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On Uncountable Boolean Algebras
With No Uncountable Pairwise
Comparable or Incomparable

Sets of Elements

SAHARON SHELAH

Elements @, b, of a Boolean algebra are said to be comparable iff either
a < b or b <a, otherwise incomparable. A chain in a Boolean algebra is a set of
pairwise comparable elements, while a pie is a set of pairwise incomparable
elements.

In [2] Baumgartner and Komjath proved, using Om:

Theorem 1 (Baumgartner-Komjath) Assume Oy There is an uncountable
Boolean algebra with no uncountable chain or pie.

In [6] Rubin, also using Ox,» proved:

Theorem 2 (Rubin) Assume <>N1. There is a Boolean algebra B, with § =Ny,
in which every ideal is Nygenerated and every subalgebra is generated by an
ideal and R, elements. Thus, B has only ¥, ideals and subalgebras.

Using only CH, Berney and Nyckos [3] and Bonnet [4] proved:

Theorem 3 Assume CH. There is an uncountable Boolean algebra with no
uncountable pie.

They chose a set A of reals of cardinality X, and the Boolean algebra is
the Boolean algebra of subsets of the reals generated by (7, s), 7, s € A.
In the opposite direction, Baumgartner [ 1] showed:

Theorem 4 It is consistent with ZFC that 280 = 8, Martin’s axiom holds,
and every Boolean algebra of cardinality R, contains an uncountable pie.
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In fact, the above follows from Martin’s axiom + any ®;-dense sets of
reals are isomorphic.

The main result of this paper is (for generalizing to higher powers see the
end)

Theorem 5 Assume CH. There is a Boolean algebra B, § = N, such that

(i) B has no uncountable pies.

(ii) B has no uncountable chains.

(iii) Every ideal of B is generated by N, elements.

(iv) Among any Ri-elements of B there are four elements xq, X1, X4, X3 Such
that xg AXy{ =Xy N X3

In [6] Rubin used Oy, to show that there is a Boolean algebra B, B= N,
such that for every / C B, 1 N, there is a partition of 1, bg, ..., b, € B, n>1,
such that for every 0 < b; <b,’<b;,, =2, ..., n, there is some x € I such that
x Nby=bo, x nby=0,and by <xnb, <b forl—2 .., h. We will obtain a
similar result as Lemma 7 below which will lead directly to Theorem 5.

1 We first introduce a Boolean algebra B, and then in a series of lemmas
show that B satisfies the conditions of Theorem 5. Though our original treat-
ment was somewhat different, here, at the suggestion of the referee, we use
forcing to construct B.

We begin with a countable atomless Boolean algebra B,. We think of B,
as being embedded in its completion, and form B by adding some elements of
the completion, and taking the closure.

As our set of forcing conditions we take

={(a, b): a, b € Byand a <b}.

A condition (a;, b,) extends a condition (a,, b,), written (ay, b,) < (4, by) iff
a,<a,<b,<b, We think of a condition (q, b) as giving information about an
element x of the completion, with (a, b) specifying that ¢ < x < b. Thus, as
conditions are extended, the value of x is squeezed from below and above.

Let HC denote the set of hereditarily countable sets. We define a sequence
(Ny: o< wy satisfying

a. Bpe N,
b. Fora<g < wy, (N,,e <{(Ng, € <(HC, e).
c. For § alimit ordinal, N5 = U N,.
i U w~n,=HC oo
a<wy

e. Each N, a < w,, is countable.
f. Foreach a < wy, there is G, € N4+, P-generic over N,,.

It is very easy to construct such a sequence, but only, of course, if CH holds.
Now, for each G,, we let

xo =V ta: 361(a b) € G, 1.

The supremum in the above is taken in the completion of B, We may now
define B as the subalgebra of the completion generated by Bg U {xo: o < w,}.
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2 We now begin the process of showing that B, as just defined, satisfies the
conditions of Theorem 5. First, for each o < w; we define

I,=1{beBy xo Nb € Byl
Lemma 1 1, is a proper ideal.

Proof: The proof is easy. First suppose b € I, and ¢ <b, c € By,. Thenx, A c =
(Xq Ab AC) = (xq AD) A c € By, since x, Ab € By. Now if by, b, € I, then
Xo A(byV by) = (xg Aby)V (X4 A by) € By, since both x, A by, xo A by € By. This
shows I, is an ideal. To see that it is proper, simply note that since 1 A x, = xg,
1 €1, iff x, € By It is easy to see by genericity that x, ¢ B,,.

Lemma 2 1, is maximal.
Proof: First we must give an alternate description of /,. We claim that
I,=1avb: (ab)e G,

where b denotes the complement of b. First, if (g, b) € G, thenx, A (a v b) =
a € By, soav b el, To obtain the reverse inclusion, suppose b € [, i.e.,
Xq Nb € By Denote x4 A b by c. Now, for some (d, e) € G, (d, €) I x4 1 b=2¢
Then we must have b n e < d, or x, A b could be “made” smaller by a stronger
condition. Then trivially, (b Ae) ve < d v e, whence b <d v e. Now, it is also
trivial to verify that bothd ande € I, viz.,d A x, =d, e A x, = 0. Now, since [,
is an ideal d v e € I, and since b < d v e, b € [,. This finishes the proof of the
claim.
Next, fix ¢ € B, and consider the set

D =1{(a, b): (a,b) <(c, 1) or (@, b) and (c, 1) are incompatible}.

D is, as usual, dense in P, and obviously an element of N,. Thus there is some
(a,b) € G, N D. Now, if (@, b) is incompatible with (c, 1), this must mean
ave=b.Thenaa (avc)=a b, again leading to ¢ <a v b, which puts ¢ in
the ideal 7,. If, on the other hand, (a, b) < (c, 1), then ¢ < a < x,. Then,
CAX,=cE€Bgysocel, Thisshows that [, is maximal.

Lemma 3 () For o < f <y, I, #1p. (il) For a <wy, G ={(a,b): a <x,<
b,a,b € By} is P-generic over N, (i.e., X, is also “generic”’.)

Proo}:.‘ (i) Suppose I, = I, o < B. Then for some condition (g, b), (a, b) =
Ig = 1,, in the forcing for constructing x;. Since B is atomless, we can choose
c € By such thata < ¢ <b. Suppose c € 1, the opposite case being similar. Then
(@ b) IF“Ce 15”. However, by choosing d € B, such that a < d < ¢, we have
(a,d) |- ¢ ¢ Ig”. This contradicts the fact that (¢, d) < (a, b) and so (a,d)

__(ii) Suppose x, is generated by the generic subset G, of P. Let Ea =
{(b,a): (a, b) € G}. Then it is easy to check that G, is generic (e.g., if D is dense
so is D, etc.) and that G, generates Xx,,.

The next lemma, the “Product Theorem”, is well-known to those familiar
with forcing.
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Lemma 4 Suppose a; < oy <. .. <oy < wy Then G X ... X Gg, IS
P"-generic over N,,.

Proof: By induction on n, with the case of n = 1 trivial. Let n = 1 and assume
the lemma holds for n. The only nonimmediate clause to verify concerns
intersections with dense sets.

Let D € N,, be dense in P"*1, We must show G; X ... X Gy X Gpey ND # 0.
This amounts to showing that £ N Gopyy * 0, where

E=ip: 3Py, .- Pn) € Goy X .. . X Go [(pyy - . ., Pns p) € DI}

Since E'€ N,,,, it suffices to show that E is dense in P. Thus, given g € P we

must find p <q and (py, ..., Py € Goy X. .. X Gy, such that (py, .. ., pp,p) € D.
To see this it suffices to notice that

E=i(py .. )30 <ql(py, ..., pn, p) e D]}
is dense in P, since it is also in N,

For the purposes of the next lemma we define for 4 = {ay, . . ., @},
o <... <y <wy, G(A) = Go X ... X Gy, It is here that we make use of the
choice of the NV,

Lemma 5 Let F be an uncountable collection of pairwise disjoint n-element
subsets of wy. Let E =1{p € P":{A € F: p e G(A)} is countable}. Then E is not
dense in P".

Proof: Suppose E were dense in P". Since E € HC, there is some 8 < w, such
that £ € Ng. However, if A € F and each element of A is greater than §, then
G(4) N E # 0 by the obvious generalization of Lemma 4. Since there are
uncountably many such A € F, and E is countable, there must be some x € £
such that x € G(4) for uncountably many A € F, a contradiction.

The next lemma shows that elements of B can be represented in a special
way.

Lemma 6 If x € B then there are oy < . .. < oy, and disjoint by, by, . . .,
n

by, € By, such that fori =1, b; ¢[01i’ and x =bgv V yi where either y; = xq; A b;
or yi =5€_ai A bi~ =1

Proof: First, choose a minimal n € w such that there are some 8y, . . ., 8, such
that x is a Boolean combination of xg, . . ., Xg,, with elements of B, Next,
choose a partition dy, . . ., d, of By such that d; € Ig,, iff [ =m. To see how this
may be done first choose, for each i <n, d; € n lﬁj\[ﬁi' This can be done since
j#i

the Ig’s are distinct maximal ideals by Lemmas 1-3. Just choose for j # i,
dije IBJ\Iﬂi and take d; = /\ dij. Now increase one of the d;’s, if necessary, to

JER)
get a partition. This is no problem since V die n 1.

i<n i<n
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Suppose x = 7(...xg...,...¢...), for some Boolean term 7, with the

¢’s in Bo. Thenx A dy =7(...xgAdi. ... ndi...) Nbp =17 (x5 nd,,
. elements of By...) n d;, for some other term 7. It is easy to find disjoint
d° d}, d} <d;suchthatx and;=dPv (xg Ad)v (Xg; A d}). We can also arrange
this so that if xg A d} € By, then d} = 0, and similarly if X xﬁ n d? € By. Since
di el or d} elg, xg n d}eB, or X5 A d} e By Thus, d} =0, 0rd2— 0 (or

both). Now, let b, = \/ dp, by =dj v di, and y; = (xg; A d}) v (X & d}), for
i=1,..., m Note that bo, by, ..., by are disjoint (since d, . . . d, were disjoint

and dY, d}, d? < d; were disjoint). Now x = V (xndy)= V (dP v (xg 0 d})v

1=1

(Xg; 1 d}) = \/ dvy)= \/ d)v \/ Yi=bovy;v,...vy, Foreachi, y;#0

since otherw1se n would not be mxmmal. Since either d} = 0 or d? but y; # 0,
y; is either xg, A d} or X A d}. Therefore, the y;’s are as required.

We now come to the key lemma.

Lemma 7 For every uncountable I C B, there is a partition of 1, ¢, . . .,
cn € By, and ¢ € B, with ¢ < ¢y, such that for every b; < b’ < ¢ in B,,
I =1,..., n, there is some x € I such that x n ¢y = c and b < x N ¢ <b,",
[=1,...,n In fact, there are R, such x.

Proof: Let I C B be uncountable. We apply Lemma 6 to each x € /. Since B is
countable we may thin / down to some uncountable J, such that each x € J
determines the same sequence by, . . ., by, and so that the sets A, = {oy, . . ., @}
form a A-system (cf. [5]). By appealing to Lemma 3 (ii) and a further thinning
of J to some uncountable K, we may assume that for each x € K, only y; of the
form x,; A b; occur.
Let F be the kernel of the A-system. For simplicity, let us first assume
that F = 0. We apply Lemma 5 to K to see that £= {p e P": {x € K: p € G(4,)}
is countable} is not dense in P". Fix some p € P" such that if ¢ <p, thenq ¢ E.
Suppose p = (py, . . ., pp), Where p; = (al,a?), i =1, ..., n. Now define ¢; =
n
bina?na} fori=1,.. . nandletcy=c;V ...V ¢, Finally, letc=bgyv (1\/ ai‘).
=1
We show that if p € G(A,) then x A ¢y = ¢. Computing, we get x A ¢g =

n

(bo v V (b; n Xa,-)) A ¢o. Now, taking the meet of ¢, with each member of the
1=i

join separately, and recalling that a} < Xog S a?, we get, tracing back the defini-

n
tion cq, the result by v V a} = ¢, each term in this join coming from the corre-
i=1
sponding term in the original join. (To see this it is easiest just to draw a Venn
diagram.)
Now suppose b; <b;'<c¢;, i=1,...,n, b}, b} € By. Let q; = (a} v b, a}v b;")
for i = 1,...,n. Then q; < p so there are uncountably many x € K with
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(ql, coaqy) €GA)). Let A, = {ay, . . ., &} be such a set and so x = by v
V Xq; A b;. Computing again, we get by disjointness x A ¢; = bV <V bj A xa]> A

¢ = ¢ A x;. Expanding this last term we have b; A a? A a} A Xo;- Now, since
al v b <xq <a}v b and since b; < b;' < b; naf na}, we get by <b; Aa} A
a} nxq; <bj',and this concludes the calculation.

Finally, if the kernel D # 0, then we define instead ¢ = byV V (xal b;)
and apply Lemma 3(ii) to {A\D: 4 € K}. ajeD

>

This concludes the sequence of lemmas.

Proof of Theorem 5: (i) Let I C B be uncountable. Letc,, .. ., ¢,, ¢, be as in
Lemma 7. Since B, is atomless we may choose 0 < b, < ;' < b;" < ¢,

=1,...,nallin B0 Now, applying Lemma 7 for b, b,”, there is some x, € /
with xl A co cand b, <x;n¢ <b,1=1, , A Slmllarly, applying Lemma 7
to b;, b)"", we obtain x, € I with x, A cq = ¢ . and b <xyn ¢ <bj". Trivially
X, F X,

n n n
Now, since V =1, x,=xA <V cl> = (X, ANCo) Vv \/(xl Ac)ScV
I=1

I=0 I=0
n n n
V bl <Canc)vV (ane)=xan (V cl) = x,. Thus, x; <Xx,, and so [ is
I=1 =1 I=1
not a pie.
(i) Next choose b;, b)' € B, such that b, A ;' = 0 and 0 < b; < ¢,
0< b, < ¢;. Now find x, € [ such that x, A ¢co = ¢ and b; <x;r¢; <b; v b/,
I=1,...,n Slmllarly find x, € I such that x, A ¢, =c and b}’ <x2 nep <bjv
b,”, 1= 1 .., n. Now, b} < x,, but by & x, orelse by v by < x,, whence
by v by < x a c;. Similarly b} < x,, but b} £ x,. Thus neither x, < x, nor
X, < Xx,, and so [ is not a chain.
(iil) Suppose I is an ideal of B not generated by 8, elements. Choose
inductively a set J = {a,: o < w,} such that a, € I and a, is not in the ideal

generated by {a;: B < ol. We will apply Lemma 7 to J choosing ¢, . . ., ¢, ¢ as
described. Next, choose 0 < b <b;' <b," <¢,1=1,...,n. By Lemma 7, for
some o« < Wy, @ A cg=c and b;' <a,n ¢ <b;",1=1,...,n. Now, applying the

last sentence of Lemma 7, we know that for 8, different 8 < w,, ag A co =c,
and b; <agneg < b;'. In particular this is true for some > o. But, now, arguing
as in the proof of part (i) we get gz <a,, so that ag is in the ideal generated by
{a,: o <P}, a contradiction.

(iv) Begin by choosing I, ¢, . . ., ¢u, ¢, by, by, 1=1, ..., n as in (ii) above.
There are, by Lemma 7, 8, elements x; € / such that x; A ¢o=c and x; a ¢; <b,
[=1,...,n. Similarly, there are 8,, y; € I such that y; A cq=c and y; A ¢; <b,',
[=1,... n Then, foreachi, x; A y; Aco=(Xx; A o) A (¥, Ac0)=c and for any

Lxinyi nep=xae)M(yiac) s bl /\b, = 0. Now, since V ¢ =1, we must
have x; A y; = c.
Concluding Remarks

(1) Suppose A = A<* and 2 = A* (so A is regular.) We can find a saturated
atomless Boolean algebra B, of power A. Letting H(A*) be the family of sets of
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hereditary power <A, we can find N (a <)), increasing continuous, N I <A,
HO) = U N, Ny is Meclosed (ie., @ © Noay, lal <X impliesa € Ny.y). We
a<A

now can define P, P", and even P® as in Lemma 4. Moreover, we can define
inductively x;, G;(i <\*) such that for every op < . . . < o < A, (n < w),
Gog X . . . X Gg,,_, is P"-generic over Ny, and all the lemmas still hold as well
the consequences (replacing R, 8, by A, A*).

(2) However the construction in (1) has a defect: we would like to
demand that if § <\, ap<...<a; <...(<§), then [ G, is P*o-generic
i<k

over Nao' This is possible (by [7]) if we assume Q,, or even (D), which follows
from “A strongly inaccessible’” hence holds for any A # 8, when GCH holds
(recall we are assuming A = A<* and 2* =\*), (see [7] and [8]).

(3) The need for the strengthening mentioned in (2) arises when we asked
our Boolean algebra to be, e.g., o-closed. For this it is natural to let B be the
Boolean algebra from(2), B® its completion, and B* the closure of B in B¢
under countable meets and complementation.

_ If a € B*, clearly there is a Boolean term 7 (countable) such that a =
T(h, Xap - - Xgps - - Ji<g § < Ry, b a countable sequence of elements of B,
Because G, is Ny;-generic, without loss of generality b;(i <§) are pairwise

i<t
disjoint, and a =7(, ..., b; N Xajs - - Ji<g- NOW, as in Lemma 7, we can prove:
*) For every I C B* of power \*, there are § < w,, pairwise disjoint

b; € Bo(i<§),andJ C I, IJI =A" and for every a € J, i <§, J(a, i) <A* pairwise
distinct, such that:

(i) forsomed’, foreveryaelJ, a— V b;=b'

i<t
(ii) for each @ either (Va € J) a A bg = X,y A bg
or (Va GJ)KZ A bﬁ =b6 ~ XJ(a,i)
(iii) for every b; <b; < b;(i <§) there isa € J such that
bl <anb, <b
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