Notre Dame Journal of Formal Logic Volume XVII, Number 3, July 1976 NDJFAM

THE MODALITIES OF KT4_n MG

J. B. BEARD

1 In [1], p. 260, Hughes and Cresswell state the following result due to Sugihara [5], namely, that any $S4_n$ system (henceforth $KT4_n$ in the terminology of Segerberg [3]), obtained by adding to KT an axiom of the form $L^n p \supset L^{n+1}p$, has an infinite number of non-equivalent modalities if n > 1. In this paper* it is shown that the addition to each $KT4_n$ of the axioms:

 $\mathbf{M}: LMp \supset MLp$

and

G: $MLp \supset LMp$

and hence of the modality reduction principle:

MG: LM = ML

results in a distinct system $KT4_n MG$ with only finitely many non-equivalent modalities.

2 KT4₀ is the trivial system (collapsed into PC) which has two nonequivalent modalities and KT4₁MG is the system called K2 in Sobociński [4]. Both systems are, of course, extensions of KT4₁ (i.e., S4) and are covered in the study of Pledger [2]. When n > 1, KT4_nMG is independent of KT4₁. This, together with the distinctness of all the KT4_nMG systems, can be proved as follows. It is easy to check that for each $n \in Not$ the following is a frame for KT4_nMG:

Figure 1

462

^{*}I am indebted to Professors G. E. Hughes and M. J. Cresswell, Dr. R. I. Goldblatt and Mr. K. E. Pledger for some valuable discussions on the topic of this paper.

 $4_{n-1}(n > 1)$, i.e., $L^{n-1}p \supset L^n p$, however, is falsified at 0 in the model on such a frame in which $\lor(p) = \{0, 1, \ldots, n-1, n+1\}$. Hence 4_{n-1} is not a theorem of KT4_nMG; and in particular 4_1 : $Lp \supset L^2p$, the KT4₁ axiom, is not a theorem of KT4_nMG when n > 1. Moreover, as is well-known, neither **M** nor **G** is a theorem of KT4₁; hence KT4₁ does not contain any KT4_nMG system. Figure 2 illustrates the containment relations holding between the systems considered in this paper.

Figure 2

3 Sugihara shows that $KT4_2$ has infinitely many non-equivalent modalities in the sequence:

Lp; MLp; LMLp; MLMLp; LMLMLp; etc.,

and its dual obtained by replacing each L by M and vice versa. In each $KT4_nMG$, however, the following is a theorem schema: $L^aM^bp \equiv LMp$ (a, $b \ge 1$).

Proof:

Т:	(1) $(L^2M(p \supset Lp) \supset ML^2(p \supset Lp)) \supset (Lp \supset ML^3p)$
K:	(2) $L^2M(p \supset Lp) \supset L^2M(p \supset Lp)$
(2) MG:	$(3) L^2 M(p \supset Lp) \supset ML^2(p \supset Lp)$
(1) (3) MP:	$(4) Lp \supset ML^{3}p$
(4) MG:	$(5) Lp \supset L^3Mp$
(4) Dual:	(6) $LM^{3}p \supset Mp$
(5) US:	$(7) LM^2 p \supset L^3 M^3 p$
(6) US, MG:	$(8) L^3 M^3 p \supset L^2 M p$
Т:	$(9) L^2 M p \supset L M p$
Т:	(10) $LMp \supset LM^2p$
(7) (8) (9) (10) Syll:	$(11) L^2 M p \equiv L M p$
(11) Dual, MG:	$(12) LMp \equiv LM^2p$

(11) MI:
(12) MI:
(13)
$$L^{a}Mp \equiv LMp \ (a, b \ge 1)$$

(12) MI:
(14) $LMp \equiv LM^{b}p \ (a, b \ge 1)$
(13) (14) Syll:
(15) $L^{a}M^{b} \equiv LMp \ (a, b \ge 1)$
Q.E.D.

This means that any affirmative modality containing at least one L and at least one M is equivalent to LM (and so by MG to ML). Since $L^{n+m} = L^n$ and $M^{n+m} = M^n$, this entails that there are only finitely many modalities in each KT4_nMG. Furthermore, both $p \supseteq LMp$ and $Mp \supseteq LMp$ are falsified at 0 in the model on the frame of section 2 in which $\forall(p) = \{0\}$, and $LMp \supseteq p$ and $LMp \supseteq Lp$ are falsified at 0 in the model in which $\forall(p) = \{n + 1\}$. Hence I, the improper or empty modality, and LM are independent, and L, LM, and M are all distinct, in every KT4_nMG. Consequently the modality patterns can be read off from the following diagram:

Figure 3

It is easy to see that the total number of non-equivalent modalities (including negative onces) is 4(n + 1) in each case.

REFERENCES

- [1] Hughes, G. E., and M. J. Cresswell, An Introduction to Modal Logic, Methuen, London (1968).
- [2] Pledger, K. E., "Modalities of systems containing S3," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 18 (1972), pp. 267-283.
- [3] Segerberg, K., An Essay in Classical Modal Logic, 3 Vols., Filosofiska Studier, Uppsala (1971).
- [4] Sobociński, B., "Remarks about axiomatizations of certain modal systems," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 71-80.
- [5] Sugihara, T., "The number of modalities in T supplemented by the axiom CL^2pL^3p ," The Journal of Symbolic Logic, vol. 27 (1962), pp. 407-408.

Victoria University of Wellington Wellington, New Zealand