Notre Dame Journal of Formal Logic Volume XVII, Number 3, July 1976 NDJFAM

ON A MODAL SYSTEM OF R. A. BULL'S

DOLPH ULRICH

Bull [1] mentions, in passing, having discovered the weakest extension of S4 that both contains S4.3 and is obtainable by extending S4 with an axiom involving a single sentential variable. I shall call the axiom in question

F3 CMLpALCpLpLCLCpLpLp

By an S4F-model I mean an S4-model $\langle W, R, \vee \rangle$ (see, e.g., [2]) wherein

$$\forall x \forall y \forall z ((xRy . xRz) \rightarrow (zRy \lor yRx))$$
 (F)

Lemma 1 Each theorem of S4 + F3 is valid in every S4F-model.

I content myself with showing F3 cannot fail in such a model $\langle W, R, \vee \rangle$. If it does, then for some $x \in W$ (1) $\vee (MLp, x) = 1$, (2) $\vee (LCpLp, x) = 0$ and (3) $\vee (LCLCpLpLpLp, x) = 0$. By (1) there exists $z \in W$ such that xRz and (4) $\vee (Lp, z) = 1$. By (3), on the other hand, there exists $y \in W$ such that xRy, (5) $\vee (LCpLp, y) = 1$ and (6) $\vee (Lp, y) = 0$. It follows from (4) that $\vee (LLp, z) = 1$ and so, by (6), zRy. According to (F), then, yRx. But from (5) I have $\vee (LLCpLp, y) = 1$ and so now $\vee (LCpLp, x) = 1$, contradicting (2).

Lemma 2 Each formula valid in all S4F-models is provable in S4 + F3.

I prove only what is not already familiar from the literature: (F) holds in the canonical model $\langle W, R, \vee \rangle$ of S4 + F3. Otherwise, there exist $x, y, z \in W$ with xRy, xRz, zRy, and yRx so that for some formulas q and r, $Lr \in z, r \notin y, Lq \in y$, and $q \notin x$. Since $Lr \in z, LCqLr \in z$ and so $MLCqLr \in x$. By F3, then, $LCCqLrLCqLr \in x$ or $LCLCCqLrLCqLr LcqLr \in x$.

 $CqLr \epsilon x$ since $q \epsilon x$; $CqLr \epsilon y$, however, so $LCqLr \epsilon x$ and the first alternative is impossible: $LCCqLrLCqLr \epsilon x$. It must be, then, that $LCLCCqLrLCqLrLCqLr \epsilon x$, and $CLCCqLrLCqLr \epsilon y$. As before, $LCqLr \epsilon y$, so $LCCqLrLCqLr \epsilon y$. There must then exist $y' \epsilon W$ such that yRy', $CqLr \epsilon y'$, and $LCqLr \epsilon y'$. However, $Lq \epsilon y$ so that $q \epsilon y'$. Hence $Lr \epsilon y'$ and so $LCqLr \epsilon y'$, which is also impossible.

Thus Bull's system has been independently introduced and studied in more recent literature:

Received October 31, 1975

DOLPH ULRICH

Theorem S4 + F3 is the system S4.3.2 (= S4 + ALCLpqCMLqp) of Zeman's [3].

Proof: Immediate from the lemmas and the known result ([2], p. 161, where S4.3.2 is called "S4F") that S4F-models characterize S4.3.2.

REFERENCES

- Bull, R. A. "On three related extensions of S4," Notre Dame Journal of Formal Logic, vol. VIII (1967), pp. 330-334.
- [2] Segerberg, K., An Essay in Classical Modal Logic, Filosofiska Studier, Uppsala (1971).
- [3] Zeman, J. Jay, "The propositional calculus MC and its modal analog," Notre Dame Journal of Formal Logic, vol. IX (1968), pp. 294-298.

Purdue University West Lafayette, Indiana