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The n-adic First-Order Undefinability

of the Geach Formula

R. E. JENNINGS, P. K. SCHOTCH, and D. K. JOHNSTON*

By adopting natural generalizations of relational frame and relational
model we showed in [2] that the deontic law D, Dp -» Op, is not universally
first-order definable. In effect, we showed there that for n > 2, there is no
n-adic first-order sentence p such that for every n-ary frame F,F ^D iff F ^(3
in the first-order sense.

The notion of n-ary frame and model employed there may be summarized
as follows: F - (U,R) is an n-ary relational frame iff U is a nonempty set and
R is an n-ary relation on U. Valuations on F are classical for PC formulas. For
modal formulas,

V(Oa) = {x\yyl . . .yn_uxRyx . . .yn-\^y\^ V(a) or . . . or yn e V(a)\.

We say that a is valid on F or F is a frame for a(F 1= a) iff F(a) = U for every
valuation V on F. That this is the correct generalization of frame and model
is argued at some length in [3].

Corresponding to the modal notion of a frame is the first-order notion of
a model. If F is an n-ary frame and a* is a sentence in the first-order theory
of a single n-adic predicate, then we say that F is a first-order model for
O!*(F I3 ot*) iff F(a*) = 1 for every assignment of individual variables to objects
in F. Taking these notions of frame and first-order model we arrive at the
notion of n-adic first-order definability. If there is an n-adic first-order sentence
a* such that for every n-ary frame F, F t= a* (in the first-order sense) iff
F t= a, we say that a. is n-adically first-order definable. If a is n-adically first-
order definable for every n, then we say that a is universally first-order
definable.
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The result that D is not universally first-order definable extends the results
for the McKinsey formula DOp -• ODp of Goldblatt and is achieved by the
ultraproduct technique introduced by that author in [ 1 ]. We present a further
result of this nature for the converse of the McKinsey formula usually called
the Geach formula G: ODp -• DOp. Under a restriction to a binary first-order
language, G is characterized by pointwise strong convergence. Its defining first-
order sentence is: Vx,y,z, xRy & xRz => 3w: yRw & zRw. We show here that
if the restriction to a first-order language with one binary predicate is dropped
then G is not characterized by any first-order relational property.

Theorem Ifn>2, then G is not n-adically first-order definable.

Proof'. For each natural number / we define the ternary frame F( = U(,Ri as
follows:

Ut ={x,y1 . . .3>2/+i,*i
xRjyj,yj+l for each/ < 2/ + 1

^ ^ 2 1 + 1 ^ 1

yjRiZ, z for each/ < 2/ + 1
zRiX,x
Ri contains no other triples.

We illustrate the first two frames in Diagrams 1 and 2.

^ ^ x

I yx yi ys

Diagram 1. Fx

I y\ y2 ys y* y$

Diagram 2. F2
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It is easily seen that G cannot fail on any of the F/'s. Assume that G fails
at x. Then there will be a >>7- where Dp holds and a yj where D i p holds, and so
p A "~|p will hold at z. Similarly, if G fails at some y;-, then Dp and D i p must
hold at z, and so p A ~lp will hold at x. Now suppose that G fails at z. Then
Dp and • ~lp will hold at x. But this too is impossible.

The ultraproduct FQ of the Fz's over a nonprincipal ultrafilter G will
have the structure shown in Diagram 3

\ \ *4 k / ^ / /

\ \ ^3 ^\w / / ^3' /I

Diagram 3. F^

where F is a valuation for which

V(p)=\gf:j odd]
^Op) = !g/:/eveni.

G will fail at h. Thus the class of ternary G frames is not closed under ultra-
products. Since an n + 1-ary frame can be generated from an n-ary frame by
defining Rf(nl, . . ., nnnn) ^ R(nu . . ., nn), we may assert that for n > 2, the
class of «-ary G frames is not closed under ultraproducts. This proves the
theorem.

Corollary / / Mm and Nm are any m-membered sequences of • 's and O's then
Gm: MmOUp -> A^DOp is not n-adically first-order definable for n>2.

Proof: The adaptation of the G frame sequence to obtain this result is
straightforward. We simply interpose m points between z and x in each frame.
The first frame in the sequence is illustrated in Diagram 4.
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/ A
! AA
• y\% y2Y y**
• \ /
• \ /

\ A

Diagram 4. F[
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