3 assignments defined over D such
that 3>(vaA) is not empty, and J((VvaA)i(Va)lA) = 0. Then for some d in
Λ(vaA), Jva

d

A(Ί(Va)ΊA) = 0 , s o for t h i s d JvjA((>fa)lA) = 1, t h e r e f o r e ,

JV2A}(lA) = 1 for every d f in Λ(cn). Thus there is a d in £{vaA) such that
for every d r in Λ(α), f Td'<A) = 0. But J(vaA) belongs to Λ(α), so it
follows that J ' S V ^ - A ) = 0 and, therefore, that Jva

d

A(Aa[vaA]) = 0 . But this
is impossible by 3.4. Therefore, A5 is valid.

6. In any domain over which J2> and J are defined so that J>(β) = 0 ,
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J((VvaA)B - (Vβ)(A,[β] - B
vaA
[β])) = 1.

So assume that D is not empty and 3)(β) Φ φ. If A6 is not valid in D, then
J({VvaA)B) = 1 and

J((Vβ)(Aβ[βl-^β A[β]))=0,

so there is some d in D(β) such that Jβ

d(Aa[β]) = 1 and Jd(BvaA[β]) = 0. If
J((VvaA)S) = 1, then either (i) 3>(vaA) = φ, or (ii) J>(vaA) φφ and for
every d' belonging to 3>{vaA) JV^(B) = 1. But in case (i), there is no
individual d in Jb(a) such that Ja

d(A) = 1, hence no d in 3)(β) = Jβ(α) such that
Jd (AM) = 1 therefore, J((Vβ)(Λβ[β] - ^^[jS])) = 1. In case (ii), J™*(B) =
1 for every d' in 2>(vaA). But J(β) belongs to 2>{vaA) since J(β) is in £(ά)
and JJ(%(A) = 1 because Jβ

ό(Aa[β]) = 1 and jJj(β)(A) = ̂ ( A ) . Therefore,
Jj^(B) = 1 so J(BvaA[β]) = 1 which contradicts the assumption that

J((Vβ)(Aa[β]->BvaA[β]))=0.

Therefore, A6 is valid.
7. A7 is actually a rule for generating axioms from formulas which are
specified as axioms by Al through A6. The proof that it is valid is by
induction on the number of uses of the rule. Suppose that (Vα)A is an axiom
which has not been generated by a use of A7. Then (Vα)A is an axiom by
reason of schemas Al through A6, so it is valid. Now, assume that if (Vβ)B
is an axiom by virtue of fewer than n uses of A7, then it is valid. Let (Va)A
be an axiom generated by n uses of A7. If (Vof)A is not valid, then there is
a non-empty domain D and assignments Jΰ and J over D such that JZ>(α) φφ
and 3({Va)A) = 0. Then for some d in Λ(αf), ^d(^) = 0. But A must be an
axiom generated by fewer than n uses of A7, so A is valid in D, and since
Jd is a value assignment over D, Jd(A) must be 1, contrary to the above.
Therefore, A7 is valid.

Finally, I need to show that the rule MP preserves validity, that is, if
A and A —• B are valid, then B is valid. If B were not valid, there would be
some (possibly empty) domain D and a value assignment 3 over D, such
that J(B) = 0. Since A is valid, J(A) = 1 and, therefore, J(A — B) = 0. But
A —* B was assumed to be valid. Thus B must be valid.

That 2LS{V is sound is now clear. For if A is a theorem of Q<RV there is
a proof of it, say Bu . . ., Bn-i, A. If A is an axiom then the proof of A
consists of the single formula A, and since A is an axiom it is valid.
Suppose that Bl9 . . ., Bn.u are valid and that A follows from B{ and Bj by
MP. Then since MP preserves validity, A is valid.

The main result of this section is that every consistent set of formulas
of 21RV is verifiable. The theorem that every valid formula is provable,
and thus that QJ{V is semantically complete, follows from this with the aid
of some easily established lemmas. The proof that a consistent set S of
formulas is verifiable is carried out by constructing a model of 21S{V from
syntactic materials; the domain of individuals consists of all those
expressions which actually refer to individuals. In Q.RV these expressions
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are among the variables, but since variables are used for quantification as
well as to refer to specific individuals, some confusion can result unless
the variables used for these two purposes are distinguished somehow. This
is accomplished by extending the language by the addition of constant-like
expressions which will be used only in free and adherent occurrences in
formulas, while the variables are reserved for use in quantifiers and as
ι/-operator variables. The axioms will be extended to include those
instances with constant terms in places occupied by free variables, and the
definition of a model adapted to take the constants into account. It is from
among these constant terms that the individuals of the model I construct
will be obtained.

The language of SiHv is enlarged as follows, by the addition of special
constants called σ-terms, in such a way that to each variable a unique
special constant is associated:

(i) For each proper variable x, xσ is a σ-term.
(ii) For each restricted variable, (vaA)σ is the σ-term gotten by replacing
every free or adherent variable by its corresponding σ-term, and replacing
each v not immediately preceded by V or v by σ.

A σ-term has no free or adherent occurrences of a variable; any individual
expression occurring in a σ-term is either a σ-term or a variable bound by
V, i/, or σ.

Next, the axioms are extended to include formulas with σ-terms, which
are instances of Al through A6. In particular, the formulas

Aa[σaiA]-* (Va)A,
(Va)B-> (l(Vβ)f-*Ba[βσ]),

{Va)B — (Ί(VφA - Ba[σaA])

are axioms. The extended theory is called Q<%°, and the symbol fe- means
provable in Q.RI.

i&#v is a conservative extension of Q<RV, in the sense that if A is a
formula of QHV which is a theorem of 3.X°, then A is a theorem of Q<RV.
For if iσΆ, then there is a sequence of formulas of QSlσ

v which is a proof of
A. In each formula of this sequence replace each α by y, and replace each
xσ by x, for any proper variable x. If the original formula was an axiom of
SΛ^, the resulting formula is an axiom of QXV, and the transformed
sequence is a proof of A in SiΛv.

The definition of a model must be modified to take σ-terms into
account. Clearly, the level of any σ-term ought to be 0. Since a σ-term
replaces its corresponding variable, I require that for any σ-term aσ, 3(aσ)
belongs to Jb(a) whenever Jb(a) φφ. If Jb(a) = 0 then aσis a non-designating
constant, and J(aσ) is not defined.

The following theorem can now be proved:

Theorem 4.1 If S is a consistent set of formulas, then S is verifiable.

Proof: Let S be a consistent set of formulas of 8.<RV. Let Sσ be the set of
formulas obtained from S by replacing each non-bound occurrence of a
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variable in a formula of S by its corresponding σ-term. Let Au A2, A3, . . .
be a list of all the closed formulas of SLRl, that is, A{ has no non-bound
occurrences of variables, although it may have free or adherent occur-
rences of σ-terms. Define a sequence of sets of closed formulas of ^LR°V as
follows:

S =Sσ,

I Si U {Aί + 1}, if Si U {Aί+1} is consistent,

Si U {"I A, + 1}, if Si U {A, +1} is inconsistent.
OO

LetSoo = U Si.
i=0

Theorem 4.2 Si is consistent for i = 0, 1, 2, . . ..

Proof: So is Sσ. If Sσ is not consistent, then S fcf. But / is a formula of
3.XV9 so the derivation of / from Sσ can be transformed into a derivation of/
from S by replacing σ-terms in the formulas of the derivation by the
corresponding variables. But then SH/, which is impossible since S is
consistent by hypothesis. Therefore, Sσ is consistent.

Assume that for some k greater than or equal to 1, Sk-i is consistent.
Sk is either S ^ U J A j or S ^ ^ u l i A j , depending on whether or not
Sk-ιl){Ak} is consistent. If Sk is Sk-ιΌ {Ak}, then Sk is consistent. So
suppose Sk is Sk.λ l){lAk}. In this case Sk-i v{Ak} is inconsistent, so by
definition Sk-i U {Ak}\orf. By the deduction theorem Sk-ikrAk-+f. (Ak-*f) —»
(£-> ΊA&) is a tautology, so S*-ife (Ak ->/) -*(*-> "lAA) and thus, by MP,
S .̂ilσ" ί —> lA^. But Ŝ -ifcΓ ί, so Sjfe-j_ hσ-ΊA .̂ If Sk were inconsistent, that is,
if Sk-i U {"l-Â } were inconsistent, it would follow by 2.1, that Sj^fc Ak. But
then S^.^ΊA^ and Sk-iteAk, so by 2.2, Ŝ -i is inconsistent, contrary to
assumption. Thus Sk is consistent if Sk-i is consistent, so S, is consistent
for every e.

Theorem 4.3 Soo is consistent.

Proof: If Soo is not consistent, then Soofc/, and there is a sequence
2?!, B2, . . ., Bp of formulas such that i?? is /, and each Bi is either a
formula in Soo, an axiom of 5Λ?£> or the result of MP applied to formulas Bj
and Bj —* J3f preceding £;. If Bi is an element of S^, then either I?f is in Sσ

or 5 isΛjb̂  for some kit Let iί = 0 if no Bi is an Aki, otherwise, let if be
the largest of all the integers fc, such that Bi is Ak.. Then, each J5, is
an axiom, a member of SK, or the result of MP, so Bly B2, . . ., Bp is a
derivation of/ from SK, and Sfcfef. But this is impossible since SK is
consistent. Therefore, S^ is consistent.

Theorem 4.4 Let A be a closed formula of 3.<R°. If A is not in S^ then
SoohrlA.

Proof: Since A is a closed formula of !£Xl, it occurs in the UstA1,A2,
A3, . . .. Suppose it is the fc'th formula Ak. It Ak does not belong to S^,
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oo

then Ak does not belong to U S / , hence Ak is not a member of any S*. In

particular, Ak is not a member of S&. But since S& is either S ^ U {Ak} or
Sk_ι u {lA^}, and Ak is not in Sk, Sk must be S ^ u {lA^}. Then ΊAk belongs
to Sk, so lAk belongs to S^, and, therefore, Soo \w ΊAk, or S^ \w ~λA.

Theorem 4.4 shows that Soo is a maximal consistent set of formulas.

Theorem 4.5 If Ί(Va)A is a closed negated quantification such that
Soo fe-Ί(Vα)A, then there is a constant s such that Soo \σ-~\Aa[s],

Proof: Aa[σaiA] —• (Vα)A is an axiom so Soo hδrAα[σcπA] —» (Vα)A. Then
Soolσ-Ί(Vα)A -*ΊAa[σaiA], so if Soo fe-Ί(Vα)A, then by MP, Soo fclAa[σaiA].
oa~\A is the desired constant s.

Now a model for QjR^ can be constructed. The domain of the model has
as its individuals those closed expressions of 2LRσ

v which actually designate
specific individuals. These are the σ-terms whose corresponding variables
have non-empty domains; the non-emptiness of Jb(vaA) is expressed by the
formula (Ξ3α)A, and the non-emptiness of Jb(x) by (3x)t. Thus D is defined
as follows:

|

* σ i s in D if and only if S^ kr Ί(VΛΓ)/,

σa A is in D if and only if S^ hσ Ί(Va)lA.

The truth value of an atomic formula depends on whether or not the
formula is derivable from Soo. Thus the mapping Π from predicates to
functions from Dm to {0, 1} is defined as follows:

U(P)(su . . ., sm) = 1 if and only if SookrP{sl9 . . ., sm).

Then J& and J are defined inductively and simultaneously as before,
except that I require J(s) = s for every designating σ-term s. If the domain
of the variable corresponding to s is empty, then J(s) is not defined. When
P(slf . . .,sw) is a closed formula which contains non-designating constants,
(si, . . ., sn) is not in Dn so Π(P) is not defined for this n-tuple. In this
case, J(P(sl9 . . ., sn)) = 1 iff Soo YσP(sl9 . . ., sn).

If A is any closed atomic formula of Q<%1, it is evident that J(A) = 1 if
and only if Soofe-A. If A is P(sl9 . . ., sn) and some s, is non-designating,
then J(P(su . . ., sn)) = Ί iff Soo \σ-P(sly . . ., sn) by definition, while if
every s, is a designating constant, then (su . . ., sw) belongs to Dn, and

J(P(Si, . , s β ) ) = Π(P)(J(s1), . . ., J(sw))
= Π(P)(S l, . . . , s w )
= 1 iff Soo^P(Si, . . .,sn).

In order to prove that J(A) = 1 iff Soo \σΆ, for any closed formula A of
<&/?£, the following theorems are necessary:

Theorem 4.6 For every closed negation ΊA of 3.<R°, Soo taoA if and only if
it is not the case that Soota- A.
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Proof: If A is not derivable from Soo, then A does not belong to Soo, because
if it did, it would follow that Soob A. But if A is not a member of Soo,
So© kr~lA by 4.4. If Sooh^ΊA and Sooted, then Soo would be inconsistent,
contrary to 4.3. Therefore, if Soo hsr Ί A, it is not the case that Soo kr A.

Theorem 4.7 For every closed implication A -* B of £XΪ, Soo k-A -* B if
and only if either Soo kr B or not Soo \w A.

Proof: H SoohjA —> B, then either SoobrA or not Soohσ-A, and if Soofe-A then
Soo k~ B by MP. Therefore, either Soo kr B or not Soo kr A. Conversely, if not
Soo k-A, then by 4.6, Soo \σ~\A. Soo kr~\A -* (IB -> ΊA), so by MP Soo \w ΠJ5 -+
ΊA, and since Soo kr(ΊB -> lA) -* (A -> 5), Soob^A -» 5 . If Soo fe-JB, then
So© fc A -» J5 because Soo hr £ -* (A -> JB).

Theorem 4.8 if Soo kr(Vx)A, then for every σ-term aσ such that Soo b-Ί(Vα)/,
Soo^Ax[α'σ].

Proof: Suppose aσ is 3;σ. By A4a,

Soo ̂ (V^)A - (Ί(Vy)/- A x[yσ]),

so if Soofσ(VΛ:)A, then Soo b-i(Vy)/— A x [y σ ] . But if ^ σ is such that

Soo b- "l(V3θ/, then Soob- A x [y σ ] . Suppose cnσis σ]3B. By A4b,

Soob^(Vβ)A-> Cλ(Vβ)lB-*Aβ[σβB]),

and by 2.14, Soo kr (Vx)A -* (Vβ)Ax[β]. So if Soo fe- (VAΓ)A, then Soo b^ (Vj3)Ax[j3],
and thus Soo kr !{Vβ)~lB — A β [σβ5]. If σβB is such that Soo fe- Ί(VvβB)f, it
follows from 2.15 that S^ hsr Ί(Vβ)Ί£ and, therefore, that SootyAβ[σβB].

Theorem 4.9 If vaA is nested in γ and Soo H Ί(Vy)ΊC, ί/̂ en Soob-Aα[σy C].

Proof: Let y be ^"i/αAj.B^}. In the course of the proof of 2.12, it was
shown that \-{VvaA)Aa[vaA]. By 2.13, Soo kj-(WaA)Aa[vaA] — (Vy)Aα[r]
since vaA is nested in y and, therefore, Soo b" {Vy)Aa[γ\. By A4b,

Soo^(Vy)Aβ[y]- (Ί(Vγ)lC->Aa[σγC]),

thus Soo hfl(Vy)lC-» Aa[vγC]. But if Soo te Ί(Vy)ΊC then Soo fyAα[σyC].

Theorem 4.10 If A is a closed formula of Q/Rl, then Soo \σA if and only if

J ( A ) = 1 .

Proof: The proof is by induction on the number of occurrences of Ί , —>,
and V in A. The theorem has already been proved for the case n = 0; that
is, for closed atomic formulas of the form P(su ..., sn), Soo krP(sl9 . . . , sn)
iff J(P{sly . . ., sn)) = 1. Assume that the theorem holds for formulas with
fewer than n occurrences of 1, -*, and V. Let A be a formula with n
occurrences of Ί , —», and V.

(i) Suppose A is IB. J(ΊB) = 1 iff J(JB) = 0 iff it is not the case that
S o o b ^ iff Soo k-"IB, by 4.6.
(ii) Suppose A is B — C. J(B — C) = 0 iff J(J?) = 1 and J(C) = 0 iff Soo k?B
and not Soo b"C iff it is not the case that Soo \wB -» C, by 4.7.
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(iii) Suppose A is (Vβ)B. The proof that Soo \<r{Vβ)B iff J((Vβ)B) = 1 is by
induction on the structure of β. Suppose β is a proper variable x. If
Soo \σ (Vx)B, then for every σ-term aσ such that Soo fe- Ί(Vα)/, Soo \wBx[aσ], by
4.8, and thus for every such σ-term, J(Bx[aσ]) = 1 by the induction
hypothesis. Then by 3.1, J^σ(B) = 1 because J(aσ) = aσ. But the σ-terms
for which S^ fzr Ί(Vα)/, or equivalently, S^ fc Ί(Vy)ΊC, are precisely the
σ-terms which are members of D, and since 3>{x) = D, Jaσ(B) = 1 for every
σ-term α σ i n 3>(x). Therefore, J((Vx)B) = 1.

If it is not the case that S^ hj{Vx)B, then Soo fσ" Ί(Vx)£, and from 4.5,
ScokrlBxlσxlB]. Therefore, it is not true that Sooϊσ-Bx[σxiB], so by the
induction hypothesis J(Bx[σxlB]) = 0. But σxiB belongs to D, which is
Jb(x), because Soo \σrl(Vx)B, and Jσx*B(B) = 0 by 3.1; thus, there is a σ-term
σxiB in 3>{x) such that Jσx*B(B) = 0 and, therefore, J((Vx)B) = 0.

Assume as induction hypothesis for this part of the proof, that for
every variable γ in which x is nested to depth less than w, iff Soo MVy)D
then J((Vγ)D) = 1. Let A be (VvγC)B. If Soo fzr(Vι;yC)B then, using MP and
A6, Soote-(Vyf)(Cy[y']-*-ByyC[y']) for an alphabetic variant y' of y. By the
induction hypothesis,

Wγ')(CY[Ύ'}~ BvyC[γ'])) = λ,

and, therefore, for every s in Jb(γf),

^Γ(Cy[y']-^y C[y']) = 1.

Then by 3.1, for every s in JB(y),

J(C y [s]-5 μ y C [s]) = 1.

Now, for s' in D, s f belongs to J>(vγC) iff s f is in Λ(y) and Λy/(C) = 1;
therefore, for every sf in J2>(i/yC),

J(CyM-^c[s']) = 1.

Also, since Jl(C) = 1, J(C y [s f ]) = 1, so for every s f in JZ)(ι/yC), J(-BpyC[s']) =
1, and thus Jv

s

γ,c(B) = 1. Therefore, J((Vι/yC)£) = 1.
If it is not the case that Soo \σ(VvγC)B, then Soo lτrΊ(Vi/y C)B, hence

Soo ̂ "iJ5vyC[σ(ι;yC)ΊB], therefore,it is not the case thB.tSaotσBvγC[σ(vγC)ΊB].

At this point in the proof I wish to separate from it the following
theorem:

Theorem 4.11 For every variable a which is nested in a o-term s in D, s

belongs to 3b{ot).

Proof: If a is a proper variable x, and s is σxA, then s belongs to Jb(x).
Suppose a is the restricted variable vyB and s is Q{vyB)A. s belongs to
3){y) and, by 4.9, Soo hrBy[σ(vyB)A], therefore, J(By[s]) = 1, thus Jy

s(B) = 1
and, therefore, o(vyB)A belongs to Jb(vyB). If a is Vγ C, then y has a proper
variable nested in it to a depth less than the depth y is nested in a, so by
the induction assumption σ{vγC)A belongs to -Z>(y). Again, by 4.9,
Sco\σ-Cγ[σ(vγC)A], so letting 5 be σ(vγC)A, J(CY[s]) F 1 and, therefore,
jl(C) = 1. Thus s belongs to 3>(vγC).
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Continuing with the proof of 4.10, by 4.11, σ(vγC)lB belongs to
3)(vγC), and J{BvyC[a(vγC)lB]) = 0, therefore, Jσζ$)ΊB(B) =0. That is,
there is aσ-term s = σ(uγC)lB in 3>{vγC) such that Jvγ

s

c(B) = 0;therefore,
J{(VvγC)B) =0.

It is now possible to complete the proof of 4.1 and show that S is
verifiable. First, Soo is verifiable, because if A belongs to Soo then SoofeA,
so J(A) = 1. Clearly Sσis verifiable, since it is a subset of Soo. Let A be a
formula of S. It differs (possibly) from its corresponding formula Aσ in Sσ

in having free or adherent variables in places where Aσ has σ-terms. In the
model just constructed for QRZ the assignments for variables were not
specified; the only requirement was that J(ά) be a member of &{a)
whenever 2)(a) φφ. So the formulas of S which are not in Sσ will be
verifiable if, for every a occurring free or adherent in a formula of S, J is
defined so that J(a) = aσ. In this case J(A) = J(Aσ) because J(a) = J(aσ).

Theorem 4.12 21RV is semantically complete.

Proof: Let A be a valid formula of £#„. For every domain D and for every
J over D, J(A) = 1, therefore, J(lA) = 0 and {ΊA} is not verifiable. So by
the contrapositive of 4.1,{ΊA} is not consistent, and thus {lA}\- f. By the
deduction theorem, hlA —• /, and since h(ΊA —•/) —> (t —* A), by MPHί —> A.
But ί is a tautology, hence Hi, and therefore KA.

The final theorem of this section shows, as would be expected, that
restricted quantifiers can be eliminated. This result is accomplished by
associating with each closed formula A of 2LΛV a formula A* of ordinary
quantification theory, called the j/-less transform of-A, and showing that hA
if and only if HA*. Hailperin proved this result in [3] for his less
general variables. The present proof makes use of the completeness of
Q#v, which has just been demonstrated, without reference to the provable
equivalence of A and A*.

Let A be a closed formula of QJZV. (A thus has no free or adherent
occurrences of restricted variables.) The i/-less transform of A is
constructed as follows:

Assume that the proper variables have been arranged in some fixed
order. Let (Vαfi) be the left-most restricted quantifier occurring in A, and
let B be its scope. Since aλ is restricted it has the form vnx{Cn} for some
proper variable ΛΓ and formulas Ci, . . ., C«. Replace (Vpnx{cn})B in A by

<yy)(Cix\y] - C 2 μ x C l L y ] - * . . . - > Cnvn-ιx{Cn^[y] - Ba\y]),

where y is the first proper variable not occurring in (VajB. The resulting
formula has one less restricted quantifier than A. If A has only one
restricted quantifier then this resulting formula is A*. If A has more than
one restricted quantifier then repeat the process on the resulting formula,
moving from left to right. Assuming that A has n restricted quantifiers, at
the end of n replacements a formula without restricted quantifiers is
obtained; this formula is A*, the p-less transform of A. Assuming a fixed
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ordering of proper variables, this A* is uniquely determined. As an
immediate consequence of the construction of A*, the following hold:

(A*)* is A*, and if A is i/-less then A* is A,
(A — B)* i s A* — B*,

(ΊA)* is ΊA*,
((Vx)B)* is (yx)B*,
((Va)B)* i s (Vy)(Afx[yl - . . . - Afa-ix{Anp] - £*[?]) , where a i s I / ^ { A J .

By reason of the completeness theorem, HA if and only if A is valid,
and HA* if and only if A* is valid; thus, in order to prove HA iff HA*, it is
sufficient to show that A is valid iff A* is valid. If A were valid and A*
were not valid, there would be a domain D and an interpretation J over D
such that J(A) = 1 and J(A*) = 0; thus I shall show that for every D and
every J over D, J(A) = J(A*).

Let A be a closed formula of Q<RV, D a domain of individuals, and J a
value assignment and Jb a domain assignment over D. It is clear from the
facts stated above about the ι/-less transform of formulas built up from the
logical symbols Ί, —•, and V, that it is sufficient to consider only formulas
whose initial symbol is a restricted quantifier. The proof proceeds by
induction on the number of restricted quantifiers in A. If A has no
restricted quantifier then A* is A, so J(A) = J(A*). Assuming that the
theorem holds for formulas with fewer than n restricted quantifiers, let A
be a formula with n restricted quantifiers. Suppose A is (VcήB, where B
has fewer than n quantifiers and a is vnx{Cn}. From the above, ((Va)B)* is

(vy)(cΐx[y] -> cϊuxCl[y] - . . . - c*,n-ix{Cn_l}[y] - Bi[y]).

J((Va)B) = 0 iff for some individual d in J&(α), J$(B) = 0. Λ(α) = £(vnx{Cn}),
and

Λ(α) c 3){yn'ιx{Cn-i}) c . . . c 3>{vxCλ) c :&(*),

so if d is in Jb(a), then d belongs to JZ)(i/*#{C;}) for t = 1, 2, . . ., n - 1, and
d belongs to Λ(x). Therefore, J j (d) = 1 and J"^C / }(Ci+i) = 1 for i =
1, 2, . . ., n - 1, so J>d(Clx[y]) = 1 and J2(Cl +iμiχ{cί}b]) = 1 for i = 1, 2, . . .,
n - 1. But each C ί ? as well as £, has fewer than n restricted quantifiers
and, there fore , Jy

ά(B*\y]) = 0, Jy

d(Cίx\y]) = 1 and Jy

d(C*+19ix{Ci]\y]) = 1 for

z = 1, 2, . . ., n - 1. There fore ,

^d(cfχ[y] - > . . . - cβ* »- i x { C Λ . l } [y] - B ί b l ) = 0

for some d in J>(y), so

J((Vy)(Cf x[y] - . . . - C*vn-ix{Cn_ι}\y] - 5 ί M ) ) = 0,

and thus J(((Va)B)*) = 0.
A similar argument shows that J((Va)B) = 0 if J(((Vαf)5)*) = 0, and

thus the following theorem is proven:

Theorem 4.13 If A is a closed formula of 91RV and A* is its v-less trans-
form, then HA if and only if \-A *.
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