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Algebraic Studies of First-Order

Enlargements

Abraham Robinson in memoriam

JURGEN SCHMIDT*

This paper may be considered as an axiomatic study of first-order
elementary extensions and enlargements of full relational systems.

An axiomatization of this sort has been given by Robinson and Zakon
[16] for superstructures which form a convenient set-theoretic framework for
higher-order logic (cf. also Zakon [20], Keisler [8], Stroyan and Luxemburg
[19], and Davis [3]). Most of Robinson's and Zakon's axioms (see (4.l)-(4.4)
below) are only first order (Keisler [8]: elementary) in character. The language
they use is that of a Boolean homomorphism a: P{A) -> *P(B)'9 for our purposes
we will frequently assume a to preserve just all finite intersections. Based on
general lattice-theoretic considerations summarized in Section 0 (and Sec-
tion 2), we will come up with five equivalent approaches in Sections 1-3. Two
of these are the extension and contraction procedures (Section 1) well-known
from general ring theory, less known from the theory of algebraic lattices.
Another equivalent is the passing from a filter to its monad (Section 2), which
constitutes one of the fundamental ideas in the exact foundation of Leibniz's
infinitesimals discovered by Robinson [14]. A particularly striking equivalent
approach seems that of an arbitrary mapping co: B -* $04) (lattice of filters on
A). Booleanity of a: f>(A) -* P(B) being equivalent (see (2.12)) with co[B] C
Sl(A) (set of ultrafilters on A), to(A) C co[B] characterizes (see (2.17) and
(2.18)) enlargements in the sense of Robinson [14].

Sections 1-3 deal with the zero-order (Boolean) aspects of elementary
extensions; for full first-order logic in Sections 4-6, we have to consider a
sequence of at-least-finitely-intersection-preserving mappings an\ -P(An) -*
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P(Bn)(n ^ 1). Theorem 4.1 translates the first-order axioms given by Robinson
and Zakon [16] into category language: The family a = (an) is interpreted as a
twofold natural transformation between functors connected with transforma-
tions of variables (substitutions). One of these naturality conditions can be
reinterpreted (Addition 4.2) to the effect that each an preserves cylindrifica-
tions and the diagonal relations, making <xn a homomorphism between cylindric
algebras once it is Boolean. At any rate (Theorem 5.1) each an is an embedding
(Booleanity is not even needed for that), and the sequence a = (otn) induces an
embedding h: A -* B. In the Boolean case (Corollary 5.4) the latter turns out
to be an elementary embedding from A endowed with all its finitary relations
F C An into B endowed with the corresponding relations an(F) C Bn. On the
other hand, any such elementary embedding h makes the mappings ocn satisfy
Robinson's and Zakon's axioms and our equivalents (Corollary 5.8). In
Section 6, translations of the naturality conditions into the five other languages
(extension, contraction, etc.) are given.

0 Extension and contraction of semilattice ideals We start from the
following well-known result:

Proposition 0.1 Given complete lattices I and J, there is. a one-to-one
correspondence between the completely join-preserving mappings 0: / ->/ and
the completely meet-preserving mappings \fj: J -* /, established by the formulas

(0.1) 0(x) = A \y e J\x ^ <K>0i and ^(y) = V [x e I\<j){x)% y\

for each x e /, y e J. The ordered pairs (0, \jj) occurring here are exactly the
ordered pairs of mappings 0: / -* / , 4/: J ~+1 such that

(0.2) (j)(x)^y iffx%Wy)

for each x e /, y e /.
Such an ordered pair (0,\//) is called a Galois connection of mixed type or

an adjoint situation; 0 is its left adjoint, \jj its right adjoint. Note that 0
preserves zero (least element, join of the empty set), 0(0) = 0, while \jj preserves
the identity (greatest element, meet of the empty set), \jj(e) - e. (Note that
0(e) = e iff \p(y) = e implies y = e for each y e J; it suffices for each y in a
meet-dense subset of/. And dually.) It is well-known that i / / ° 0 : / - > / i s a
closure operator in /, with image \p [J]; 0 ° \p: / -> / is a kernel operator in / ,
with image 0[/] . The restrictions 0l\i/[/]: \p[J] -^ 0[/] , \//l0[/]: 0[/] -> \jj[J] are
lattice isomorphisms which are the inverses of each other. Note that 0 is
one-to-one iff \jj is onto /, i.e., iff \jj ° 0 = id/.

Let now / be algebraic, i.e., the join-subsemilattice C(7) of compact
elements of / (which contains 0) is join-dense in /. Or to put it this way: / is
canonically isomorphic to the ideal lattice of the join-semilattice (with 0)
C = C(I), the canonical isomorphism assigning to each x e I the ideal C n
[0,x] = \c e C\c^x\ of C. We now have

Proposition 0.2 Given complete lattices I and J, with I algebraic. Then
each finitely join-preserving mapping a: C(I) -> / can be uniquely extended to
a completely join-preserving mapping 0: I -+ J. One so gets one-to-one cor-
respondences between all finitely join-preserving mappings or. C(I) -> /, all
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completely join-preserving mappings 0: / -> / , and all completely meet-preserv-
ing mappings \p: J -* /, established by the formulas

i a = 0lC(/)
(0.3) i 0(x) = V{a(c)lceC, c ^ x i

(^(^) = Vice Clce(c)^^}

Actually, the inclusion mapping from C(I) into / is the universal finitely
join-preserving mapping of the join-semilattice C = C(I) into a complete
lattice—the category of complete lattices here taken with the completely join-
preserving mappings as morphisms.

The following is usually stated for the case that / is algebraic too, which
turns out to be superfluous.

Proposition 0.3 Let (0, \jj) be an adjoint situation between the complete
lattices I and J, let I be algebraic. Then 0 is compact, 0[C(/)] C C{J), i.e.,
a - 0lC(/): C(/) -* C(J), iff \Jj is continuous. In this case, both im \jj = im \jj ° 0
and im 0 = im 0 ° \jj are algebraic.

One calls i>: J'->/ (up-)continuous iff \// preserves the joins of (up-)directed
sets, i.e., \jj is continuous as a mapping from the T0-space / into the ro-space/,
both / and / endowed with Dana Scott's topology of ^-closed lower ends
(lower ends closed under joins of (up-)directed sets).

Proposition 0.4 Let (0, \jj) be an adjoint situation between the complete
lattices I and J, let I be algebraic and 0 compact. Then 0 is one-to-one iff so is
a = 0lC(7).

Assuming a one-to-one, hence an order-embedding, one shows that
0(x) % 0(x') implies x % x .

Here is some analogue of Proposition 0.3 that will be used in the sequel. A
complete lattice / is isomorphic to the lattice of open sets of some topological
space (which may be chosen To) iff its spectrum P = P(J) is meet-dense in /.
The spectrum is the (partially ordered) sets of all (finitely meet-)prime
elements, shortly primes, of / . We will call such a lattice a T0-lattice. It is
well-known that any distributive algebraic lattice / is To.

Proposition 0.5 Let (0, \jj) be an adjoint situation between the complete
lattices I and J, let J be TQ. Then \jj is prime, \jj [P(J)] C P(I), iff 0 is finitely
meet-preserving (in particular, preserves e). In this case, both im 0 = im 0 ° \Jj
and im \jj = im i// o 0 are To.

If 0 is finitely meet-preserving, then both the closure operator v// ° 0: / - > /
and the kernel operator 0 o f . / -> / are finitely meet-preserving too. While
finitely meet-preserving kernel operators are of quasi-topological character,
finitely meet-preserving operators are comparatively rare (but intensively
studied more recently).

Proposition 0.6 Let (0, \p) be an adjoint situation between the complete
lattices I and J, let both I and J be algebraic. Let C(I) be a sublattice of I and
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e e C(I) (it suffices to assume that C(I) is a lattice with e). Then 0 is finitely
meet-preserving iff a =0 IC(7) is also.

Note that we did not assume compactness of 0. Let a. be finitely meet-
preserving, i.e., a lattice homomorphism preserving both 0 and e. Consider
finitely many elements xt c I(t e T). Trivially, 0( A xt] = A <l>(xt). Let now

A \t J t
<i = A (j)(xt), d compact. So d ^ (j)(xs) for eachs e T. However, xs is the join in

t

I of all compact elements c = xs. Hence (j)(xs) is the join in / of their images
0(c) = <x(c). The latter forming a directed set, d % OL(CS) for some compact
element cs = xs. Hence

^ A * ) = a(Acr) =0(AcA ^<t>(AxtV

This being true for each compact d "§ A 0(*r)> w e get A <t>(xt) = 0 ( A ^r) ?
completing the proof. r r \ * /

In our applications, both / and / will be algebraic. By virtue of Proposition
0.2 (and (0.1), (0.2), and (0.3)) we have one-to-one correspondences between

( the finitely join-preserving mappings a: C(I) -+J
the completely join-preserving mappings 0:1 -* J
the completely meet-preserving mappings \p: J -> /.

If C(7) is a lattice with identity and/ distributive (hence To), then Propositions
0.6 and 0.5 make the following equivalent:

OL\ C(I) -*/ is finitely meet-preserving, i.e., a lattice homomorphism
preserving 0 and e

0: / -+J is finitely meet-preserving
\jj: / -> / is prime.

Proposition 0.3 makes the following equivalent:

(or. C(/)->C(/)
(0.6) <0: I-+J is compact

^ i//: / ->• / is continuous.

We may here, in the case (0.6), interpret / and / as the concrete ideal lattices of
C(I) and C(J) respectively. 0: / -> / then turns out to be the well-known (at
least in ring theory) extension of ideals, and \jj: J -> I the contraction of ideals
induced by the semilattice homomorphism a: C(I) -+ C(J). As a matter of fact,
\jj(y) becomes the preimage, under a, of the ideal y of C(/), while 0(x) becomes
the ideal of C(J) generated by the image, under ce, of the ideal x of C(l).
Correspondingly, i//(0(x)) is the contracted closure of x, and 0(i//(>O) t n e

extended kernel of y. Proposition 0.4 tells us-under the assumption (0.6)—
the equivalence of the following statements:

a: C(I) -> C(J) is one-to-one
0: I ->/ is one-to-one

1 J i i / / : /^ / i s onto/
\jj o 0 = id/.
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In this case, then, each x e I is contracted.

1 Extension and contraction of filters over sets We now consider sets A
and B and the filter lattices / = <&(A) and J = <£(£), i.e., the ideal lattices of the
power sets 1°{A) and ̂ (B), the latter ordered by the dual of inclusion. We then
have (from (0.4) and (0.6)) one-to-one correspondences between

(
the finitely meet-preserving mappings a: ^{A) -» f(B)
the completely join-preserving compact mappings 0: ̂ (A) -+ <&(B)
the completely meet-preserving continuous mappings

i//: $(£)-> $04).

Here all meets are intersections. Joins in (I. I) are joins of filters, union of the
filters form a directed set. Note that the mappings a, 0, \jj above satisfy:

(1.2) a(A)=B,<K\A\) = \B\, ^(1>{B)) = 1>{A).

Compactness above means the preservation of principal filters, as explicitly
shown in the formula

(1.3) 0([FM]) = WF),i»]

for each F C A. In particular,

(1.4) <l>(f(A))=[0L{<t>),B].

With that, we are in the reformulation of the transition formulas (0.2) and
(0.3). They now run

(1.5) 0 ( ^ ) C ^ iff & C t(Jj)

for each <f e <&(A), & e <&(B). Moreover,

ia{F) = rUdFMD
(1.6) J 0 G O = \GCB\a(F)CG for some F e <f 1

[M4) =\FCA\a(F)e£\.

As a consequence,

(1.7) 0GO= U i 0 ( [ F , ^ ] ) l F e ^ ! ,

i.e., 0 preserves the representation of a filter <f as the join of a directed family
of principal filters.

In model theory, a(F) is usually denoted by *F, and the sets *F are
known as the standard (sub)sets of B. By virtue of (1.6), each extended filter
Jb - 0(<O has a basis of standard sets. Conversely, each filter & e <&(B) ad-
mitting a basis of standard sets is extended, Jb = 0(i//(^)), since, by (K3), each
standard set generates an extended filter and since, by (1.1), the closure
operator 0 ° \p is continuous.

As a special case of (0.5), the following are now equivalent:

a: P(A) -* 1°(B) is finitely join-preserving, i.e., a Boolean
homomorphism

0: $>(A) -> <£($) is finitely meet-preserving
\p: <&(B) -> $(^) is prime
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Joins in the power sets are unions, of course. As a consequence of (1.8), we
have

(1.9) a(<f>) = 0 and <K<P(A)) = *>{B)

(and, equivalent^, \p(#) =£ P(A) for each filter M =£ P(B)). Note that the prime
elements of the filter lattice are the prime or ultrafilters. So this Boolean case
(1.8) is, indeed, characterized by the condition that \jj maps ultrafilters onto
ultrafilters. Note that always

(1.10) M#)= H \\p((T)\^C (TeQ.{B%

where £l(B) denotes the spectrum of <£(#), i.e., the set of ultrafilters over B.
Indeed, as the extension mapping 0: <&(A) -» $>(/?) was completely determined,
from (1.7), by its restriction to principal filters, i.e., by a, so is now the
contraction mapping \p: $>(B) -> $(.4) completely determined, from (1.10), by
its restriction to £l(B). So we might add this restriction as an analogue of a to
our list of fundamental notions, a, 0, \jj (with more to follow in Section 2). But
we are not going to do that. All we are saying here is that the Boolean case is
characterized by the fact that \jj (its restriction) maps £l(B) into Sl(A):
\p preserves the representation of a filter Jb e &(B) as the intersection of
ultrafilters.

As a special case of (0.7), the following are equivalent:

a: -P(A) -+JP(B) is one-to-one
^' ^ W ) "* ̂ (^) ^s one-to-one

( } j \jj: Q(B)-+$(A) is onto $(A)

The first two statements can be formally weakened as follows:

a(F) # a(</>) for each F¥=<f>,FCA
(] ]?) 1 <x(\a\) =£ OL(</>) for each a e A

I 0(<r)=£ 0(^04)) for each ^^f>{A), f e <P(A)
<t>{O/) ^ 0(^W)) for each fr e Sl{A).

Indeed, these four statements are equivalent since a and 0 are order-preserving
and because of (1.3) and (1.6). If a is Boolean, i.e., a ring homomorphism, then
(1.12) certainly implies (1.11). The point is that Booleanity is not needed here,
not even a(0) = <j>. For let OL(FX) C a(F2). We get

<F\ ~ F2) = ct(Fx) n a(A - F2) C a(F2) n a(A - F2) = atf).

T h e n ( 1 . 1 2 ) m a k e s Fx- F2- <f>, i .e., Fx C F 2 , t h e r e b y p rov ing ( 1 . 1 1 ) .

2 Monadization of filters We arrive at another extension of a: -P(A) -+ P(E)
by specializing / = $04), / = ^P(B). We so get one-to-one correspondences
between

the finitely meet-preserving mappings a: -P(A)-+ i°{B)
the completely join-reversing mappings ju: $04) ~* ^(B)
the completely join-reversing mappings y: *P(B) -* &(A)
the mappings co: B -* &(A).
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A mapping is completely join-reversing if it turns arbitrary joins into meets.
Note that the mappings a, /u, and v above satisfy

(2.2) a(A)=B, n(\A\)=B, v($) = f>(A).

As far as these mappings are concerned, here are the transition formulas
obtained from (0.2) and (0.3) (and Section 1):

(2.3) GCM(<T)iff <f Cv(G),

for each <? e <&(A), G C B. Moreover,

(2.4) \K^)= C[\a(F)\Fef\ = H 0(<T)
[v(G) =\FCA\GCoi(F)\ = \l/([G,B]),

for each FCA, G CB, & e $>(A). In particular,

(2.5) a#)=/z(/>G4)).

As another consequence of (2.4),

(2.6) M(^) = n iMCtFMDlFe^};

i.e., ii reverses the representation of a filter as the join of a directed family of
principal filters.

In his foundation of nonstandard analysis, Robinson [14] gave the first
satisfactory justification of infinitesimals since Leibniz. It is in this context
that he introduced /i(cO as the monad of the filter ^ , first for a neighborhood
filter of a point on the real line, in the complex plane, and in an arbitrary
topological space A. Note that the filter monads are exactly the meets (inter-
sections) of standard sets; in fact, the intersections of extended filters. v(G)
may be called the comonad of the set G (it occurs, without a name, in
Luxemburg [10], Theorem 2.5.1, as J^Q). The comonads are exactly the
contractions of principal filters. (2.3) makes (ju, v) a Galois connection of Ore
type or a contravariant adjoint situation between $>(A) and -P(B). Accordingly,
v ° JU: $04) -* <&(A) is a closure operator in &(A). Since each filter is contained
in its principal closure, we have in particular 0(<O C |J ] <p(^T),Bj = [fi(<f)9B],
whence

(2.7) ^ C ^ / ( 0 ( ^ ) ) C K M ( ^ ) ) .

Hence if <f is closed under v ° /x (a comonad), then <f is closed under \jj ° 0
(contracted), p j ' : ^C#) -* ^(5) is a closure operator in 1°{B), assigning to
each set G C ^ r/ze monad generated by G, known as the discrete monad of G
(see [10], p. 46).

Concerning the mappings oo: B -^ 4>(̂ 4), let us observe the following. An
element y of a complete lattice / may be called supercompact or completely
join-prime once it satisfies the strongest possible covering condition: For every
subset S CJ (not necessarily directed or finite), y~=k\/s implies y ^ s for some
s e S. Clearly y is supercompact iff y is compact (S directed) and finitely
join-prime (S finite). An analogue of Proposition 0.2 states the following:
Suppose the set of supercompact elements of/ is join-dense in / . Then each
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order-preserving mapping from the (partially ordered) set of supercompact
elements into a complete lattice / can be uniquely extended to a completely
join-preserving mapping from / into /. Observing that the atoms (singletons) of
^(B) (ordered by inclusion) are exactly the supercompact elements of "P{B),
one gets the above one-to-one correspondence between arbitrary mappings
co: B -* <&(A) and completely join-reversing mappings v\ ̂ (B) -> ̂ (A). One gets
formulas analogous to (0.3), (1.4), and (2.4):

( co(b) =p({b\)
v{G) = r\{u(b)\beG\= flco[G]
yi(^) = \beB\^ Cco(Z?)}

for each b eB, GCB, & e $04).
As a consequence of (2.3), (2.4), and (2.8), we get now a neat direct

relationship between OL\1°{A) -+yP(B) and co: B -> <&(A), namely

(2.9) bea(F)iffFeco(b)

for each F C A, b e B. Equivalently,

n im i<x(F) = {beB\Feoj(b)\
U } \oj(b) = {FCA\be a(F)\.

In particular,

(2.11) a(0) = {&e2?lco(6) = <?G4)}.

(Of the 6 X 5 = 30 transition formulas between a, 0, \jj, //, v, co, Formulas (1.4),
(1.5), (2.3), (2.4), (2.8), and (2.9) represent 17. The missing 13 formulas would
not be very attractive.)

By (0.5), the following are now equivalent:

' a: 1°(A) -* fi(B) is finitely join-preserving, i.e., a Boolean
homomorphism

(2.12) \ /z: &(A) -+ P(B) is finitely meet-reversing
v\ 1°{B)-^&(A) maps atoms onto ultrafilters

>co:B->£l(A).

In particular, one then has

(2.13) a(^) = /x(^W)) = ^

(equivalently, v{G) =£ ̂ W ) for each G ̂  </>, co(5) ^ ^ ( 4 ) for each b e B). Note
that the atoms of the power set -P(B), i.e., its completely join-prime elements,
are also its finitely join-prime elements, hence the finitely meet-prime elements
of the dual. So v is indeed prime in the sense of (0.5) iff co[2?] C £2(^4). Note
that always

(2.14) v(G)= f)\v({b\)\beG\

(see (2.8)). In the Boolean case (2.12), v turns the representation of G as the
join of atoms into a representation of v{G) as the meet of ultrafilters. As
another consequence of Booleanity, we have (cf. Luxemburg [8], Thm. 2.4.3):

(2.15) M(^O= LhM(#Ol^ C freSl{A)\.
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For let b e ju( / ) , then ^ C v(\b\) e Sl(A), whence

b e n(v(\b])) C U !M(^) I & C ^ e £2(̂ 4)1,

establishing the nontrivial part of (2.15). As a special case of (2.15), (2.2) yields

(2.16) B= \J\fjL(a^)\a^eSl(A)\

By (2.13), the monads of different ultrafilters C0u CO2 are disjoint. In the
Boolean case, (2.16) makes B the union of pairwise disjoint sets. Some of the
latter may still be empty, however; cf. below.

In the Boolean case (2.12), v ° fi\ $04) -* ^(A) is now a finitely meet-
preserving closure operator, like \jj ° 0: $04) -* $04). While 0 ° \//: <£(£) -» <£(£)
was a finitely meet-preserving, i.e., quasi-topological, kernel operator, ix°v\
ip(B)~^yP(B) is now a finitely join-preserving closure operator, i.e., establishes
a genuine topology in B, to be looked at more closely in Section 3.

The following are now equivalent:

JU: $(A)-+ "P(B) is one-to-one

(2 17) I v: ^ ^ ""* * ^ i s 0nt0 *^^
^ ° M = id<D(i4)
each ultrafilter ^ e 12(̂ 4) is in co[5].

The equivalence of the first three statements is trivial. If £2(̂ 4) C co[B] C
v[^(B)], then v[-P(B)], being completely meet-closed in 3>G4), must be all of
<&(A). Conversely, let v ° /x = id^^) and CO e 12(^4). So

6l> = v{[i{Oy)) = H \u(B)\b e /x(^)(

CO being a dual atom of §(A) (hence completely meet-irreducible), Ck - co(b)
for some b e ju(^) , establishing £l(A) C co[^]. So this inclusion makes every
filter <f e <&(A) closed under ẑ ° /i, i.e., a comonad (and with that contracted,
see (2.7)), while £2(̂ 4) D co[B] characterized the Boolean case.

Again, the first two statements of (2.17) may be formally weakened:

i M ( ^ ) ^ M ( ^ G 4 ) ) for each proper filter & e $(A)
\v{0/) ^M(^ 'U)) for each ultrafilter CO e Sl(A).

Indeed, since ju is order-reversing, these two statements are equivalent anyway.
However, the second statement of (2.18) implies (2.17). Actually,

(2.19) a, = co(b) iff b e ii(Os) ~ K^(A))

for each ultrafilter CO e £2(^4), each element b e B. For suppose b e JJL(CO) ~
VL{f'{A)). So CO C p([b\) = co(6) and w(ft) = CO or co(6) = P{A). Since
^ ^ M(^G4)) = a(^), co(Z?) =^=^(yl) by (2.11). With that, (2.18) implies (2.17)
indeed. The other direction of (2.19) is easily obtained from (2.11).

If JU is one-to-one, then so are a and 0. In this case, we have a pairwise
one-to-one triple alliance between

( the filters <T e $(>!)
the extended filters ^ e <*>(£)
the monads M C i?
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described by

(> = 0 ( ^ O and ^ = \p(£)
M = M ( ^ ) and <T = v{M)
M = C\# and ^ = 0(\KW*,5])).

In particular, [7k/, .5] is the principal closure of ,£/, ^ the extended kernel of
[Af, Z?]. One so arrives at the pairwise disjoint intervals [0 (^ r ) , [ J U ( ^ ) , ,5]] C
^(B) corresponding one-to-one to the filters <f e <&(A), whose union is the set

of all filters Jb e <£(£) so that Pi Jb = f l 0(i//(^)) (which means f l Jb = adh ^

in the Boolean case, cf. (3.9)V Indeed, for filters & e &(A), & e *(£) , 0(<O C

Jb C [ J L I ( ^ ) , 5 ] is equivalent to & = $(jb) and H Jb = f l 0(<2r)(= M(<O)-

The following remarks make it quite clear that a and 0 may be one-to-one
while ix is not. Indeed, (1.12) can be restated as follows:

( M(^r) ^ JU(^%4)) for each proper principal filter ^ e >̂(̂ 4)
M(^) ^ M(^ W)) for each principal ultrafilter fr e Sl(A)
each principal ultrafilter OU e £l(A) is in co[^].

The first two statements weaken (2.18), while the third weakens the last
statement of (2.17). The equivalence of the last two statements is a special case
of the previous argument based on (2.19).

If a (or equivalently 0) is one-to-one, each filter <? e $04), principal or
not, can be recovered from 0(cO just by virtue of i//(0(^)) = ^> In our
applications to model theory, however, we will almost exclusively deal with the
special situation A C B (or at least A embedded in B). In this case, co(a)
becomes meaningful for each a e A. Note that, as a consequence of (2.11), the
following are equivalent:

(2 23) iAn^=^
K } \oj(a)^^(A) for each a e ,4
(whereas a(</>) = 0 iff co(Z?) ^ 1°(A) for each b e B). We are now going to show
the equivalence of the following statements:

A H OL{F) = F for each finite set F e A
< A n a(F) = F for each set F e A

(2.24) \{AnG\Ge 0(^r)j = ^r for each filter <T e *(^i)
[{fl},̂ 4] = oo(a) for each a e A.

The last statement refines the last statement of (2.22) and makes a and 0 one-
to-one (Section I), as the second and third statements make evident enough.
With the first statement, we have A H a(<f>) = <f> and A n a(\a\) = \a\ for each
a e A. So a e oc(\a\) - a(^), i.e., a e ju([itfi, ^4]) - fi(P(A)), and this is in fact all
we need (cf. (2.19)) for [\a\, A ] = co(a). Assuming the latter, let now F C A be
arbitrary. Then fora e A, a e a{F) iff F e co(a) = [\a\, A], i.e., a e F, showing
that ^ H a:(F) = F. By virtue of (1.3), this can be reinterpreted to the effect
that each principal filter <? e ${A) is the 4ttrace" in A of the extended filter
0(^") e <£(£). The extension to arbitrary filters <f e <&(A) is based on (1.6),
making all statements of (2.24) equivalent.
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3 Examples Summarizing, we got one-to-one correspondences between

the Boolean mappings a: P{A) -+1°(B)

the completely join-preserving, finitely meet-preserving mappings
0: $04) -* $(B) mapping principal filters onto principal filters

the completely meet-preserving, continuous mappings \jj: <&(B) ->
&(A) mapping ultrafilters onto ultrafilters

^ ' ^ the completely join-reversing, finitely meet-reversing mappings

the completely join-reversing mappings v\ ^(B) -> <&(A) mapping
atoms onto ultrafilters

the mappings co: B -+ £l(A).

One has, in particular,

f a ( A ) = B a n d a(<f>) = <f>
0(UD=5and0(^W)) = ̂ (5)

(3.2) < ^CB) )= f>G4)and \J/(£)=f>(A)=># =1°{B)
M(UO=£andju(^C4)) = 0

V v($) = P{A) and KG) = f>{A) => G = 0.

Also, a is one-to-one iff 0 is one-to-one iff \jj is onto $(^4); JU is one-to-one iff v
is onto §(A)\ iff a; is onto 12(^4). In the latter case, </ /°0 = ^°JU = id^^) . In
general, 0 ° $:. ^C^) -* 4>(i5) is a finitely meet-preserving kernel operator,
H o v\ -P(B))-*-P-(B) is a topological closure operator:

(3.3) G = M(KG)) = f l \a(F)\G C a(F)}

is the topoliOgical closure of G C B.
As. the simplest case, consider B - A and a = i d ^ ) . Here 0 = i// = ̂  ° 0 =

(j>o \Jj-~ idi^^), and

(3.4) M ( ^ ) = ft*?", KG) = [CM]

for each filter cT e $ (4 ) , each set G C J . So ẑ : ^ U ) -^$(L4) is the natural
embedding. In particular,

(3.5) w(J>) = [ { b } , A ]

for each b e A. All subsets of A being standard, they are all closed. Indeed,
li° v - id^4) is the discrete topology, while v %t assigns to each filter <f e &(A)
its principal closure I f | ^ ,A\. Here a is one-to-one, while jit is not.

More generally, consider any mapping o: B ~> A and define ot(F) = o~1[F]
for each F C A. Then a: i^{A)^1D{B) is not just a Boolean homomorphism, it
even preserves arbitrary meets and joins. For <F e 3>G4), 0 G O is the filter
generated by the preimages o^iF], F e <f, while for Jb e <&(B), \\J(&) now turns
out to be the filter generated by the images o[G], G e Jb. (It is well-known that
the image, \p((T), of an ultrafilter (X e £l(B) is an ultrafilter, as stated in (3.1).)
For <T e *(i4), one has ju (^) = a"1 [ f l ^ ] , while for G C 5 , KG) = [a[G],i4];
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in particular, co(Z?) = [\o(b)},A] for each b e B. Note that a is one-to-one iff
o: B -* A is onto A. This still does not make JJL one-to-one.

Next, leti? = Sl(A) and co = idn(y4). So

(3.6) a(F) = {be£l(A)\Feb\

(F C A) is the Stone representation of the Boolean lattice i°{A). We have

(3.7) /zGO = \b e to(A)\ f C b\, v(T) = fl T

for each filter ^" e 4>04), each set F C £2(^4). So /u is the anti-isomorphism of
the filter lattice $>(A) onto the lattice of closed sets of the Stone space £l(A)
(the Stone-Cech compaction of the discrete spaced), v ° \x- i d ^ ) restates the
ultrafilter theorem (which, of course, has been used here several times), while
jit o v: £1{A) -> £l(A) assigns to each F C £l(A) its topological closure

(3.8) f = /z(Kn)= {^eBfcOlflrc frl
This brings us to the consideration of the topology (3.3) in the general

case of an arbitrary mapping co: B -+ £l(A). One can extend (3.3) to arbitrary
filters Jb e * (5) :

(3.9) adh Jb = KW#)) = ri0(i//(^)) = fl \a(F)\a(F) e Jb I

Indeed, (3.9) holds for principal filters Jb = [G,B] where adh Jb - G. Moreover,
ix ° \jj: 3>(B) -+ 1°(B) turns joins (unions) of directed families into intersections,
proving (3.9).

The topology of B is now the initial topology,_under co, of the Stone
topology of 1204). Indeed, for b e B and G C B, b e G = ix(v(G)) is equivalent
to v(G) C p(\b\), i.e., (cf. (2.8)) f l co[G] C u(b), and this (cf. (3.8)) is
nothing but co(b) e co[G]. With that, the closed (open) sets G C B are precisely
the preimages co"1[F] of the closed (open) sets F C £l(A). Since £l(A) is
well-known to be zero-dimensional, so now is B. This can be easily seen.
Note that each standard set OL(F) is clopen since its complement B - oc(F) =
a(A - F) is closed. Any closed set (monad) being the intersection of clopen
(even standard) sets, every open set is the union of clopen (even standard) sets,
making B zero-dimensional. (In particular, £l(A) (would we not know it) must
be zero-dimensional.)

Each zero-dimensional space is uniformizable, in fact it admits a basis of
uniformities which are equivalence relations. The quasi-ordering induced by
the topology of any uniform space is always symmetric, in fact, the equivalence
relation which is the intersection of the filter of uniformities. Again, the
symmetry of our quasi-orderin_g caji_ be easily seen: for points b,ceB,
b < c, which means b e \c\ or \b\ C \c\, is here equivalent to co(c) C co(6),
i.e., to co(b) = co(c). With that, B is To (< antisymmetric) iff B is 7\ (-< the
identity), i.e., iff co is one-to-one; and in that case, B is totally disconnected
(its points being separated by clopen sets), hence T2. (In particular, £l(A) is
totally disconnected.)

Since the topology of B is the initial topology, under co, of the To-
topology of £l(A), the relative space co[B] C 12(̂ 4) becomes the ro-contraction
of B, i.e., carries the final (identification, quotient) topology under the con-
traction mapping co (co: B -> OJ[B] is "strongly continuous").
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In case co[B] = £2(v4), ju becomes an anti-isomorphism of the filter lattice
<J>(/1) onto the lattice of closed sets of B. Putting complementation on top of
that, we get an isomorphism of $04) onto the lattice of open sets ofB. Under
this isomorphism, complemented elements (principal filters) correspond to
complemented elements (clopen sets), so that standard sets (monads of
principal filters) and clopen subsets of B coincide. Also, extended filters and
clopen filters (filters admitting a basis of clopen sets) & e <f>(2?) coincide. Also,
under our isomorphism, compact elements (principal filters) correspond to
compact elements (compact open subsets of B), so that standard sets and
compact open subsets of B coincide. In particular, B itself is compact, and B is
a Stone space in the wide sense that the compact open sets form a basis. (All
this applies, of course, to the special case B = £l(A).)

Suppose, finally, that we are given an index-domain T and over it a proper
filter j?", the index-filter. Given any statement S(t) involving the indices t e T,
we will say that S(t) holds for almost all t e T once \t e T\S(t)\ e jK Suppose
now we are given mappings pt\ B -+A, to be referred to as the projections. Not
assuming anything further yet, we define a: "P{A) -> P(B) by

(3.10) a(F) = \beB \pt(b) e F for almost all t e T \

for any subset F C A. Then a. is finitely meet-preserving and ot(<f)) = \x{f(A)) = </>
(the latter being even equivalent with fr ¥= P(T)). If ^ is an ultrafilter, a is
even Boolean (which will not be so important in the subsequent observations).

Recall that o: and 0 are one-to-one iff (x({a\) =£ <x.(<t>) for each a e A. Here,
then, a is one-to-one iff oc({a\) =£ </>:

FPO For each ae A, there is a b e B so that pt(b) = a for almost all t e T.

For many purposes, we will need more, namely:

FP1 For each mapping a: T -+ A, there is a b e B so that pt(b) = a(t) for
almost all t e T.

This means the following: Let et\ AT -> A (t e T) be the evaluation mappings,
p: B -> AT be such that et°p - pt for each t e T. Let k: A7'-» AT\f be the
natural projection onto the partition of AT modulo j ^ . Then FP1 states that
k ° p: B -* AT\f is ontoA7/^. k op is one-to-one iff the following holds:

FP2 For each b, b' e B, ifpt(b) = pt(b') for almost all t e T, then b = b'.

Together with FPO, FP2 makes every set a(\a\)(a e A) an atom of (J5), a({a\) =
\h(a)\ (usually written *{ai = {*#})• In fact, the mapping h: A -*B so obtained
must be one-to-one since a is. We may then readjust the whole setting to the
effect that A C B and h is the inclusion mapping, as we will assume henceforth.
FPO (a(\a\) =£ <f>) is so strengthened to a e a({ai):

FP3 For each a e A, Pt(a) = a for almost all t e T.

FP3 is actually equivalent with F C a(F) for each subset F C A, even (since ^
is a proper filter) with each of the equations (2.24). If a is Boolean, FP2 and
FP3 permit us to strengthen the first equation of (2.24) to

(3.11) oc(F) = F for each finite set F C A.
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(FP2 and FP3 guarantee already a({a\) = Sal.)
Note that FP1, FP2, and FP3 characterize the Filter Power extension

ATI^ of A up to (unique) isomorphism. It is well-known that for many
purposes one needs a particularly neat index-filter. From our viewpoint, the
most obvious question is: when is JJL one-to-one? This happens, remember, iff
jLt(^) ^ nifiA)) for each filter <f ¥= P(A). Here, then, /z is one-to-one iff
JU(CO =£ <j> for each proper filter <f. In the presence of FP1, one can now show
that IJL(^) =£ ̂  iff the index-filter f is adequate for <f \ There is a mapping
a.T^A so that

cT C JCC^If l [ / ] C G for s o m e / e f }

or equivalently,

{a t̂̂ HFe / ' ! C f.

Or to put it this way: each F e / contains almost all elements a(t). This is
certainly so in case b e ju(^Q: Putting a(t) = pt(b) for each t e T, we indeed have
such a mapping a: T^ A. Conversely, let a be such a mapping for <f. By virtue
of FP1, there is a b e B so that pt(b) = a(f) for almost all r e 7\ For any F e £*,
we get Z? e oc(F), whence b e \x{^) and J U ( ^ ) 9̂  0. So in the presence of FP1, JJL
is one-to-one iff

FP4 f is adequate for A,

i.e., ^ is adequate for every proper filter ^ e $(A). (For the notion of
adequacy, cf. Bruns and Schmidt [1], A. L. Stone [18], and Luxemburg [10].)

The standard (or shall we say nonstandard?) application of the final
remarks is to concurrent (upwards directed) relations R C A X A, for which, by
definition,

AIR = \R[\a\]\aedomR\

has the finite intersection property, i.e., generates a proper filter over A (cf.
Robinson [14], [15] and Luxemburg [10]).

4 First-order properties: The two transformation functors So far, we have
been dealing with the Boolean operations, i.e., the zero-order (propositional)
part of logic. For the needs of first-order logic, we will consider all Cartesian
powers An, Bn (n iT 1) of our carrier sets A, B. (Alternatively, one might throw
all these finite powers into some infinite power, say A0^, 2?w, as usual in many
algebraic treatments of first-order logic.) To be more precise, we will assume
that for each n = 1, a finitely meet-preserving (if not Boolean) mapping

an. p(An)^-p(Bn)

is given, or, equivalently, any other of the corresponding mappings 0", \jjn, M",
vn, oon studied in full detail in Sections 1-3. For our purpose, these homomor-
phisms an should be interrelated by first-order properties. It would be nice, of
course, to define an recursively in terms of the preceding mappings am (m <ri).
This not being feasible, the interrelations may be put down in axiomatic form.

Such an axiomatization has been given by Robinson and Zakon [16]. Here
are their postulates: For every m, k = 1, E C Am, E1 C Ak,
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(4.1) am+k(E X E') = am(E) X «*(£').

Moreover, for every m, k = 1 and F C Am+k,

(4.2) am(domw F) = domm am+k(F), a*(im* F) - im* am+k(F);

for the definition of domm and im^, cf. below. Furthermore,

(4.3) an(a'l[F]) = a'i[an(F)]

for every n = 1, every permutation a of 11, . . ., n\, every F C 4̂W. Finally,
Robinson and Zakon call a = (an) normal provided that

(4.4) c^id^) - id/,.

One may accept these conditions (as, for instance, their analogues in the
theory of projective sets, cf. below) without formal challenge. Robinson and
Zakon, however, added some dogmatic remarks which are certainly not ill-
advised. Defining the ordered pair (a^a?) a la Kuratowski and the ordered
w-tuple (ai, . . ., an) recursively, one has to face nuisances like the fact that
E X Ef in (4.1) is not really a subset of Am+k. This is remedied by a natural
equivalence between Am X Ak and Am+k. Robinson and Zakon introduce now
an additional postulate concerning so-called groupings, i.e., natural equivalences
of that type. However, we can avoid these inessential technicalities still playing
it safe. To that end, we will consider the free semigroup over^4, FSC4), likewise
the free semigroup FS(i?). We may think of the elements of FSG4) as abstract
products

n

a= FI ak
k=i

with the length n iT 1 and the factors au . . ., an e A uniquely determined.
Alternatively, we may regard the elements of FSG4) as concrete words

a = (au . . .,«„),

i.e., functions a: {1, . . ., n\ -*A, the function value a(k) = a^ e A being the k'th
letter. An will then be the set of words of length n, with A1 - A. The associa-
tivity of FSG4) makes all those grouping considerations superfluous. For
example, E X E' in (4.1) is now the (''complex") product EE' in that semi-
group, Am X Ak = Am-Ak = Am+k, etc. Any F C Am+k can now be considered,
as in (4.2), as a binary relation F C Am X Ak. Its domain will then be the set of
m-tuples {ai,.. .,am) such that (au . . ., am, am+1, . . ., am^) e F for some /c-tuple
(am+i, . . ., am+k), and this is what we mean by domw F (Robinson and Zakon
[1] write simply D(F); Kuratowski and Mostowski ([9], Chapter V, Section 5)
write P^+/C(F)).

The meaning of the permutation axiom (4.3) is, of course, more or less
clear (except that one might mix up o and a"1). However, we are going to
extend (4.3) to arbitrary mappings (transformations)

o: il, . . .,rai -> U, . . .9n\

(m, ft iT 1) anyway. (In the sequel, we will simply write o: m -> n.) So we had
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better say somewhat more here. The set TV* = { 1 , 2 , . . . } together with these
transformations forms a category. Given o above, we get an induced mapping

oA:An->Am

by the definition

(4.5) oA((au . . ., an)) = (ao{1)i . . ., tfa(m)>,

for each au . . ., an e A (i.e., for each functions a: U, . . ., n\ ~+ A, we have
oA(a) =a° o). With that, we established a contravariant functor. We may put on
top of that the contravariant power set functor by passing from oA to the
Boolean homomorphisms

ao\ 1°{Am)^^{An)

described in Section 3; i.e., for E C Am,

(4.6) ao(E) = o'J[E] = \<al9 . . ., an) e An\(ao(1), . . ., ao(m)) e El

With that, we established the covariant transformation functor (a left action)
o h- ao. There is reason to use also the covariant power set functor. That is, we
consider, for each F C An,

(4.7) |3a(F) = aA [F] = Kaa(1), . . ., aa(m)>Ka1? . . ., an) e Fl

We get a completely join-preserving mapping

(30:P(A")-+P(Am)

and the contravariant transformation functor (a right action) o K j3a.
We are now going to show

Theorem 4.1 Let A and B be sets; for each n^XJet ocn\ P(An) -+ P(Bn)
be a finitely meet-preserving mapping:

(4.8) *\FX n F2) = a"(Fi) n an(F2)

for each Fly F2 C An, and

(4.9) an(An)=Bn.

Then (4.1)-(4.4) are equivalent to

(4.10) a\o-A
i[E]) = o-B

1[am(E)]

and

(4.11) am(oA[F]) = oB[cL\F)]

for each transformation o: m-*n (m, n = 1), each E C Am, F C ^4"

According to (4.10) and (4.11), the sequence a = (an) can be interpreted
as a twofold natural transformation, between the covariant and between the
contravariant transformation functors (associated with the carriers A and B)
respectively.

Proof of Theorem 4.1: Note that E X Ef = (E X Ak) n (,4m X £") for each
m, k ^ 1, E C ,4m, £"' C 4*. With the permutation axiom (4.3), it thus suffices
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to postulate (4.1) only for the special case Ef = Ak. However, am+k(E XAk) =
am{E) XBk is simply (4.10) for the special case of the inclusion o: m -> n =
m + k (it suffices to postulate this only for k = 1). Consequently, (4.1) and (4.3)
are equivalent to (4.10) for one-to-one transformations o. Again, the permu-
tation axiom (4.3) makes the second equation of (4.2) superfluous, and the
first equation is simply (4.11) for the special case of the inclusion o: m-+n =
m + k (it suffices again to postulate this only for k = 1). Consequently, (4.2)
and (4.3) are equivalent to (4.11) for one-to-one transformations a.

(4.4) is now an immediate consequence of {A. 11) for onto-transformations
a. Indeed, with the total identification A": n -> 1.

(4.12) An[A] = i(a,.. .,a)eAn\aeA\

is the total diagonal of An, which will be mapped by an onto the total diagonal
of Bn. In particular, a\A) - B and ce2(id^) = id#.

Let us now look once more at the standard inclusion tn: n~\ -* n (n i^ 2).
It has a left inverse %n\ n -> n~\, the standard identification that identifies n
and H - 1 . Let 6W: 2 -» n (« = 2) be the transformation that throws 1 onto rc-1
and 2 onto n. We get the standard partial diagonal

(4.13) b-n
l[idA] = \(au...,an)eAn\an-l = an\.

For £ C ̂ l""1, we have

(4.14) %n[E] = t'n
1[E] n5-1[id^]=(£X^)n5"1[id^],

while for FCAn,

(4.15) %^F]=in[Fnd-n
1[idA]]=domn.1(Fr)d-n

1[idA]).

(4.14) and (4.15) express the (right and left) action of the simplest nontrivial
onto-transformation, %n, in terms of the simplest nontrivial one-to-one trans-
formation, tn (and the partial diagonals). Since every onto-transformation is a
product of standard identifications and permutations, (4.1)-(4.4) imply (4.10)
and (4.11) also for onto-transformations o, hence for arbitrary transformations
o. ((4.14) shows that for the proof of (4.11) we can get away without (4.2).)
This ends the proof of Theorem 4.1.

Robinson and Zakon's axioms (4.1)-(4.4) are, of course, closely related to
well-known set-theoretic or algebraic approaches to first-order calculus. There
is a very close relationship, indeed, to the theory of projective sets (for refer-
ences, cf. Kuratowski and Mostowski [9], Chapter X, Section 5). There one
considers a family

oo

# C U f>{An)

called a base, so that each 1§n - $ Pi fi(An) {n = I) is a Boolean subalgebra of
fi(An). Moreover, # is assumed closed under Cartesian products, permutations,
and covariant (left) actions of identifications, i.e., onto-transformations
a: n -> n~\ (of which our standard identification %n: n -> n~\ was the proto-
type). In other words, a base -ft is closed under the covariant transformation



332 JURGEN SCHMIDT

functor. Given such a base # (e.g., the family of Borel sets of some topological
space A), one then passes to the least base, £>, closed also under taking domains
(cf. (4.2)). O is then called the family of projective sets over the base i@'. So &
is a projective family (over some base # ) iff # is a base closed under the
contravariant transformation functor at least for one-to-one transformations o.
Such a projective family is unrestrictedly closed under the contmyariant
transformation functor iff id^ e &, i.e., iff all total diagonals Aw|yi] belong :t.o
# , equivalently, iff all standard partial diagonals S^fid^], hence all partial
diagonals (cf. below), belong to &. The least projective family &, consisting of
all powers An (n = 1) and the empty set, shows that id^ $ O would be possible
(but is it desirable?).

So closure under the contravariant transformation functor can be partly
replaced by the more ;or less strongly formulated diagonal condition above.
Since the contravariant functor has quite undesirable features, we would like to
get rid of it completely. This can be achieved with the unary cylindric
operations (cylindrifications) ox quantifiers

3n
k: ^{Am)->1°{An)

(\%k%ri) which are characteristic for both the cylindric algebras (cf. Henkin
and Tarski [7]; Henkin, Monk, and Tarski [6]; Henkin and Monk [5]) and the
polyadic algebras (cf. Halmos [4]). For n = 2, we may introduce the n'th
standard quantifier 3" as follows: For F C An,

(4.16) 3"n(F) = # [ i n [F] ] = ( d o m ^ F ) X A
= {<#!, . . ., an) e An\(au . . . , ^ _ i , x) e F for some* e A\.

Here in\ n~\ -» n (n = 2) is the standard inclusion used before. Clearly, 3J5 is a
completely join-preserving closure operator in 1°(An), the closed subsets of An

being all sets saturated with respect to the equivalence relation induced by the
(contravariant) action of in on An. With the standard identification %n: n -* n-\
which satisfies %n ° tn = idw_x (n = 2), contravariance yields a converse of
(4.16):

(4.17) in{F\=%nl{lnn(F)]

(cf. also (4.15)). As a consequence of (4.16) and (4.15), we also get

(4.18) (ln°%nr1lF]=3n
n(Fn8-n

1[idA]),

a formula used in the theory of cylindric algebras (cf. [6], Sections 1.5 and
1.11) to express at least some substitutions, i.e., actions of the covariant
transformation functor, in terms of the cylindric operations. (The reader may
determine the meaning of (tn ° %n) [F].)

As a result of (4.16) and (4.17), a projective family is now the same as a
base & closed under all quantifiers. (Note that polyadic algebras are abstract
Boolean algebras with abstract quantifiers and a covariant action of transfor-
mations.) And the base & is completely closed under the contravariant transfor-
mation functor iff & is closed under all quantifiers and contains all partial
diagonals: each On (n = 2) is a subalgebra of the cylindric algebra "P(An), i.e.,
of the Boolean algebra enriched by the quantifiers
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(4.19) 3 £ ( F ) = l < f l l , . . ., a n ) e A n \ < a l 9 . . ., a k ^ , x , a * + 1 , . . . , a n ) e F
for some x e A\

(1 =i kUkn) and the (n/2) partial diagonals

(4.20) Dn
ik(A)= \(au. . . ^ e ^ l f l ^ a * }

(1 t i i < k = «). Correspondingly, we get

Addition 4.2 In Theorem 4.1, condition (4.11) may be equivalently
replaced by

(4.21) an(3jJ(F)) = 3JJ(a»(F))

or s h o r t e r a n ° 1 1 = 3%° a n (\^ k % n ; n = 2 ) , and

(4.22) ^ ( ^ ( 4 ) ) = 7^(5)

(l?K^n;n^2).

In other words, an\ P(An) -» ̂ (5W) (« §* 2) is not just a Boolean homo-
morphism, but a homomorphism between the cylindric algebras. Note that in
(4.21) and (4.22) the type n is kept fixed, in striking contrast to (4.2) and
(4.11). It suffices, of course, to postulate (4.21) for the special case k - n.
(4.22) may be specialized, without loss of generality, to (4.4) (/ = \, k = n = 2),
and then be generalized to all total diagonals:

(4.23) an(An[A]) = An[B].

5 Elementary extensions, enlargements of full relational systems The last
observations about the partial diagonals D"k(A) and the quantifiers 3^ were all
made with the assumption n = 2 in mind. Of course, we may take (4.20) as the
definition of D%(A) without restriction whatsoever, so that conveniently

(5.1) D?k(A) = o-l[idA],

where a: 2 -> n (n = 1) is quite arbitrary, and a( l) = /, a(2) = k. Hence Dn
ik(A) =

Dn
ki{A) and Dn

kk(A) = An. The latter is still true in case k = n = 1, and (4.22)
will still hold in this more general case.

It takes somewhat more to show that (4.21) is still true for n = 1, where
31 = 3j: ^04)-» PiA) is defined by (4.19), but right now without an analogue
of (4.16). More generally, we may introduce the n'th total quantifier

(5.2) 3 " = ^ o ] " 2 o . . . o 3 » ,

which is still a topological closure operator on the set An, with <f> and^l" as the
only closed subsets of An. So 3" can be used as a discriminator to decide
whether a subset F C An is empty or not. We are going to show much more
than (4.21) for n = 1.

Theorem 5.1 Suppose the mappings an\ P(An) -> f>(Bn) (n ̂  1) satisfy all
conditions of Section 4: (4.1)-(4.4), (4.8)-(4.9), (4.10)-(4.11), (4.21), and
(4.22) for n = 2. Then each a.n (n iT 1) is one-to-one, with

(5.3) a*(0) = 0.
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Moreover, there is a (unique) mapping h: A -* b, also one-to-one, such that

(5.4) ocn(\{au . . ., an)\) = \{h{ax\ . . ., /i(aw)>}

/or eac/z n = 1, # 1? . . ., an e A. Finally, (4.21) holds also for n^ I, so that

(5.5) an(ln(F)) = ln(an(F))

for each ft iT 1, F C ^4".

Proof: As a consequence of (4.1) and (4.4), a\{a\) (a e A) has at most one
element, and so has, by another application of (4.1), an(\(ax, . . .,an)\) (n iT 1,
ai9 . . ., an e A). Hence a"(</>), being a subset of an(\(au . . ., an)\), has at most
one element too. However, for n = 2, (5.5) holds, as a consequence of (4.21).
We get 3n(an(<f>)) = an(3n(<f>)) = an(<f>), whence an(</>) = </> or an(<f>) = Bn. Assuming
that B has at least two elements, we definitely get an(</>) = <j> (n iT 2). Using (4.1)
again, we also have ot\i>) = (/>, proving (5.3) without restriction. Again, for
n ^ 2, F C An and F * <f>, we get 3n(otn(F)) = an(3n(F)) = aw(^w) = Bn and
an(F) ^ <f> = an((/>). As shown in Section 1, an{n = 2) is one-to-one. Using (4.1)
once more, we get a\F) ^ <f> = a2(^) for F C ̂ 4, F =£ 0, so that a1 is one-to-one
too. In particular, there is a one-to-one mapping h: A ^ B so that (5.4) holds
for n - 1, hence, by virtue of (4.1), for every n = 1. (5.5), i.e., (4.21), holds
now for /? = 1 too, be F empty or not.

Robinson and Zakon [16] assumed an one-to-one right from the start and
stated (5.4) as an axiom. That this is superfluous here is essentially due to (4.4),
which they did not throughout assume in their presentation.

In order to round off our findings, we might extend the considerations of
Section 4 to the case n = 0. Note that A0 = B° is the singleton whose only
element is the empty sequence or 0-tuple, i.e., the identity of the free semi-
group with identity over A or B respectively. So ̂ (A0) - ^(B0) is the Boolean
algebra of two elements, to be identified with the truth-values "true" and
"false", if one so wishes. One will then introduce a0: ^(A0) -> ̂ (B0) as the
only automorphism of f>(A°) = *>(B°), so that (4.8), (4.9), (5.3), and (5.4) will
still be true. Extending (5.2), one may also introduce 3°: -P(A°) -* 1°{A°) as the
identity of P(A°), so that (5.5) will still hold. One would also admit the empty
transformation o: 0 -+ n, making (4.10) and (4.11) still valid. With A0 = tx:
0 -* 1, we will get A0[A] = A0 (extending (4.12)), so that (4.23) will still be
true. Also, (4.16) will still be valid for n = 1 (making the exceptional role of
n - 1 vanish):

(5.6) 1\F) = 3}(F) = L\1[LX[F]] = iaeAlF^^l

However, there is no transformation %x: 1 -* 0, no transformation a: 2 -* 0.
Correspondingly, none of the formulas involving the partial diagonals can be
extended.

We may again think of h: A ->B as genuine inclusion, with the correspond-
ing omission of h in (5.4). With that, we get

Corollary 5.2 Suppose everything is as in Theorem 5.1. Suppose the
mapping h: A -• B is, in fact, inclusion. Then for every nl^\\
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( An n an(F) = Ffor every subset F C An

\An nG\G€(j)n(^)\ = ^ for every filter & e <$>{An)
[\a\, An] = con{a) for every point a e An.

If an is Boolean, then

(5.8) an(F) = Ffor every finite subset F C An.

Proof: By (5.3) and (5.4), we have an{F) = F for each subset F C An of at
most one element. If an is Boolean, (5.8) follows. At any rate, we have
An H an{F) = F for each subset F C An of at most one element, and this was all
needed to prove the statements (2.24), i.e., (5.7).

Suppose now that we are, in fact, considering a relational system 21 =
(A, (Fj)iej) of type (w/)/e/. In other words, for each index / el, a fundamental
relation Ft C Ami {m^ ^ 1) is given. For each n = 1, we introduce the n-ary
elementary relations as the relations o~l[F(], where i e I and a: m/ -* ft is an
arbitrary transformation. The n-ary derived relations form, by definition, the
subalgebra, (3^(21), of the cylindric algebra P{An) generated by the ft-ary
elementary relations a"1!/*}]; i.e., On{^l) is the least Boolean subalgebra of
f{An) containing the ft-ary elementary relations a " 1 ^ ] , the n-ary partial
diagonals a"1[id^](a: 2 -> ft), and closed under the quantifiers ln

k (1 "̂ ' k% ft).
This corresponds precisely to the definition of the n-ary algebraic or polynomial
operations in an algebraic system (e.g., see Henkin, Monk, and Tarski [6]). As
the n-ary polynomial operations may be described (or indicated) by means of
the n-ary polynomials (frequently called "polynomial symbols", "words",
"terms", etc.), so we may use (abuse?) here the first-order language of type
(mDiei m n distinct variables xu . . ., xn (ordered by their indices) for the sole
purpose of describing (indicating) the rc-ary derived relations above. This
language forms an algebraic system, denoted by -£w, with a binary operation
A {conjunction), a unary operation ~i {negation), n unary operations V^ (1 %
k = ft) (the quantifiers), and n2 nullary operations dn

ik (1 % i, k % n) (the
diagonal constants)', i.e., jLn is, like -P{An), an algebra of the first-order logic
type

(2, 1, 1, . . ., 1,0, . . . ,0) .

ft times ft2 times

The elements of that algebra are usually called formulas. As an algebra, £n is
generated by the elementary formulas

where the predicates P/ (/ e / ) are distinct elements different from the variables
Xi, . . ., xn and a: m^ -» n any transformation. (This way of writing the ele-
mentary formulas is only a concession to common usage. It would suffice to
define the elementary formulas as ordered pairs (Pi,o), or even (i, o).) The
crucial property of the algebra JLn is its absolute freeness (expressible in terms
of generalized Peano axioms). As a typical consequence of that, there is exactly
one homomorphism

n a t « : Z n ^ C 4 « )
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actually onto 0W(21), such that, for each / el, o: m; -» n:

(5.9) natg«P/, *a ( 1 ) , . . ., xa(m.>)) = o'l[Fi).

We may call nat" the natural indication of the n-ary derived relations of the
relational system 21 = (A, (F/) /e/). Rewriting

(5.10) natg(*) = $ ! I

for every formula $ e / w , w e can reformulate the definition of nat$ as follows:

r </>•, x a ( 1 ) , . . ., xa ( m / )>2i = a " 1 ^ - ]

(5.11) { ( n * ) a = ^ / I - * a

l(d2t)a=/^W) = a"1[id^]

where o: 2 -+ n and a(l) = /, a(2) = £ (so that the partial diagonals can be
reinterpreted as the n-ary elementary relations of the binary relational system
(A, id^)). In a less algebraicized presentation, (5.11) is often referred to as the
recursive definition of $>%. We may, indeed, think of any w-tuple (au . . ., an) e
An as a valuation {interpretation) u: {xl5 . . ., xn\ -* A, defined by v(xk) -
% (1 = k = n). In case <<z1? . . ., an) e 4>a, one usually says that the formula $
toWs m /̂ẑ  relational system 21 under the valuation v and writes .21 ^ (l). (5.11)
is nothing but the well-known recursive definition of validity going back to
Tarski. In case <&% = An, one says that the formula $ holds, is valid, in 21, or
a theorem of 21.

Like polynomials in universal algebra, the formulas can now be used
globally in order to compare, by means of the respective natural indications,
the n-ary derived relations of any two relational systems 21 = 04, (F/Xe/) a n ^
58 = (By (C7/)/e/), of the same type (w/)/e/, of course. Here is our main applica-
tion:

Theorem 5.3 Suppose we are given two relational systems 21 and B of type
imdiei and a sequence of cylindric homomorphisms (in fact embeddings)
an\ 1°(An) -> -P(Bn)(n §T I) compatible with the covariant transformation
functor (4.10). Suppose

(5.12) amKFi) = Gi

for every i e I. Then

(5.13) «*(**) = *»

for every n iT 1, every formula 3> e «/„. /« s/zorr,

(5.14) a"onatS =natg.

Proof: By assumption, using (5.12) and (4.10), (5.13) holds for every ele-
mentary formula <l> = (Pif xa(1), . . ., xa(m.)). The two homomorphisms an ° nat"
and nat^: £n -> i°(Bn), thus coinciding on the Peano basis (the set of /?-ary
elementary formulas) of JLn, are in fact equal.

Together with Corollary 5.2, Theorem 5.3 yields:
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Corollary 5.4 Suppose everything is as in Theorem 5.3. Suppose the
mapping h'.A -> B of Theorem 5.1 is, in fact, inclusion. Then 5B is an elementary
extension of?l, i.e.,

(5.15) ,4* n 3>B = $ a

for every n = 1, every formula <& e JLn. Hence U and B are elementarily
equivalent,

(5.16) $vi=Aniff$x=Bn,

for every n = 1, every formula <£ e ^Ln.

(5.15) immediately results from (5.13) and (5.7). As a consequence of
(5.15), <£>£ = Bn implies <P% = An. For the converse implication, one may use
(5.13). Alternatively, as is well-known, this follows directly from (5.15); one
uses the total quantifier \ln = VJ °. . . ° V£ and its dual A" = n ° V" ° n.

Corollary 5.4, (5.16) in particular, is a first-order analogue of the Meta-
theorem 3.2 of Robinson and Zakon [16] (whose proof, without our alge-
braization in Sections 4 and 5, is done by induction in about two pages). In the
complete algebraization achieved here, one can hardly call (5.13), (5.15), or
(5.16) a metatheorem any longer (unless one considers polynomial rings as
part of the metatheory of rings).

All this applies, of course, if 21 = (A, CF/)/e/) is a full relational system,
i.e., if

oo

(5.17) U •P{Am) = \Fi\iel\.
m = l

In this case, we have a converse of Theorem 5.3 (and with that a striking
reinterpretation of Robinson and Zakon's axioms (4.1)-(4.4)):

Theorem 5.5 Suppose W = (A, (F/),e/) is a full relational system, B =
(B, (Gi)iej) a relational system of the same type (mz-)i€/. Let an: -P(An) ->
1°{Bn) (n=\)be any mappings. Then the latter are cylindric homomorphisms
(in fact, embeddings) compatible with the covariant transformation functor
(4.10), iff (5.14) holds for each n^L

Proof: Since 51 is a full relational system, it is relationally complete, i.e.,
&nW

 = ^(An) for each n ^ 1. (5.14) thus makes each an\ >P(An) -*iP(Bn) a
cylindric homomorphism. It remains to show (4.10). We first show (5.12). Let
4> = (Pi, * ! , . . . , xm.) e JLmi, then 4^ = F, and 4>B = G/, whence ami(Fi) = Gz- by
(5.14). Let now E C Am and a: m -* n. If E = <f>, am(E) = <f> since am is Boolean;
in this case, (4.10) is trivial. Suppose hence that E =£ i>. Since 21 is full, E = f}
for some / el. Since £ =5̂ 0, m = m/. Let now \jj = (Pi,xo^, . . ., xo(jni)) e £n. We
get

an(o~l[E]) = a^o-'iFi]) = an(^^) = ^ = a'l[Gt] = a'l[oLmKFi)]
= o'l[am(E)],

completing the proof of Theorem 5.5.
In this context, we observe
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Proposition 5.6 Let 21 = (A, CF/)/c/) and B = (B, (G,-)/e/) be relational
systems of the same type. Then the following are equivalent, for each n = \:

(i) for all formulas $ e / n , $ n = i " implies <J>S = Bn

(ii) for all formulas <J>, \p e £n, <$a = \jjn implies <I>£ = i//s
(iii) /7zere w a unique cylindric homomorphism <xn\ &„(%) -> &nQR) (of

course onto &„($)) such that (5.14) holds.

Proof: One.has ^ C \//a iff (n(4> A ni//))^ = ^4W, and the same holds in 8, of
course. Thus (i) implies (ii). Trivially, (ii) implies (i): Take any tautology \jj, so
that i//a = An and \jj$ = Bn. (ii) states that the congruence of JLn induced by the
natural homomorphism nat$: -^w -> (^n(EI) is contained in the congruence
induced by nat^>: JLn -* ^n(B). The (general) homomorphism theorem thus
makes (ii) and (iii) equivalent.

Corollary 5.7 The relational systems 21 0«d 8 are elementarily equivalent
iff there are unique cylindric isomorphisms an\ On(U) -> (^W(B) (« = 1) .swc/z

This applies, of course, to the case that A is a full relational system. We
get

Corollary 5.8 Let M be a full relational system, B a relational system of the
same type. Then there are unique mappings an\ i^(An) -> i°(Bn) satisfying
Robinson and Zakon's axioms (4.1)44.4) iff 51 and SB are elementarily equiva-
lent.

For the application Robinson and Zakon [16] had in mind, let us again
assume, as in Section 3, that we are given projections pt\ B -+ A (t e T) and a
proper index-filter f over the index-domain T. With that, we are also given the
«'th powers p": Bn -> An defined by

(5.18) pn
t((bu . . ., bn)) = (pt(bx\ . . ., pt(bn)).

Applying (3.10), we get mappings a": iD(An)->'P(Bn) defined by

(5.19) an(F) = \b e Bn\pn
t(b) e F for almost all t e T\,

for each n = 1, F C An. Again, an is finitely meet-preserving, also a.n($) =
(j)n(yP(An)) - i>\ if f is an ultrafilter, an is even Boolean. As an immediate
consequence of the definition, the sequence a = (an) respects the covariant
transformation functor: (4.10) holds. Indeed, for any mapping p: B -* A, any
transformation o: m^-n (m, n = 1), the formula

(5.20) pm°oB = oA°pn

states one of the simple facts of life. Applying this to the mappings p = pt, we
get (4.10).

In the same way, one gets one half of (4.11), namely

oB[<x"(F)]Cam(oA[F])

for each F C An. So far, none of the properties FP0-FP4 of Section 3 has been
used. As a consequence of (4.10), (4.1) and (4.3) hold. (4.4) (Robinson and
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Zakon's normality) is nothing but FP2. It suffices to prove the other half of
(4.11) for the special case of the inclusion o = in\ m = n-\ -* n. Let (bu . . .,
bn-i) e OLn~l(in[F]). Hence (pt(bi), . . ., pt(bn-i)) e tn[F] for almost all t e T.
Hence for almost all t e T there is an element at e A so that {pt(bx), . . .,
Pt(bn-i), at) e F (we did use the full power of the axiom of choice here).
Defining a mapping a: T -> A on the remaining indices quite arbitrarily, we are
guaranteed by FP1 the existence of an element Z?w e B such that pt(bn) = at for
almost all t e T. Hence (pt(bi), . . ., Pt(bn-\)> Pt(bn))

 € F f° r almost all t e T; i.e.,
<&!, . . .,6w-i, bn)eoLn(F),soth2it<b1, . . .,6w-i> e tn[an(F)], establishing(4.2).

FP3, not used in this argument, made the mapping h: A -* B of Theorem
5.1 the inclusion mapping and so guarantees (5.7) and (5.8) (see Section 3).
The application of Corollary 5.4 to the present case is, of course, tLos's Ultra-
power Theorem. FP4, together with FP1, will be used as in Section 3 to make
each monadization mapping //*: <&(An) -*- ^(Bn) (n = 1) one-to-one; note that
f is adequate for each power An once it is adequate for A. In that case, then,
ju"(JO = <f> for each proper filter <f over An. This again applies to concurrent
binary relations R C Am X An = Am+n whose images /?[{<als . . ., am)\] C
An ((ai, . . ., am) e domw R) have the finite intersection property, i.e., generate
a proper filter <f over An. Again, with (bu . . ., bn) e M^(^r), we found a point
of Bn such that (au . . ., am, bl9 . . ., Z?n> e am+n(R) for every point <al5 . . ., am) e
domm R. In other words, we got (the first-order analogue of) an enlargement in
the sense of Robinson [14], [15].

6 First-order properties, continued It is left to reexpress the properties of
the Boolean mappings an that characterized an elementary extension of a full
relational structure in terms of the corresponding mappings 0", i//\ JUW, *>", co".
We know from (3.1) how Booleanity translates. What about (4.10) and (4.11)?

Let us look again at any transformation o: m -> n, its induced mapping
oA: An -> Am defined in (4.5) and the Boolean mapping aa: f(Am) -> ^G4W)
defined in (4.6). The latter (3.1) induces a completely join-preserving, finitely
meet-preserving mapping

<t)o:$(Am)-+<S>(An)

preserving principal filters and a completely meet-preserving, continuous
mapping

i//a: $(An)->c$>(Am)

preserving ultrafilters. Here are their explicit definitions (cf. (1.6) and the
second example in Section 3):

(6.1) 0 a ( ^ O = iG CAn\o'J[F] C G for someFe ^ \

for each filter / e $ ( i w ) , and

(6.2) MJb) = {FC Am\o-A
l[F] e f \

for each filter & e $(An). We will also need the completely join-preserving
mapping j3a: f>(An) -> ^ W 1 ) defined in (4.7).

We are going to look at the combined Boolean mappings

an °ao andaC T°am : f>(Am)-+P(Bn).
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The corresponding mappings (3.1) are:

<t>n°<t>a and 0 a o0 w : $>(Am) -+$(Bn), respectively
i//a° \p

n and \\)m o \po\ $(Bn) -><&(Am), respectively
iu"o0a and aoo fjLm

: $>(Am) ->P(Bn), respectively
\poopn and vmo$a: P(Bn) -><&(Am), respectively
\po o con and com ° oB: Bn -> £l(Am), respectively.

Indeed, applying (1.3) to both 0" and 0a , we see that the completely join-
preserving mappings 0" ° 0g and 0 a ° 0 m "extend" a ^ ^ and a a ° a m respec-
tively. (1.5) shows that i//a° i//" and ̂ m ° i//a are the right adjoints of 0" ° 0a and
0 a o0 m respectively. Let now F C ,4m and G C £". Then F e \po(v

n(G)) is
equivalent to a a(F) = o~J[F] e vn(G) by (6.2), which in turn is equivalent
to G C ^"((^(F)) by (2.4). Hence by (2.4), \po

o\jjn is the comonadization
mapping v belonging to ocn ° <xa. On the other hand, F e vm(fia(G)) is equivalent
to oB[G] = ]3a(G) C a m (F) by (2.4), which in turn is equivalent with
G C o~B

l[am(F)] = ao(a
m(F)). Again by (2.4), vm °|3a is the comonadization

mapping v belonging to a a ° a m . (2.3), and the fact that (aa,/3a) is an adjoint
situation, shows that the corresponding monadization mappings \x are ixn ° 0a

and aoo fjim, respectively. Moreover, for b e Bn, we get i//a(z (̂{Z?S) = i//a(co"(Z?))
and ^w03aG£i)) = ^ ( a 5 [ i 6 } ] ) = vm{\oB{b)\) = um(oB{b)) by (2.8), showing that
i//a°co" and com ° oB are the "restrictions" (2.8) of y$Jo°vn and ^m°j8a ,
respectively.

As a consequence of all that, we get

Theorem 6.1 Let an\ P(An)-> P{Bn) be Boolean, for each n^\. Then for
each transformation o: m-*n, the following are equivalent:

(6.3) a" ° o^ = aa ° o:w

(6.4) ^°( />a=0a°0m

(6.5) ta°r = tm°to
(6.6) iUWo0a = Q ; a o ^

(6.7) \ljaop» = vmopo

(6.8) \lj0o(jo" = Gjmo(jB.

This takes care of the compatibility of the sequence a = (a") with the
covariant transformation functor (4.10). Among the equivalent conditions
above, the last two have a particular neat concrete meaning for, as a con-
sequence of (6.2), (6.7) states that:

(6.9) Fe pm(oB[G]) iff o'j[F] e vn(G)

for each F C Am, G C Bn, while (6.8) states that

(6.10) F e um(oB(b)) iff o^[F] e un(b)

for each FCAm, b e Bn.
As it comes to reformulate (4.11) in the language of the "derived"

operators 0", etc., we are in a somewhat less fortunate position since (3O:
P(An) -^"P(Am) is not finitely meet-preserving in general. We hence pass to
aa: P(An) -+ P(Am), defined by

( 6 . 1 1 ) Wo(F)=Am~oA[An-F]
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for each F C An. Indeed, this mapping being completely meet-preserving, our
theory (Sections 1 and 2) applies. In particular, we have the "extended" com-
pletely join-preserving filter m a p p i n g ^ : <&(An) -* <&(Am), defined by

(6.12) fo(^)= \G CAm\'ao(F)CG for some Fe &\

for each filter ^ e &(An), and its right adjoint, the completely meet-preserving
mapping \po: <&(Am) -* <&(An), defined by

(6.13) Ja(£) = {FCAn\Wo{F)e&\

for each filter Jb e <$(Am). We also need the monadization mapping ]Ta\ <&(An) -*
f>(Am), defined by

(6.14) JFO(^) = n lc£(F)lFe <Ti = fl fc(f)

for each filter <f e $(An), the corresponding comonadization mapping
TQ\ P(Am) -> $(An), defined by

(6.15) VO{G) = \F C An\G C^(F)} = ̂ ( [G, ^ ] )

for each subset G C ^4m, finally its restriction to points, cJ :̂ ̂ lm -* ̂ >(̂ 4"),
defined by

(6.16) Z^(fl) = {FC^ | f l ec^(F)}=^af l0

for each point a e Am.
Again, we are going to look at the finitely meet-preserving mappings

amooTa ando^oa" : <p(An) -> P(Bm).

The corresponding mappings (1.1) and (2.1) turn out to be

0 ^ O 0 ^ and fo°(^\ $(An) ->$>(Bm), respectively
V/ff° V^1 and i/Z'oi/v. <&(Bm) ->* (^ w ) , respectively
f^_ofo and ]Too(j)n: $(An))-+iP(Bm), respectively
\po°vm and i^ w o^ : ^ ( ^ m ) -+$(An), respectively
~ty~oo com and i//" oZTG\ Bm -> 4>(^"), respectively.

We leave the details to the reader, except for the comparatively exotic cases.
Let again F C An a n d G C T . Then F e ^n(y~a{G)) is equivalent to a" (F) e
i^(G) by (1.6), which in turn is equivalent to G C c^(a"(F)) by (2.4),
making \\jn°V~o the comonadization mapping v belonging to c^°o:", and
~iTa°<j)n its monadization mapping by virtue of (1.5) and (2.3), and moreover,
\jjn ° ZTO its restriction to points b e Bn.We get

Theorem 6.2 Zer an : P(An) -> 1°(Bn) be finitely meet-preserving mappings,
for each n •= I. 7"/ze?? /or eac/z transformation a: m ^ n, the following are
equivalent:

(6.17) ^ o a ^ a ^ o a "
(6.18) r°0>0>0"_
(6.19) \IJoo4^=Jno^o

(6.20) ^ o 0 a = M a o 0 «
(6.21) ^ o p m = r o V ;

(6.22) ^o(/ = f o ^
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If each an is Boolean, then (6.17) is equivalent to am°j3 a = Pa°an

which is (4.11). Unfortunately, (6.20)-(6.22) are no longer conditions just on
the sequences JU = (MW), v = (vn), or u> = (G/ 2 ) , hence not really as nice transla-
tions as were (6.6)-(6.8).
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