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On Uncountable Boolean Algebras

With No Uncountable Pairwise

Comparable or Incomparable

Sets of Elements

SAHARON SHELAH

Elements a, b, of a Boolean algebra are said to be comparable iff either
a < b or b < a, otherwise incomparable. A chain in a Boolean algebra is a set of
pairwise comparable elements, while a pie is a set of pairwise incomparable
elements.

In [2] Baumgartner and Komjath proved, using 0 ^ :

Theorem 1 (Baumgartner-Komjath) Assume 0^ . There is an uncountable
Boolean algebra with no uncountable chain or pie.

In [6] Rubin, also using 0 ^ , proved:

Theorem 2 (Rubin) Assume 0#r There is a Boolean algebra B, with B - N1}

in which every ideal is #0-generated and every subalgebra is generated by an
ideal and ft0 elements. Thus, B has only ^ ideals and subalgebras.

Using only C/7, Berney and Nyckos [3] and Bonnet [4] proved:

Theorem 3 Assume CH. There is an uncountable Boolean algebra with no
uncountable pie.

They chose a set A of reals of cardinality ttl5 and the Boolean algebra is
the Boolean algebra of subsets of the reals generated by (r, s), r, s e A.

In the opposite direction, Baumgartner [ 1] showed:

Theorem 4 It is consistent with ZFC that 2*o = ft2, Martin's axiom holds,
and every Boolean algebra of cardinality ftx contains an uncountable pie.
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In fact, the above follows from Martin's axiom + any ftrdense se^s of
reals are isomorphic.

The main result of this paper is (for generalizing to higher powers see the
end)

Theorem 5 Assume CH. There is a Boolean algebra B, B = #x such that

(i) B has no uncountable pies.
(ii) B has no uncountable chains.
(iii) Every ideal of B is generated by Ko elements.
(iv) Among any W^-elements of B there are four elements x0, xif x2, x3 such

that x0 f\x1 = x2 f\ x3.

In [6] Rubin used ONl to show that there is a Boolean algebra i?, B = Kl5

such that for every / C B, 7= Xl9 there is a partition of 1, b0, . . ., bn e B, n > 1,
such that for every 0 < b\ < b" < blt I = 2, . . ., n, there is somex el such that
x A b0 = Z?o, x A Z?i = 0, and b\ < x A bx < b'/ for / = 2, . . ., n. We will obtain a
similar result as Lemma 7 below which will lead directly to Theorem 5.

1 We first introduce a Boolean algebra B, and then in a series of lemmas
show that B satisfies the conditions of Theorem 5. Though our original treat-
ment was somewhat different, here, at the suggestion of the referee, we use
forcing to construct B.

We begin with a countable atomless Boolean algebra Bo. We think of Bo

as being embedded in its completion, and form B by adding some elements of
the completion, and taking the closure.

As our set of forcing conditions we take

P = \{a, b)\ a,beB0 and a < b\.

A condition (ahbl) extends a condition (a2,b2), written (alt bx) < (a2tb2) iff
a2 ^ # i < bx < b2. We think of a condition (a, b) as giving information about an
element x of the completion, with {a, b) specifying that a < x < b. Thus, as
conditions are extended, the value of x is squeezed from below and above.

Let HC denote the set of hereditarily countable sets. We define a sequence
(N&: OL < co t) satisfying

a. BoeNo

b. For a < p < col5 (Na, e) < <Np, e) < (HC, e>.
c. For 5 a limit ordinal, N5 = (J Na.

d. U Na = HC. °<S

e. Each Na, a < cols is countable.
f. For each a < coh there is Ga e Na+1, P-generic over Na.

It is very easy to construct such a sequence, but only, of course, if CH holds.
Now, for each Ga, we let

xOi = \/{a: 3b[(a,b)eGa]\.

The supremum in the above is taken in the completion of Bo. We may now
define B as the subalgebra of the completion generated by BQ U {xa: a. < coj.
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2 We now begin the process of showing that 2?, as just defined, satisfies the
conditions of Theorem 5. First, for each a < coj we define

Ia = {6 e Bo: xa A b e Bo\.

Lemma 1 Ia is a proper ideal

Proof: The proof is easy. First suppose b e Ia and c Kb, c eBo. T h e n x a A C =
(xa A b A c) = (xa A b) A c e Bo, since xa /\ b e Bo. Now if &b b2 e 7 a , then
*<* A (5j v 62) = (*<* A ^ i ) v (*<* A ^2) e ^o* since both x a A blt xa A b2 e B0. This
shows 7a is an ideal. To see that it is proper, simply note that since 1 /\xa= xa,
1 e / a iff Xa e <B0. It is easy to see by genericity that xa i Bo.

Lemma 2 Ia is maximal.

Proof: First we must give an alternate description of Ia. We claim that

Ia = \a\/~b: (a,b)e GJ,

where b denote^ the complement of b. First, if (a, b) e Ga, then xai\(a\i~b) =
a e Bo, so a v b e Ia. To obtain the reverse inclusion, suppose b e Ia, i.e.,
xa A b e Bo. Denote xa A b by c. Now, for some (d, e) e G a , (d, e) \\~ xa A b - c.
Then we must have b A e < d, or xa t\ b could be "made" smaller by a stronger
condition. Then trivially, (b/\e)v~e<d\/'e, whence b < d v i . Now, it is also
trivial to verify that both d and "i e / a , viz., <i A XQ = d, ~e A x a = 0. Now, since / a

is an ideal d v ~e e Ia, and since b < d v~e, b e Ia. This finishes the proof of the
claim.

Next, fix c e Bo and consider the set

D = \(a, b): (a, b) < (c, 1) or (a, &) and (c, 1) are incompatible}.

Z) is, as usual, dense in P, and obviously an element of Na. Thus there is some
(a,b) e Ga O D. Now, if («, Z?) is incompatible with (c, O^this must mean
a\i c > b. Then a /\ (a \/ c) >a /\ b, again leading t o c < a v ^ , which puts c in
the ideal Ia. If, on the other hand, (a, b) < (c, 1), then c < ^ < x a . Then,
CAXa = c e 5 0 , s o c e / Q . This shows that Ia is maximal.

Lemma 3 (i) For a < j3 < col5 / a ^ / ^ . (ii) Force <co1 , G = \(ayb): a <xa<
b,a,b e Bo\ is P-generic over Na (i.e., xa is also "generic".)

Proofj (i) Suppose Ia = Ip, a < j3. Then for some condition (a, b), (a, b) Ih
Ip = Ia, in the forcing for constructing Xp. Since Bo is atomless, we can choose
c e BQ such that a <c <b. Suppose c e Ia, the opposite case being similar. Then
(a, b) Ih "c e 7^". However, by choosing d e Bo such that a < d < c, we have
(a, d) Ih "c i Ip\ This contradicts the fact that {a, d) < {a, b) and so (a, d) Ih
"ceV'.

(ii) Suppose xa is generated by the generic subset Ga of P. Let Ga =
|(Z?, a)\ (a, 6 )eGI . Then it is easy to check that Ga is generic (e.g., if D is dense
so is D, etc.) and that Ga generates 3ca.

The next lemma, the "Product Theorem", is well-known to those familiar
with forcing.
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L e m m a 4 Suppose ax < a2 < . . . < <xn < col. Then Gai X . . . X GafJ is
Pn-generic over N&v

Proof: By induction on n, with the case of n - 1 trivial. Let n > 1 and assume
the lemma holds for n. The only nonimmediate clause to verify concerns
intersections with dense sets.

Let D e Nai be dense in Pn+\ We must show Gx X . . . X Gn X Gn+1 D D ^ 0.
This amounts to showing that E n Gan+1 ¥" 0, where

E = \ p : 3 ( p 1 ? . . . , p n ) e G a i X . . . X G a n [ ( p u . . . , p n , p ) e D ] \ .

Since E e N0ln+1 it suffices to show that E is dense in P. Thus, given q e P we
must findp < g and (p l5 . . ., pn) e Gai X. . . XGfl/j such that (pu . . ., pmp) e D.
To see this it suffices to notice that

F=\(Pi, - • -,Pn)>3p<q[(p1, . . .,pn,p)eD]\

is dense in Pn, since it is also in A^ r

For the purposes of the next lemma we define for A = \au . . ., un\,
Q?! < . . . < an < coj, G(A) = Gai X . . . X Gan. It is here that we make use of the
choice of the Na.

Lemma 5 Let F be an uncountable collection ofpairwise disjoint n-element
subsets of coj. Let E - \p e Pn: \A e F: p e G(A)\ is countable}. Then E is not
dense in Pn.

Proof: Suppose E were dense in Pn. Since E e HC, there is some j3 < co1 such
that E e Np. However, if A e F and each element of A is greater than |3, then
G(A) H E #= 0 by the obvious generalization of Lemma 4. Since there are
uncountably many such A e F, and E is countable, there must be some x e E
such thatx e G(A) for uncountably many A e F, a contradiction.

The next lemma shows that elements of B can be represented in a special
way.

Lemma 6 If x e B then there are ax < . . . < an and disjoint b0, bu . . .,
n

bn e B0,such that for i > 1, bx\4 Ia., and x = bov y yi where either yt = xa / A b(
oryi=xai/\bi. z=1

Proof: First, choose a minimal n e co such that there are some j31; . . ., fin such
that x is a Boolean combination of Xpl9 . . ., Xpm with elements of Bo. Next,
choose a partition du . . ,,dn of Bo such that d\ e Ipm iff / = m. To see how this
may be done first choose, for each i < n, df e H I&\I$r This can be done since

the Ip's are distinct maximal ideals by Lemmas 1-3. Just choose for / =£ /,
dfj e Ipj\Ipt and take dt - (\ dy. Now increase one of the dfs, if necessary, to

get a partition. This is no problem since V di e II h-
i <n i <n
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Suppose x = r ( . . . x^ . . . . . . . Cj . . . ) , for some Boolean term r, with the
c/s in Bo. Then x A d/ = r( . . . x^ A d,- . . . , . . . c/ A d/. . . ) A &/ = r (x^ A d/,
. . . elements of Bo . . .) A d/, for some other term r . It is easy to find disjoint
d°, df, df < dt such that x N dt = df v (x^. A d]) v (x^. A df). We can also arrange
this so that if x^. A dj e Bo, then df = 0, and similarly if x^. A df e Bo. Since
d\ e Ip. or df e I p., x&. A d\ e BQ or x^. A df e Bo. Thus, dj = 0, or df = 0 (or

both). Now, let b0 = \ / d,°, bt = dj v df, and yt = (x&i A dj) v (x^. A df), for
/ = i

/ = 1, . . ., m. Note that b0, bu . . ., bn are disjoint (since du . . . dn were disjoint

and df, df, df < dt were disjoint). Now x = V (x A ̂ ) = V (df v (x^. A df) v
« n n l=i 1 = /

(x^. A d?)) = V W? v ^f.) - V ^/9 v V yt = ^o v y ! v , . . . v yn. For each /, y{ * 0

since otherwise n would not be minimal. Since either dj = 0 or df, but >>; =£ 0,
j^z- is either x^. A dj or x^ A df. Therefore, the yfs are as required.

We now come to the key lemma.

Lemma 7 For every uncountable 1 C B, there is a partition of 1, c0, . . .,
cn e Bo, and c e B, with c < c0, such that for every b\ < b" < C/ m 5 0 ,
/ = 1, . . ., n, there is some x e I such that x A C0 = c and b\ < x n cx < b",
I = 1, . . ., n. In fact, there are <^1 such x.

Proof: Let / C B be uncountable. We apply Lemma 6 to each x e I. Since Bo is
countable we may thin / down to some uncountable / , such that each x e J
determines the same sequence b0, . . ., bn, and so that the sets Ax = {au . . ., an\
form a A-system (cf. [5]). By appealing to Lemma 3(ii) and a further thinning
of / to some uncountable K, we may assume that for each x e K, only yt of the
form xa. A bi occur.

Let F be the kernel of the A-system. For simplicity, let us first assume
that F = 0. We apply Lemma 5 to K to see that E = \p e Pn: {x e K: p e G{AX)\
is countable! is not dense mPn. Fix somep e Pn such that if q < p , then q i E.
Suppose p = (pu . . ., pn), where pi = (af,af), i = 1, . . ., n. Now define Cj =

bf A af A 5/ for i = 1 , . . . ,« and let c0 = c 1 v . . . v c w . Finally, let c = Z?o v f V. <z/).

We show that if p e G(AX) then x A C0 = c. Computing, we get x A C0 =

(b0 v y (fo; A x^.)} A c0. Now, taking the meet of c0 with each member of the

join separately, and recalling that dj < x a / <af, we get, tracing back the defini-
n

tion c0, the result bQy \J af = c, each term in this join coming from the corre-

sponding term in the original join. (To see this it is easiest just to draw a Venn
diagram.)

Now suppose b\ <b" < ct, i = 1, . . . , n, b\, b'± e Bo. Let qt = {a} v b\, af v b")
f o r i = ! , . . . , « . T h e n ^y < p s o t h e r e a r e u n c o u n t a b l y m a n y x e ^ w i t h
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(qu . . ., qn) e G(AX). Let Ax = \au . . ., an\ be such a set and so x = b0 v

V xQ. A Z?/. Computing again, we get by disjointness x A Q = Z?o v ( y 6/ A x a ) A
/=i V=i V
Q = q A x/. Expanding this last term we have bt A of A 5/ AXQ.. NOW, since
a/ v b\ < xai < a} v b" and since Z?- < b" < 6,- A a? A 5/, we get bt < bt A 0? A
~a] A xa / < b", and this concludes the calculation.

Finally, if the kernelD i= 0, then we define instead c = bov V (xa/ A bj),
and apply Lemma 3(ii) to {A\D: A e K\. *ieD

This concludes the sequence of lemmas.

Proof of Theorem 5: (i) Let / C B be uncountable. Let c0, . . ., cn, c, be as in
Lemma 7. Since Bo is atomless we may choose 0 < b\ < 6/' < &"' < C/,
/ = 1, . . ., n all in Bo. Now, applying Lemma 7 for Z?/', Z?", there is somexj el
withx2 A cQ- c and b\ <xx A C\ <b\\ I - 1, . . ., n. Similarly, applying Lemma 7
to b\\ b"\ we obtain x2 e I with x2 A C0 = c and Z?" < x2 A Q < 6/"'. Trivially
Xj ^ X 2 .

Now, since V c\ = 1, Xj = Xj A ( V c/J = (^i A C0) V V U i A C/) < c v
/=o ^/=o / /=i

« « / n \
\/ b" < (x2 A c0) v \J (x2 A c/) = x2 A ( Y cn = x2. Thus, xx < x2, and so / is
not a pie.

(ii) Next choose b\, b" e Bo such that b\ A 6/' = 0 and 0 < b\ < ch

0 < b" < q. Now find xx e I such that Xj A C0 = c and b\ <xlhcl< b\ v Z?/;/,
/ = 1, . . ., n. Similarly find x2 e I such that x2 A C0 = c and b" < X 2 A C / < 6 / v
b'i\ / = 1, . . . , « . Now, Z?i < x1? but Z?'/ Ê xx or else Z?i v b'[ < x1? whence
Z?j v &'/ < x A Cj. Similarly b" ^ x2, but fej ^ x2. Thus neither x2 < x2 nor
JC2 < x 1? and so / is not a chain.

(hi) Suppose / is an ideal of B not generated by ft0 elements. Choose
inductively a set / = \aa: a < co^ such that aa e I and aa is not in the ideal
generated by \a^\ (3 < a\. We will apply Lemma 1 to J choosing c0, . . ., cn, c as
described. Next, choose 0 < b\ < b" < b\" < cb I = 1, . . ., n. By Lemma 7, for
some a < coh aa A C0 = c and b" <a0lf\q< b\", I = 1, . . ., n. Now, applying the
last sentence of Lemma 7, we know that for Nj different j3 < coj, dp A c0 = c,
and Z?/ < ^ A C / < 6Z". In particular this is true for some (3 > a. But, now, arguing
as in the proof of part (i) we get ap ̂ aa, so that dp is in the ideal generated by
j<za: a < ]3i, a contradiction.

(iv) Begin by choosing /, c0, . . ., cn, c, b\, b", I = 1, . . ., n as in (ii) above.
There are, by Lemma 7, i^l elements x7- e / such that xz- A C0 = c and x/ A Q < Z?/,
/ = 1, . . ., n. Similarly, there are Nt, ^ e / such that yt A CQ = C and ^ A Q < b\\
1 - 1 , . . . , « . Then, for each /, xz- A ̂ / A C 0 = (xz- A C0) A (>^2 A C0) = c, a n ^ for any

n

j , xt A yj A c/ = (x/ A c/) A (^- A q) < Z?̂  A Z?/' = 0. Now, since V Q = 1, we must
have xz- A yj = c. / = 0

Concluding Remarks

(1) Suppose X = \<x and 2* = X+ (so X is regular.) We can find a saturated
atomless Boolean algebra Bo of power X. Letting //(X+) be the family of sets of
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hereditary power < X, we can find Na(a < X), increasing continuous, \\Na\\ < X,
H(\+) = (J Na, Na+l is X-closed (i.e., a C Na+1, \a\ < X implies a e Na+1). We

now can define P, Pn, and even Pa as in Lemma 4. Moreover, we can define
inductively X(, Gj(i < X+) such that for every a0 < . . . < an-x < X+, (n < co),
GaQ X . . . X G0Ln_1 is P"-generic over A âQ, and all the lemmas still hold as well
the consequences (replacing Ko, i ^ by X, X+).

(2) However the construction in (1) has a defect: we would like to
demand that if £ < X, a0 < . . . < G- < . . . (z < £ ) , t h e n FI Gai is P^0-generic

over NaQ. This is possible (by [7]) if we assume 0Xi or even (Dl)x> which follows
from "X strongly inaccessible" hence holds for any X ¥= ft1 when GCH holds
(recall we are assuming X = \<K and 2^ = X+), (see [7] and [8]).

(3) The need for the strengthening mentioned in (2) arises when we asked
our Boolean algebra to be, e.g., a-closed. For this it is natural to let B be the
Boolean algebra from(2), Bc its completion, and B* the closure of B in Bc

under countable meets and complementation.
If a e B*, clearly there is a Boolean term r (countable) such that a =

T(b, x a o , . . ., xa., . . .)/<$ J < î> b a countable sequence of elements of Bo.
Because 11 Ga. is AL.-generic, without loss of generality b&i < £) are pairwise

i<i l l

disjoint, and a = r(b, . . ., b( n xai, . . .)/<^- Now, as in Lemma 7, we can prove:

(*)j For every / C B* of power X+, there are J < cou pairwise disjoint
bi e Bo (i < J), and / C /, I/I = X+ and for every a e / , / < f, /(fl, /) < X+ pairwise
distinct, such that:

(i) for some Z/, for every a e J, a ~ V bi = bf

(ii) for each 0 either (V# e J) a Nb$= xj(a,i) A Ẑ
o r ( V a e J ) a / \ b p = b p - x j ^ j )

(hi) for every Z? • < b'/ < Z?/(/ < £) there is a e / such that
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