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MONADS FOR REGULAR AND NORMAL SPACES

ROBERT WARREN BUTTON

Given an enlargement *(χ, 3) of a topological space (X, 3), the monad
of a point xe X is defined to be μ(x) = Π{*-F: xe Fe%}. It is known that for
any space (X, 3), the family of monads {μ{x): xe x} contains all the
information about 3 in the sense that for each x e X, {F C X: μ{x) c * F } is
exactly the neighborhood filter at x. However, it is possible to say some-
thing about 3 without resorting to this method. For example, a space X is
Hausdorff iff for any two points x and y in X, μ(x) Π μ(y) = 0. In this paper
some further relationships between the topology on X and {μ(x): x e X} will
be shown, and particularly nice characterizations of regular and normal
spaces will be given. These characterizations will be in terms of a natural
topology on *X", the Q-topology. Let us briefly consider the Q-topology.

It is possible to write a formal sentence expressing the fact that 3 is a
topology on X, so in any enlargement *(X, 3), *3 is closed under *finite
intersections (and hence under finite intersections) and under internal
unions. *3 also contains φ and *X9 so is the base for a topology on *X, the
Q-topology. Sets in *3 are said to be *open, subsets of *X whose comple-
ments are in *3 are said to be *closed, and so on. Robinson has shown that
an internal set is *open iff it is Q-open and *closed iff it is Q-closed. Also,
a standard set A is open iff *A is *open. We now introduce a new type of
refinement relation which is particularly suited for studying Q-topologies.

Definition 1 We shall say that the covering Uj of X fills the covering U2 of
X if for each FeU2, V=\J{UeUι: ϋc V}.

Let df be the collection of all finite open coverings of a given space X
and let FR be the filling relation restricted to d* x <$*. The left domain of FR
is d* since every covering fills itself and for each finite collection
Ui, . . ., Ufi of coverings in ®, {ϋi Π . . . Π Un: U1e \XU . . ., Une Uw} is a
covering in G* filling each of U1? . . ., U«, so the relation FR is concurrent.
Hence, there is a covering of *X in *<£*, say φF, such that if II is a finite
open covering of X, ΨF fills *U. In general φP is not unique and we shall
speak of an arbitrary but fixed φP. For each xe *X9 {Pe φF: xe P} is an
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internal subset of the *finite set φp and is also *finite, sol\{Pe φF: x e P}
is *open. Set φF(x) = Π{P e φP: x e p} for each x e *X so that {φF(x): x e *X}
is a *finite *open covering of *X filling φF and in turn filling * It for each
finite open covering It of X. Moreover, {φF(x): xe*X} has the additional
useful property that for each z e *X", φF(z) is the smallest set in {φF(x):
x e *z} containing z.

Theorem 1 A subset F of a topological space X is open iff for each xe *F,
φF(x) C *F.

Proof: If φF(x) c *F for each xe *F, then it is true that *F is a *neighbor-
hood of each of its points, so *F is *open and F is open.

Suppose that F is open. Then {X, F] is a finite open covering of X and
*{X, F} = {*Xt *F} is filled by φF. By the above, *F = (J{Pe ̂ i ' C *F}.
Thus for each point xe*F there is a set Pe <pF such that xePQ *F so
φF(x), which is a subset of each set in φF containing x, is a subset of *F.

The previous theorem contrasts with the theorem that F Q X is open
iff for each xe F, μ(x) c *F in two ways: φF(x) is internal and x need not
be standard.

Lemma 1 For each collection U of open sets in any space X, G =Γ\{*U:
UeVί}is Q-open.

Proof: If G = Φ we are done, so suppose that G φφ. Then for each point
zeG and set Z7e It, φF(z) c *C7, so G = \J{φF(z); z e G} is the union of a
family of *open sets.

Corollary 1 For any space X and xeX, μ(x) is Q-open.

For any topological space (X, 3) and subset A of X, the monad of A is

defined to be Π{*£/: A c C7e 3} and is denoted by μ(Λ).

Corollary 2 For αwy space X and A c X, μ(A) is Q-open.

Corollary 3 For any space X and family 3 of closed subsets of X, \J{*F:
Fe 3} is Q- closed. In particular, if X is a TV space, then for each A c X,
A = U{W: xeA} is Q-closed in *X and if X is infinite, then it is not dense
in *X when *X is given the Q-topology.

We hope to discuss Q-topologies in greater detail in a later paper.
The following theorem is central to this paper.

Theorem 2 Let P be a set property which can be expressed formally and
which is closed under finite intersections. Then for any topological space
(X, 3) and xeXy the following conditions are equivalent:

(i) There is an internal ^neighborhood V c μ(x) of x with property *P.
(ii) μ(x) = \\{*U: U is a neighborhood of x with property p}.
(iii) The neighborhoods of x with property P form a base for the neighbor-
hood filter at x.
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Moreover, the ^neighborhood of x in condition (i) can be taken to be
*open iff there is a base for the neighborhood filter at x composed of open
neighborhoods of x with property P.

Proof: (i)=#>(ii). Suppose that there is an internal *neighborhood of x
which is a subset of μ(x) with property *P and let G be any open neighbor-
hood of x. Then *G contains a *neighborhood of x with property *P, so G
contains a neighborhood of x with property P. For each open neighborhood
G of x9 let VG c G be a neighborhood of x with property P and let WG c VG

be an open neighborhood of x. Then,

μ(Λr) c (){*WG : X e G e 3 } c Γ\{*VG : # e G e 3) cf |{*G: # € G e3} = /i(#).

Notice that the assumption that P is closed under finite intersections
was not used in this portion of the proof.

(ii) =Φ(i). Assume that μ(x) = \\{*U: U is a neighborhood of x with property
p}. If Ui, . . ., Un is any finite collection of neighborhoods of x with
property P, then Uι Π . . . Π Un is a neighborhood of ΛΓ with property P and a
subset of each of Ul9 . . ., Z7n. Hence, there is a *neighborhood V of % with
property *P which is a subset of *U for every neighborhood U of x with
property P, so V c μ(Λr) = Π{*C/: £/ is a neighborhood of ΛΓ with property P}.

(i) =^>(iii). Suppose that there is a Neighborhood of x which is a subset of
μ(#) with property *P. Then for every neighborhood U of AT, *Z7 contains a
*neighborhood of Λ: with property *P and ί/ contains a neighborhood of #
with property P, so the neighborhoods of x with property P form a base for
the neighborhood filter.

(iii) =^(1). Suppose that the neighborhoods of x with property P form a
base. Then for each finite collection ϋl9 . . ., Un of neighborhoods of x
there is a neighborhood of x with property P which is a subset of
C7Ί Π . . . Π Un9 and so is a subset of each of Ul9 . . ., £/«. By concurrence,
there is a Neighborhood V oί x with property *P which is a subset of *£/
for each neighborhood U of x9 so 7 c μ(#) = Π{*#: U is a neighborhood of
*}.

Notice that again the closure of P under finite intersections was not
used in this portion of the proof.

The further result can be shown by considering the set property P f

defined by: a set A has property Pr iff it is open and has property P. If P
is closed under finite intersections, then so is P'.

One obvious corollary to this theorem is Robinson's theorem that for
each topological space X and point xeX there is an internal *open
Neighborhood of x in μ(x).

We shall say that a regular Hausdorff space is T3 and that a normal
Hausdorff space X is T4.

Corollary 4 The following conditions are equivalent for every space X:
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(i) For each point xeX there is a *open ^neighborhood V of x such that
VQ μ(x).
(ii) For each point xeX and every *open ^neighborhood VQ μ(x) of x,
VQ μ(x).
(iii) For each point xeX, μ(x) is Q-closed.
(iv) For each point xeX, μ(x) is a Q-zero-set.
(v) For each point xeX, μ(x) is Q-clopen.
(vi) X is regular.
(vii) For each point xeX the closed neighborhoods of x form a base for the
neighborhood filter at x.

Proof: Here P is the property of being closed. Condition (vii) is a well-
known and obvious equivalent to condition (vi). By the previous theorem,
(i)Φ=>(iii)Φ=>(vii).

(ii) =^(1). We know that for any space X and point xeX, there is a *open
Neighborhood V c μ(x) of x.

(iii) =Φ>(ii). If μ(x) is Q-closed, then the Q-closure of any *open V c μ(x) is
also a subset of μ(x). The Q-closure of an internal set is its *closure, so
F c μ(x) for each *open V c μ(x).

(iii) <€Φ (v). Trivial in the light of the result that μ(x) is Q-open for any
point x of any space X.

(v) =^>(iv). Let μ(x) be Q-clopen and define /: *X—» <R by: f(z) = 0 for
ze μ(x),f(z) = 1 otherwise. Then / is continuous and μ(x) =/~1(0).

(iv) ==> (iii). Trivial; zero-sets are closed.

If in the previous theorem and its proof we substitute a set A for the
point x, then we have another theorem and the following:

Corollary 5 The following conditions are equivalent for every space X:

(i) For each closed subset A of X there is a *open ̂ neighborhood V of *A
such thatVQ μ(A).
(ii) For each closed subset A of X and every *open ^neighborhood
VQ μ(A) of*A,VQ μ(A).
(iii) For each closed subset A of X, μ(A) is Q-closed.
(iv) For each closed subset A of X, μ(A) is a Q-zero-set.
(v) For each closed subset A of X, μ(A) is Q-clopen.
(vi) X is normal.
(vii) For each closed subset A of X the closed neighborhoods of A form a
base for the filter of neighborhoods of A.

We omit the proof, which is essentially identical to the preceding one.

In each of the following corollaries, condition (iii) is known to be
equivalent to condition (iv).

Corollary 6 The following conditions are equivalent for every space X:



MONADS FOR REGULAR AND NORMAL SPACES 453

(i) There is a * zero-set ^neighborhood V c μ{x) of x for each point xe X.
(ii) μ{x) = \\{*U: U is a zero-set neighborhood of x} for each point xe X.
(iii) X is completely regular.
(iv) For each point xeX the zero-set neighborhoods of x form a base for
the filter of neighborhoods of x.

Corollary 7 The following conditions are equivalent for every space X:

(i) There is a *clopen ^neighborhood V c μ{x) of x for each point xe X.
(ii) μ(x) = Π{*£/'• U is a clopen neighborhood of x} for each point xe X.
(iii) X is zero-dimensional.
(iv) Each point in X has a neighborhood base of clopen sets.

Corollary 8 The following conditions are equivalent for every space X:

(i) There is a ^precompact (*open) ̂ neighborhood V Q μ{x) for each point
xeX.
(ii) μ(x) = (\{*U: ϋ is a precompact {open) neighborhood of x] for each
point x e X.
(iii) X is locally compact.
(iv) Each point in X has a neighborhood base of precompact {open) sets.

Corollary 9 The following conditions are equivalent for every space X:

(i) There is a ^connected ̂ neighborhood V c μ{x) for each point xeX.
(ii) μ{x) = (\{*U: U is a connected neighborhood of x} for each point x e X.
(iii) X is locally connected.
(iv) Each point in X has a neighborhood base of connected sets.

Corollary 10 The following conditions are equivalent for every space X:

(i) There is a ^regular open ^neighborhood V c μ{x) for each point xeX.

(ii) μ{x) =\\{*U: U is a regular open neighborhood of x] for each point
xeX.
(iii) X is semi-regular.
(iv) Each point in X has a neighborhood base of regular open sets.

These corollaries have been particularly helpful in our study of
Q-topologies. Let us consider a few examples of how they can be used to
prove standard results.

Theorem 3 Any product of topological spaces is regular iff each factor
space is regular.

Proof: Recall that for any point #eΓiX β and each point z e *( IT xΛ ,

z e μ{x) iff za e μ{xa) for each standard index a. Recall also that every
cartesian product of sets is closed iff each set is closed. Now it is trivial

that for each point x e LίXa, μ(x) is Q-closed iff μ{xa) is Q-closed for each

standard index a.
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Theorem 4 The continuous, open and closed image of a regular space is
regular.

Proof: Let X be regular and let /: X-* Ybe a continuous, open and closed
surjection. By continuity, f(μ(x)) c μ(f(x)) for each xeX so if V c μ(x) is
a *open *neighborhood of ΛΓ, then f(V) c μ(f(x)) is a *open *neighborhood of
fix). Now, 7 c μix) so /(7) = 7(7) c μifix)) is a *closed *neighborhood of

/w.
Theorem 5 Every subspace of a regular space is regular.

Proof: Given ί / c l , μ^x) = μx(x) n *U for each point #e U and μx(#) is
Q-closed, so μυ(x) is Q-closed in the relative topology.

Theorem 6 Every compact Hausdorff space is normal.

Proof: Let X be compact Hausdorff and let A c X be closed. Every

neighborhood of A is a neighborhood of each point xeA, so μ(A) D U{μM *

x e A}. Since A is closed, (J {μ(Λ ): x e A} D *A. It is known that X is compact

Hausdorff iff {μix): xeX} partitions *X and each μix) is Q-open, so U{μW:

*eA}= *X/[){μix): XjέA} is Q-closed. Now, \J{φF(z): z e *A> C U{<PFU):

^cU{μW:^e^}} = U{μW: *«Ah so U{<M*): z * *M c μ(Λ) is a *closed
*neighborhood of *A.

Theorem 7 T7z£ continuous closed image of a normal space is normal.

Proof: Let X be normal and let /: X —* y be closed and continuous. For
any closed A QY, B =/"1(A) is closed so there is a *closed ^neighborhood
UQ μiB) of *B. By continuity, f(μ(B)) c μ(/(β)) so /(C/) c μ(A) and /(C/)
is *closed. Note that V = *Y/(f(*X/°U)) c /(t/) is a *open *neighborhood of
*A and V ^f(ϋ), so F is normal.

Theorem 8 Suppose that any space X has the hereditary property Pλ iff for
each point x e X, μix) contains a *P2 ^neighborhood of x. Suppose further
that for any spaces X and Y and A X J B C X X F , A XB has property P2

whenever A and B have property P 2 , and that every space X has property
P2 Then an arbitrary product space has property P1 iff each factor space
has property Px.

In our proof it might be considered an abuse of notation to write

*(ίίXa) = Π *Xa No confusion should result, however, and the proof will

be simplified. We will denote the projection of V c YίXa onto Xb by pbiV).

Proof: For each «e$f, Xa is homeomorphic to a subspace of i lx Λ , so if

IIXa has property Pl9 then each factor space has property Px.

Suppose now that for each index ae% and point xaeXa, μ(xa) contains a

*P2 *neighborhood Ua of xa. For any point xe \iXa and neighborhood V of
aeQΆ
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x, Pb(V) differs from Xy on a finite collection of indices which we shall call

S. Define U c " Y Π x Λ a s the product with factor Ua for ae£ and *Xa for

a e *%/Λ. Then £/ = Π Ua x Π * I Λ is a * P 2 *neighborhood of x and a

subset of *V9 so there must be a neighborhood of x which is a subset of V
with property P2. By Theorem 2 we are done.

We mention regularity in the following corollary to show the scope of
this theorem.

Corollary 11 An arbitrary topological product is regular {respectively
completely regular, zero-dimensional) iff each factor space is regular
{respectively completely regular, zero-dimensional).

Proof; Regularity (respectively complete regularity, zero-dimensionality)
is hereditary. A finite product of sets is closed (respectively a zero-set,
clopen) if each set is closed (respectively a zero-set, clopen). Every
topological space is closed (respectively a zero-set, clopen).

We hope that these examples will make the corollaries to Theorem 2
easier to use. It was shown that any topological space X is regular iff for
each point xeX, μ{x) is Q-closed. This theorem can be improved for
Hausdorff spaces by observing that for any Hausdorff space X and xeX, if
zt β(y) fc>r some point y Φ x, then μ{y) is a Q-neighborhood of z disjoint
from μ{x). Hence, μ{x) is Q-closed iff for each point z e *X/\\J{μ{y): y el})
there is a Q-neighborhood of z disjoint from μ{x). Notice the order of
quantification: VxVz3 U.

Theorem 9 A Hausdorff space X is regular iff for each point z e *X/

\[){μ{y): y e x}j there is a *open ̂ neighborhood U of z such that U Π μ{x) =

φfor each point xeX, i.e., iff ns{*X) = \J{μ{n): nex}is Q-closed.

Proof: <#= In the light of the previous comment this is trivial.

=Φ Suppose that X is regular and let z e *X/([){μ{y): y eXη and
consider ΨF{Z), which is a fixed *open Neighborhood of z. For any point
xeX, z£μ{x) so there must be a standard neighborhood F of x such that
z/ί*F. Let G c F be a closed neighborhood of x. Then Zf[*G,ze *{X/G),
φP{z) c *(X/G) and *(X/G) (Ί μ{x) = 0, so φF{z) n μ{x) = φ.

At this point the order of quantification is VzBUVx. Moreover, U can
be taken to be a *open Neighborhood of z, not just Q-open. We also point
out that since μ{x) is Q-open, φF{z) Π μ{x) = Φ for each point xeX. The
same argument, slightly modified, proves the following:

Theorem 10 A Hausdorff space X is normal iff for each family 3 of closed

subsets of X and each point z e *X/\[){μ{F): F eS}) there is a *open
^neighborhood U of z such that U Π μ{F) = Φ for each set F e 3, i.e., iff
U{μCF): F e 3} is Q-closed.
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