Notre Dame Journal of Formal Logic Volume XVII, Number 3, July 1976 NDJFAM

THE MODALITIES OF KT4 ${ }_{n}$ MG

J. B. BEARD

1 In [1], p. 260, Hughes and Cresswell state the following result due to Sugihara [5], namely, that any S_{n} system (henceforth $\mathrm{KT} 4_{n}$ in the terminology of Segerberg [3]), obtained by adding to KT an axiom of the form $L^{n} p \supset L^{n+1} p$, has an infinite number of non-equivalent modalities if $n>1$. In this paper* it is shown that the addition to each KT_{n} of the axioms:
$\mathrm{M}: L M p \supset M L p$
and
G: $M L p \supset L M p$
and hence of the modality reduction principle:
MG: $L M=M L$
results in a distinct system KT_{n} MG with only finitely many non-equivalent modalities.
$2 \mathrm{KT4}_{0}$ is the trivial system (collapsed into PC) which has two nonequivalent modalities and $\mathrm{KT4}_{1} \mathrm{MG}$ is the system called K 2 in Sobociński [4]. Both systems are, of course, extensions of KT4 (i.e., S4) and are covered in the study of Pledger [2]. When $n>1, \mathrm{KT} 4{ }_{n} \mathrm{MG}$ is independent of KT4 ${ }_{1}$. This, together with the distinctness of all the KT4 ${ }_{n}$ MG systems, can be proved as follows. It is easy to check that for each $n \in$ Nat the following is a frame for $\mathrm{KT}_{n} \mathrm{MG}$:

Figure 1

[^0]$4_{n-1}(n>1)$, i.e., $L^{n-1} p \supset L^{n} p$, however, is falsified at 0 in the model on such a frame in which $V(p)=\{0,1, \ldots, n-1, n+1\}$. Hence 4_{n-1} is not a theorem of KT4 ${ }_{n} \mathrm{MG}$; and in particular $4_{1}: L p \supset L^{2} p$, the $\mathrm{KT} 4_{1}$ axiom, is not a theorem of $K T 4_{n}$ MG when $n>1$. Moreover, as is well-known, neither M nor G is a theorem of $K T 4_{1}$; hence $K T 4_{1}$ does not contain any $K T 4_{n}$ MG system. Figure 2 illustrates the containment relations holding between the systems considered in this paper.

Figure 2
3 Sugihara shows that KT_{2} has infinitely many non-equivalent modalities in the sequence:

$$
L p ; M L p ; L M L p ; M L M L p ; L M L M L p ; \text { etc., }
$$

and its dual obtained by replacing each L by M and vice versa. In each $\mathrm{KT} 4_{n} \mathrm{MG}$, however, the following is a theorem schema: $L^{a} M^{b} p \equiv L M p(a, b \geqslant$ 1).

Proof:
T:
(1) $\left(L^{2} M(p \supset L p) \supset M L^{2}(p \supset L p)\right) \supset\left(L p \supset M L^{3} p\right)$
K:
(2) $L^{2} M(p \supset L p) \supset L^{2} M(p \supset L p)$
(2) MG:
(3) $L^{2} M(p \supset L p) \supset M L^{2}(p \supset L p)$
(1) (3) MP:
(4) $L p \supset M L^{3} p$
(4) MG:
(5) $L p \supset L^{3} M p$
(4) Dual:
(6) $L M^{3} p \supset M p$
(5) US:
(7) $L M^{2} p \supset L^{3} M^{3} p$
(6) US, MG:
(8) $L^{3} M^{3} p \supset L^{2} M p$
T :
(9) $L^{2} M p \supset L M p$.
T :
(10) $L M P \supset L M^{2} p$
(7) (8) (9) (10) Syll:
(11) $L^{2} M p \equiv L M p$
(11) Dual, MG:
(12) $L M p \equiv L M^{2} p$
(11) MI:
(13) $L^{a} M p \equiv L M p(a, b \geqslant 1)$
(12) MI:
(14) $L M p \equiv L M^{b} p(a, b \geqslant 1)$
(13) (14) Syll:
(15) $L^{a} M^{b} \equiv L M p \quad(a, b \geqslant 1)$
Q.E.D.

This means that any affirmative modality containing at least one L and at least one M is equivalent to $L M$ (and so by MG to $M L$). Since $L^{n+m}=L^{n}$ and $M^{n+m}=M^{n}$, this entails that there are only finitely many modalities in each $\mathrm{KT} 4{ }_{n}$ MG. Furthermore, both $p \supset L M p$ and $M p \supset L M p$ are falsified at 0 in the model on the frame of section 2 in which $\mathrm{V}(p)=\{0\}$, and $L M p \supset p$ and $L M p \supset L p$ are falsified at 0 in the model in which $\vee(p)=\{n+1\}$. Hence I, the improper or empty modality, and $L M$ are independent, and $L, L M$, and M are all distinct, in every $\mathrm{KT} 4_{n}$ MG. Consequently the modality patterns can be read off from the following diagram:

Figure 3
It is easy to see that the total number of non-equivalent modalities (including negative onces) is $4(n+1)$ in each case.

REFERENCES

[1] Hughes, G. E., and M. J. Cresswell, An Introduction to Modal Logic, Methuen, London (1968).
[2] Pledger, K. E., "Modalities of systems containing S3," Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 18 (1972), pp. 267-283.
[3] Segerberg, K., An Essay in Classical Modal Logic, 3 Vols., Filosofiska Studier, Uppsala (1971).
[4] Sobociński, B., "Remarks about axiomatizations of certain modal systems," Notre Dame Journal of Formal Logic, vol. V (1964), pp. 71-80.
[5] Sugihara, T., "The number of modalities in T supplemented by the axiom $C L^{2} p L^{3} p, '$, The Journal of Symbolic Logic, vol. 27 (1962), pp. 407-408.

Victoria University of Wellington
Wellington, New Zealand

[^0]: *I am indebted to Professors G. E. Hughes and M. J. Cresswell, Dr. R. I. Goldblatt and Mr. K. E. Pledger for some valuable discussions on the topic of this paper.

