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Generalized S2-Like Systems of

Propositional Modal Logic

MARK A. BROWN

In the usual semantics for S2, the models are permitted to contain
"abnormal" worlds, i.e., possible worlds meeting two conditions: (1) they are
terminal (no worlds are accessible from them), and (2) at the abnormal worlds
the usual truth conditions for Dp and Op are replaced by the conditions that
Op be false and Op be true.1 If a normal world were terminal, then Up would
be vacuously true at that world and Op trivially false. Hence we might consider
that abnormal worlds are ones at which the usual meanings of the two modal
operators are simply interchanged, and that in S2 it happens that such ab-
normal worlds are always terminal. This way of looking at S2 semantics
suggests that it might be of some interest to weaken the conditions on a model
for modal logic by permitting worlds like S2's abnormal worlds without
demanding that they be terminal. Then models for S2 and its various exten-
sions might be seen as special cases of models of this very general sort.

For each model of this sort, there would be a complementary model, in
which there would be abnormal worlds at all those "places" at which the first
model had normal worlds, and vice versa, so that in the two models taken as
wholes the meanings of the two modal operators would be exactly reversed.
The collection of all modal propositions which hold in all such models must
therefore be closed under interchange of D and 0. Indeed it seems likely that
this collection of propositions will consist of just those theorems of S2 which
would remain theorems of S2 under an interchange of modal operators.

In the present paper we shall establish completeness results for a variety
of systems of propositional modal logic employing such models. Both the style
of presentation and the methods of proof we shall employ owe much to the
work of E. J. Lemmon and Dana Scott [5]. In that work, however, Lemmon
and Scott do not consider models involving abnormal worlds.2
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The weakest system considered in [5] (namely K) can easily appear to be
the weakest system for which the methods of proof of completeness there used
would be suitable. The work presented below can be understood as showing
that, and (at least approximately) how far, these methods can be generalized so
as to extend to systems weaker than K. It is noteworthy that the weakest
system considered here (the system / ) though it is weaker than S2, is still too
strong to admit interpretation as an epistemic or doxastic logic. Syntactically,
the system / does seem to admit interpretation as a deontic logic, in some
contrast to K, whose deontic interpretation is at best a bit strained.

1 The system J: proof theory Consider a language for modal logic whose
primitive symbols are the propositional constants Plt P2, . . ., Pn, . . . (n < co),
and whose connectives are 1, ->, and • . We define ~iA to be A -* 1, and define
v, A, <—•>, and 0 as usual. We let3

• w A QD . . . • (n occurrences of ' • ' )
0" A 00 . . . 0 (n occurrences of '0').

Now consider a system / of modal logic, in the language just described,
whose axiom schemata and rules are:

(AJ1) A^>[B-+A]
(AJ2) [A -> [ £ - > C ] ] -• [[A -+B] -> [A-+C]]
(AJ3) -iiA^A
(AJ4) [[DA ABB] -*D[A*.B]]\/ [ [ O C A O D ] ->0 [ C A D ] ]

(RJ1) From ,4 and ,4 -»£, to infer £
(RJ2) From A -+ B, to infer DA -> UB.

We identify / with the set of wffs .4 such that K4, where this latter expression
is defined in the obvious way.

By an extension of / (or a J-extension) we mean any set S of wffs of our
language such that S is closed under (RJ1) and / C S. By an ordinary J-
extension we mean any/-extension closed under (RJ2). If S is any/-extension,
A any wff, and T any set of wffs, we write:

\-sA iff A eS.
T Jrs A iff for some Blt B2, . . ., Bk e T {k < GO)

Y-slBl A [ 5 2 . . . A [ 5 H A ^ ] . . .]]->i4.

It is evident that for any /-extension 5, if T U {A\ \~s B then T \~s A^B.
If T is any set of wffs and S is any /-extension, we may say T is S-

consistent if any only if we do not have T \~s 1. We say S is consistent if any
only if 1 4 S. US is any /-extension, we say Sf is an S-extension if any only if
S C S' and S' is a /-extension. We say S1 is an S-extension of T (for any set T of
wffs) if and only if S' is an S-extension and T C S'. Finally, if S is any /-exten-
sion, we say S is maximal if any only if for each wff A either A e S or (~\A) e S,
and we say that S' is a maximal consistent extension of S if and only if it is
maximal, consistent, and an extension of S.

Lemma 1 (The Lindenbaum Extension Theorem) Every S-consistent set T
of wffs has a maximal consistent S-extension. (Theorem 0.1 in [5].)



GENERALIZED S2-LIKE SYSTEMS 55

Lemma 2 For any wffA, any set Tofwffs, and any J-extension S, T \~s A
iff A is an element of every maximal consistent S-ex tension ofT.

Proof: Directly from Lemma 1. The proof is analogous to that for Theorem 0.2
in [5].

Lemma 3 Let S be any J-extension, A any wff Then \~sA iff A is an
element of every maximal consistent S-extension.

Proof: Directly from Lemma 2.

Lemma 4 In any ordinary J-extension S, if Y~sA ~* B then V~s^A -* OB.

Proof: lf\~sA -+B then \~siB-*-]A, so hsU-\B -» U~\Ay and thus \-snBiA ->
-|D-|£, i.e., OA ^OB.

Lemma 5 In any ordinary J-extension S, if A, B are any wffs, and C{A) is
any wff containing (zero or more) occurrences of A, and C(B) is the result of
replacing (zero or more of) A's occurrences in C(A) by occurrences of B, then
if \-sA-*B, then }~SC(A)-+ C(B).

Proof: By routine induction on the complexity of C(A).

2 The system J: soundness By a basic model we shall mean any ordered
quintuple M = (U, Vy P, R, 0> such that if W A JJ u V (and if 0 is the null set
and N the set of nonnegative integers) then

(BM1) OCPCW
(BM2) RCWXW
(BM3) UnV=Q
(BM4) (j)\N->iP(W).

We call the elements of W worlds, those of U usual worlds, those of V variant
worlds, and those of P preferred worlds. R is called the accessibility relation,
and 0 the truth function, for M.

We employ the following truth conditions for a basic model M =
W, V,P,R, 0>:

(TD1) Vw e W [it is false that w, M 1= 1]
(TD2) Vw e W [w, M ^Pt iff w e 0(0 ]
(TD3) \fweW [w,M t=A-+Biff[ifw,M 1= A then w, M ^B]]
(TD4) \ f u e U [ u , M ^ D A iff Vw e W [if u R w t h e n w , M ̂ A ] }
(TD5) \fve V [v,M ^HA iff 3we W [uRw and w, M 1=^4]].

We thensetM ^A^\fw eP [w, M 1=^4], and set ^A A VM [M ^A].
The usual Kripke models for S2 are then basic models with the additional

conditions that P = U, UX UC R, and (FX W) n R = 0.

Lemma 6 H[HA A DB] - > D ^ A B ] ] V [ [ O C A O D ] ^ 0 [ C A D ] ] .

Proof: (TD4) guarantees that the left-hand disjunct will be satisfied at all usual
worlds, while (TD5) assures that the right-hand disjunct will hold at all variant
worlds.

Lemma 7 If 1=̂4 then for any basic model M, Vw e W[ w, M \=A].
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Proof: Suppose l==45 and let M be any basic model, with w any world in M.
Compare M to M' in which U' = U, V = K, # ' = R, and 0' = 0, but in which
P' = W. Then by induction on the complexity of A, w, M ^ A iff w, M' ^A,
since the truth conditions make no mention of P. But w, Mf \=A, sinceM' is a
basic model, and so w, M 1= A

Lemma 8 If ^A-> B then ^BA -> D5.

Proof: Assume ^A -» .5. Let 7k/ be any basic model and let w e W. Assume
w, M 1= DA Case 1: w e U. Let w' be any world from W such that wRw*'. Then
w', M 1= A By Lemma 7, w', Af t= ,4 -» £, so by (TD3), w', M t= B. Case 2:
w e V. Then for some w' e PV we have wi?u/ and w', M \=-A. By Lemma 7 we
also have w', A/ \^A -*B, so there is a world w' with w.Rw' and w', M \= B.

Theorem 1 / / \~A then \=A.

Proof: By routine induction on the length of the deduction of A, using the
usual propositional calculus arguments, augmented by Lemmas 6 and 8.

3 The system J: completeness If S is any consistent ordinary /-extension,
then by the characteristic model for S we shall mean the basic model M[S] =
(U[S], V[S],P[S],R[S], 0[S]> defined by the following conditions:

(CM1) P[S] A the set of all maximal consistent S-extensions
(CM2) U[S] A \u e P[S]: for all wffs A, B, if UA e u and UB e u then

U[A /\B] eu\
(CM3) V[S] *{ve P[S]: i; ̂  £/[5]}
(CM4) w^IS' l iVjAUrn^ e ^ ! Cw2andw!e U[S],

or {A: OA e wx\ Cw2 and vvt e K[5]
(CM5) 0[5] (0 A Sw e P[5]: Pt e w\.

Lemma 9 Let u, v e P[5], /or arcy ordinary J-extension S. Then \A:
OA ev\Cuiff\UA\A eu\Qv.

Proof: Suppose \A: <>A e v\ C u. Choose any A e u, and suppose HA i v. Since
v is maximal, iDA e v. But \s~i\3A -> nDnn^4 (because h^nn^. -^^4 and
hence by (RJ2) h^Dnn^ -> D^4), and hence n D n n i e u, i.e., 0~L4 e L>. It then
follows from our first assumption that iA e M, contradicting the consistency of
i/. The converse argument is similar.

Lemma 10 Let u e U[S], for any ordinary J-extension S. Then DA e u iff
Vw e W[S] [ifuR[S]w then A e w] (where W[S] £P[S]).

Proof: Suppose HA e u and uR[S]w. From the latter, {A: DA e u\ C w, so
A ew. For the converse, suppose that Vw e W[S] [if uR[S]w then^4 e w]. This
means that for all maximal consistent S-QXtensions w of {B: UB e u\, we have
A ew. Hence by Lemma 2 \B\ UB e u\ \~sA. Thus for some Bx, B2, . . .,B^ e
\B\ DB e u\ we have {Blt B2, . . ., Bk\ h 5 A. Thus hs[B1 NB2. . . A ^ ] -+A,
and since S is an ordinary/-extension, h^Dt^ j NB2 . . . A5^] ->D^4. But also,
by the choice of2?l5 . . . , 5 ^ , we have UBU . . ., UB^ e u, and since u e U[S], the
definition of U[S] gives us D [Bx A . . . A B^] € u. Hence UA e u.
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Lemma 11 Let S be any ordinary J-extension, with v e V[S]. Then UA e u
ifflwe W[S][vR[S]w and A ew].

Proof: Suppose UA e v. We must show that 3w[{B: OB e u\Cw and A e w]. It
suffices, then, to show that {B: OB e v\ U \A\ isS-consistent. Suppose it were
not. Then for some Bu . . ., Bk e \B: OB e v\, \BU . . ., Bk\ U U l \~s 1, i.e.,
\~s [B j A . . . A Bk ] ~* ~\A, and since S is an ordinary /-extension, Lemma 4 gives
us \rsO[Bx A . . . A£&] ~* O~iA. Since v e V[S], there must be some C, D such
that DC e v and DD e v, but D [ C A / ) ] ^ y. Then [ D C A D Z ) ] ->D[C A D ] ^ v.
But by (AJ4) we do have [[DC A UD] - > D [ C A / ) ] ] V [ [0^ ! A 05 2] ->
0[Bx (\B2]]e v. Hence [0Bx A05 2 ] ->0[fi2 A52] e u, and so0[Bx A fi2] e i;. By
repeated use of this argument, we get 0[Bx A B2 A i?3] e f, and eventually
O[Bx A . . . A Bk] e v. Hence 0~\A e v, i.e., -\U-\~iA e v. Clearly, however,
-\n~\-iA -> ~]DA e v, so iDA e v, contradicting our initial assumption. For the
converse, suppose lw[vR[S]w and A e w]. Then [A: OA e v\ C w. So by
Lemma 9 {DA: A e w\ Cv. Hence D.4 e u.

Theorem 2 Ze/1 w e FVtS], for any ordinary J-extension S. Then w, M[S] t=
A iff A e w.

Proof: By induction on the number of occurrences of the arrow and the box in
A. The basis is trivial in the light of (TD1) and (CM5). For the induction step
we distinguish three cases:

Casel. A isB-+C. Then w, M[S] ^A

iff w,M[S] ^B-+C
iff [if w,M[S] \=B then w,M[S] \= C]
iff [if B e w then C e w] (by the induction hypothesis)
iff B -> C e w (since w is maximal consistent)
iff A e w.

Case 2. A is DB, w e U[S]. Then w, M[S] ^A

iffw, M[S] ^DB
iffVw'e W[S] [if wR [S]wf then wf,M[S] l=£] (by (TD4))
iff Vw' e W[S] [if wR[S]w' thenB e w'] (by the induction hypothesis)
iff UB ew (by Lemma 10)
iff yl e w.

Case 3. A is UB, w i U[S]. Then w, Af [S] 1=̂ 4

iffw, M[S] \=DB
iff 3w' e W[S] [wR[S]wf and w;, Af[S] \=B] (by (TD5))
iff 3wr e W[S] [wR[S]wr zndB e w'] (by the induction hypothesis)
iffDBew (by Lemma 11)
iff 4̂ e w.

Theorem 3 / / \=A then \~A. (Completeness for/.)

Proof: Assume \=A. Since M[J] is a basic model, M[J] 1= A, i.e., A is an
element of all maximal consistent extensions of / , by Theorem 2. Hence by
Lemma 3 \~A.
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4 Extending J with axioms We now set about extending these results to
all ordinary/-extensions. For any wff A, and any world w, let the characteristic
condition C(A, w) on w be defined as follows:

(CC1) C ( l , w ) A w ^ w
(CC2) C(Pi, w) A w e 0(0
(CC3) C{B -> C, w) A if C(5, w) then C(C, w)
(CC4) for w e U: C ( D 5 , w ) A V w ' e W [if wRw' then C(5 , w ' ) ]
(CC5) for we F: C(D5,w)A 3w'e W[w/*w' and C(£, w')].

In stating clauses (CC4) and (CC5) for particular cases, we must be sure that
the quantified variable is chosen so as to have no free occurrences in C(B, w).

If we let wR°w' A W = w' and let wRn+lw' A 3W"[WRW" and w"Rnwf],
then we may easily establish that, for w e U, C(UnB, w) is equivalent to

(a) Vw'[if wRnwf then C(B, w')]

and C(OnB, w) is equivalent to

(b) 3w'[wRnwf and C{B,w')].

For w e V, C(UnB, w) is equivalent to (b), while C(OnB, w) is equivalent to (a).

Lemma 12 Let M = (U, V, P, R, <j>) be any basic model, w e W, and A any
wff. Then w, M ^A iff C(A, w).

Proof: By routine induction on the construction of A, noting the agreement
between the truth conditions and the definition of the characteristic condition.

Lemma 13 Under the conditions of Lemma 12, M ^ A iff(\fweP)[C(A,w)].

Proof: Trivial, from Lemma 12.

Now if M = (U, V, P, R, 0> is any basic model, then we callM an ordinary
model iff U C P and V C P, i.e., iff P = W. Given any wff A, let J(A) be the
ordinary /-extension which results from adding A to J (as an axiom, not as an
axiom schema) and closing under (RJ2). The meaning of the expression '\~J(J)B'
is then already fixed by our previous conventions. Let 'M(AY and 'M^AY, . . .,
'Mn{A)\ . . . designate ordinary models which satisfy the characteristic condi-
tion C(A, w) at all w e P, i.e., at all w e W. (In context, we shall be able to
designate the components of M{A) as U, V, P, R, and 0, rather than as U(A),
V(A), etc.) Then the meaning of the expression 'M(A) 1= B' is fixed by previous
conventions. We let t=B A MM{A)[M(A) 1= JB].

J\A.)

Lemma 14 If M(A) t= B -> C then M(A) t=D£->DC.

Proof: Assume M{A) 1= B -+ C. Let w e P, and suppose w, AfG4) 1= • £ . It will
suffice to show that under these two assumptions w, M(A) t= DC.

Case 1. w e U. Let w' be any element of W such that wRw'. It will suffice
to show that w\ M{A) t= C. But since wi^w', by our second assumption
w', M(A) 1= £. Since A/C4) is ordinary, wf e P, so by our first assumption
w', M(A) 1=5 ̂  C. Hence w', M(i ) 1= C, by (TD3).
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Case 2. w e V. Then 3w' e W[wRwf and w', M{A) 1= B], by our second assump-
tion. Since MC4) is ordinary, w' e P, so that our first assumption yields
w', M(A) 1= 5 -> C. Hence 3w' e W/[w/?v/ and w', M(A) t= C], i.e., w,
ATO4) NnC.

Theorem 4 / / \j(J)B then 1==^.

Proof: By induction on the number of steps in the deduction of B in the
system /G4), using Lemma 13 to cover uses of A, Lemma 14 to cover uses of
(RJ2), and otherwise arguing as in the proof for Theorem 1.

Lemma 15 Let S be any consistent ordinary J-extension. If h^4, then M[S]
is an ordinary model such that \/w e P[S] [C(A, w)].

Proof: Let S be any consistent ordinary /-extension, and suppose \~$A. Then
A e w for all maximal consistent S-extensions w, by Lemma 4. So M[S] t= A by
Theorem 2. Hence by Lemma 13 Vw e P[S] [C(A, w)]. And M[S] has />[S] =
M/[S] by definition, soM[S] is an ordinary model.

Theorem 5 / / l = £ r/zerc bxT)5-

Proof: Suppose ^jFr^B- Since by definition Vj^A, Lemma 15 tells us that
M[J(A)] is a model, like 71^04), of the type by reference to which the expression
' t==i? ' is defined, so that from our assumption we may conclude that

JKA.)

M[J(A)] F= B. But then B is an element of all maximal consistent J(A)-
extensions, by the definition of characteristic models, and hence by Lemma 3
we get Vj^B.

5 Extending J with axiom schemata We now extend the results in
Theorems 4 and 5 to deal with /-extensions created by the addition of axiom
schemata. If 4̂ is a wff involving as its atomic components only formulas from
among P^v . . ., P^, and A* is the wff which results when we simultaneously
replace P^. by B]Ci (0 < i < n) for some wffs B^v . . .,' Bkn, then we shall call A*
a substitution instance of A employing the substitutions Bf/Pj (0 < / < co),
where for/ other than ku . . ., kn we take Bj = Pj.

Lemma 16 Let A* be a substitution instance of A, employing the substitu-
tions Bj/Pj (0 < / < co). Let M be any basic model, and let M* = (U, V, P, R, </>*>,
where </>*(/) A {W € W: w, M 1= B(\. Then for any w e W, w, M* 1= A iff
w,M 1=^1*.

Proof: By induction on the structure of A.

Consider now any nonrepetitive enumeration Ao> Au . . ., An, . . . of all
wffs, and suppose we are given any basic model M. We define a collection
Z(M) C P(W) by setting Yt 4 { w e W\ w, M t= At\ (i < co), and setting Z(A/)A
{YJ\ i < co}. Since one of the At will be 1, the corresponding Yt will be empty,
and likewise since some of the At will be tautologies, the corresponding Yj will
be W. It can easily be verified that Z(M) is closed under union, intersection,
and complementation relative to W. But in general Z(M) will be a proper subset
of-P(W).
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Now we say that M* = (U, V, P, /?, 0*> is derivative from M = {U,V,P, R, 0>
iff for each / < co, 0*(O e Z(M). Note that for any ordinary model M, M is
derivative from itself. Note too that if A* results from A by the substitutions
Bj/Pj (/ < GO) then if we set 0*(O = \w e W: w, M 1= 5/} we get a model A/*
which is derivative from M. In the other direction, we note that if A/* is deriva-
tive from M, and A is any wff, then for each Pj in A the set 0*(/) will corre-
spond to at least one sentence Bj such that 0*(/) = \w e W\ w, M \= Bj\ and thus
will lead us to at least one substitution instance A * of A even though, for a
given A, the wff A* may not be uniquely determined.

We say that M strongly satisfies C(A, w) iff every M* derivative from M
satisfies C(A, w). Note that, since A/ is derivative from itself if it is an ordinary
model, if M strongly satisfies C(A, w) and is an ordinary model, then it also
satisfies C(A,w). By J[A] we mean that ordinary /-extension which results
when A is added as an axiom schema to / , and the resulting collection of wffs
is closed under (RJ1) and (RJ2). Finally, for any wff ^4, we let 7(̂ 4) be the set
of all substitution instances of A.

Lemma 17 If M strongly satisfies C(A, w), then for all A* e I(A), M \=A*.

Proof: Let M strongly satisfy C(A, w), and let ^4* e I(A) be the result of em-
ploying substitutions Bj/Pj in A. Set 0*(z) A \W e W: w, M \= Bt\ and set
M* A (u, V, P, R, 0*). Then Tkf* is derivative from M, and M strongly satisfies
C(A,w), so M* satisfies C(A,w). By Lemma 13, M* k= A. By Lemma 16,
M\=A*.-

We write ^JTJ\^ ^ ^or a ^ ordinary models M which strongly satisfy
C(A,w),M t=B.

Theorem 6 / / hjp-j B then l=jf=r B.

Proof: By induction on the length of the demonstration ofB, using Lemmas 14
and 17.

Lemma 18 If S is any consistent ordinary J-extension, and A any wff, then
if V~SA* for all A* e I(A), then M[S] strongly satisfies C(A, w).

Proof: Suppose S is a consistent ordinary /-extension, with hsv4* for all
A* e I(A). First note that, by definition, M[S] is an ordinary model. Let A/* be
any ordinary model derivative from M[S]. It will suffice to show that Tkf*
satisfies C(A, w). As we remarked earlier, 7k/* will determine at least one sub-
stitution instance A* of A, because to have M* derivative from M[S] we must
have 0(/) e Z(M[S]) for each /, i.e., for each / there must be at least one B{
such that 0(z) is {w e W: w, M[S] 1=5/}. (If there is more than one such 5/ for a

• given /, pick the first to appear in the standard enumeration of all wffs.) Then
the substitutions 2?//P/ which result will turn A into ^4*. By Lemma 16, for any
w e W[S], w, M* 1= A iff w, M[S] 1=^4*; but h5,4*, so w, M[S] \= A* (by
Theorem 6), and hence w, M* \= A. From this, by Lemma 13, it follows that
C(A, w) in M*, i.e., M* satisfies C(A, w).

Theorem 7 / / tyr^B then \j^\B.
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Proof: Suppose l===r ̂ . By definition, for all 4̂ * e I (A), tj[A~]A*. Hence, by
Lemma 18, A/[/[yl]] strongly satisfies C(A, w). Hence by definition A/[/[^4]] 1=
B. Hence B is an element of all maximal consistent extensions ofJ[A], so that
by Lemma 3 \j[X]B.

6 Relations to SO.5, SI, S2, and K It is obvious that S2 is a /-extension.
SO.5 is not, however, since OD [P1 A n P J -> ODP2 is a theorem of/, but not of
SO.5. The proof of this in /consists in applying (RJ2) and then Lemma 4 to the
obvious tautology. The disproof in 50.5 consists of an appropriate assignment
of truth conditions in the simplest possible two-world model for SO. 5. J is not
an extension of 50.5, either, for DPX -> P1 is a theorem of 50.5, but not of/.
As a consequence, / is not an extension of SI either, but I am not at present
able to say whether SI is an extension of/. My conjecture is that it is not.

Since the Lemmon system K in [5] is an ordinary 52-extension, it is an
ordinary /-extension as well. It is trivial to show that every ordinary K-
extension is normal in the sense of [5], so for the case of ordinary ^-extensions
completeness results have already been given in [5].

NOTES

1. The usual formal semantics for S2 was first given by Kripke in [3], and is presented by
Hughes and Cresswell in [2]. The axiomatic presentations of S2 most often used are
variants on that presented by Lemmon in [4].

2. Chellas [1] also follows the style and methods of Lemmon and Scott [5], and adds
considerable material not in [5]. It is therefore a useful alternative to [5], which has
been out of print recently. Chellas does not consider S2 or abnormal worlds, however.

3. We use the symbol '^' throughout in place of i=df\ to mean is by definition.
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