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Material Implication in Orthomodular

(and Boolean) Lattices

GARY M. HARDEGREE

1 Introduction A number of mathematical structures have been investi-
gated in the quantum logic approach to the foundations of quantum mechanics
(see, e.g., [21]), but orthomodular lattices (OMLs) have received the majority
of attention from logicians.* When interpreting such structures from the
viewpoint of logic, it is customary to interpret the lattice elements as proposi-
tions, the meet operation as conjunction, the join operation as disjunction, and
the orthocomplement operation as negation. It is also customary to interpret
the partial order relation as the relation of implication.

In classical logic, if we regard propositions as sets of possible worlds, then
we have the following analogs: The set of all subsets of the set W of possible
worlds is a Boolean (ortho)lattice (BL), where meet (conjunction) is set-
intersection, join (disjunction) is set-union, and orthocomplementation (nega-
tion) is set-complementation. On the other hand, the partial-order relation is
the set-inclusion relation, which represents the relation of implication among
propositions.

Implication in this sense is quite different from the logical connectives.
For example, whereas the conjunction (intersection) of two propositions A and
B is another proposition just like A and B, the inclusion of A inB is not; there
is no set of worlds corresponding to "A implies B", in this sense of 'implies'.

There is an analogy in formal logic. Recall that a formula 0 semantically
entails a formula \jj just in case every interpretation that satisfies 0 also satisfies
\jj. If we regard an interpretation as assigning a proposition to each formula,
then we can equivalently state this as follows: 0 semantically entails \\J just in
case for every interpretation z, /(0) implies /()//), or more concretely, z(0) is
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included in i(\p). Thus, implication among propositions corresponds to semantic
entailment among formulas.

Now, the statement "0 semantically entails i//"is not a formula like 0 or i//,
for whereas 0 and \jj occur in the object language, "0 semantically entails \[/"
occurs in the metalanguage. Since statements involving semantic entailment are
in the formal mode of speech, we might call semantic entailment a formal
implication, and by analogy we might call the partial order relation (set-
inclusion) among propositions a formal implication.

As is well-known, implicational concepts are often expressed in the
material, as well as in the formal, mode of speech. Accordingly, we have a
notion of material implication, or a notion of a conditional (if-then) connective.
Mathematically, formal implication is represented by a two-place lattice relation
(the partial order or set-inclusion relation), and material implication is repre-
sented by a two-place lattice operation, which we generically denote ->. From
the viewpoint of formal logic, "0 semantically entails \[/" is a statement in the
metalanguage, but 0 -» \jj is a formula in the object language just like 0 and \jj.
From a metaphysical viewpoint "A implies B" ("A < B" or "A C B") is a
statement about the propositions (lattice elements) A and B, and is not a
proposition itself, while A -* B is a proposition (lattice element) exactly on a
par with A and B. If we combine these ideas via formal semantics, we have the
following general principle: if i is an interpretation, and z(0) = 4̂> and i(\jj) - B,
then/(0-»\//) = ,4 ->B.

The best-known example of a material implication is the horseshoe (D) of
classical logic, which is defined so that A D B is equivalent to ~A v B. The
horseshoe is a material implication according to our criteria, since 0 D \p is a
formula at exactly the same linguistic level as 0 and \J/, but contrary to common
usage it is not the material implication, according to our usage, since there are
numerous conditional connectives, each of which provides an analysis of
"if-then" or implication in its material mode. Although the horseshoe has
many characteristics that make it satisfactory, it has many other character-
istics that make it unsatisfactory as a material implication. Dissatisfaction with
the horseshoe has led to the investigation of a large variety of alternative
implications; examples include intuitionistic implication, the strict implications
of C. I. Lewis [25], the relevant implications of Anderson and Belnap [ 1 ], and
the counterfactual implications of Stalnaker [31] and D. Lewis [26] (among
others).

This article is concerned with two questions:

1. Are there any plausible material implications definable in the context
of orthomodular lattices?l

2. Supposing that the first question is answered affirmatively, is there a
privileged material implication that plays a role in orthomodular-based
logics analogous to the role of the horseshoe in Boolean-based logics?

In regard to the first question, I propose a number of criteria by which to
judge the adequacy of a binary (ortho)lattice operation as a material implica-
tion (or conditional) connective. In Section 2, four criteria are proposed as
absolutely minimal; in Section 3, a fifth criterion is proposed as extremely



MATERIAL IMPLICATION 165

plausible. It is shown that there is an abundance of binary operations satisfying
these five criteria, both in the orthomodular and in the Boolean context.

In regard to the second question, in Section 4,1 show that the connective
known as the Sasaki arrow2 plays a role in orthomodular logics exactly parallel
to the role played by the horseshoe in Boolean logics. In particular, I show
that: (a) the Sasaki arrow is the only OML operation satisfying the proposed
implicative criteria that agrees with the horseshoe for compatible pairs of
elements, (b) the Sasaki arrow (horseshoe) is the least strict material implica-
tion definable on an OML (BL), and (c) every material implication definable on
an OML (BL) can be defined on the basis of the Sasaki arrow (horseshoe) and a
family of necessity operators. When this family has just one element, we obtain
a strict implication (a la C. I. Lewis); when this family has more than one
element, we obtain a variably strict implication (a la D. Lewis). Because of (b)
and (c), we see that the Sasaki arrow and horseshoe play a privileged role in
their respective classes of logics.

In order to render the article more nearly self-contained, an appendix on
OMLs is included.

2 Basic implicative criteria As noted in the introduction, in the logical
interpretation of OMLs, meet is interpreted as conjunction, join as disjunction,
and orthocomplement as negation. Still to be considered is what OML opera-
tions might count as the lattice counterparts of the various material implica-
tions, or conditionals.

Since not just any binary lattice operation should qualify as a material
implication, we must determine what criteria must (should) be satisfied by a
lattice operation in order to be regarded as a material implication.

First, it seems plausible to require that every implication operation -> be
related to the implication relation (set-inclusion) in such a way that if a proposi-
tion A implies (is included in) a proposition B, then the conditional proposition
A ->• B is universally true, and conversely. This criterion may be stated as
follows, where W is the class of all possible worlds:

(e) A CBiffA->B= W.

Translating this into the more general lattice context, we obtain:

(E) a<biffa-*b= 1.

Here 1 is the lattice unit element, which corresponds to the universally true
proposition.

Next, it seems plausible to require every implication connective -* to
satisfy the law of modus ponens: A conjoined with A -* B implies i?.

(mp) ACi(A-*B)CB.

In classical logic, where the negation of a proposition A is simply its set-
complement, -A, (mp) may be equivalently stated as follows:

(mt) -Bn(A ->B)C-A
(ng) A n-BC-(A -+B).
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Although (mt), the law of modus tollens, and (ng), the law of negation, are
equivalent to (mp) in the classical context, they are not equivalent in general.
It accordingly seems plausible that we officially add (mt) and (ng) to our list of
implicative criteria. Translating these conditions into lattice-theoretic notation,
we obtain:

(MP) aA(a-*b)<b
(MT) bLA(a^b)<aL

(NG) flA^<(^ b)L.

Here, l is the lattice operation corresponding to negation, which in the
particular case we are considering is the orthocomplement operation.

We refer to the above four conditions, (E), (MP), (MT), (NG) as the
minimal implicative conditions (criteria). Whereas (E) and (MP) should be
satisfied by any implication operation on a bounded lattice, (MT) and (NG)
should additionally be satisfied on any lattice-with-negation. In calling these
four conditions the minimal implicative conditions, we do not mean to rule out
further implicative criteria as being minimal (for example, in Section 3, we
consider an additional implicative criterion that we propose as minimal).

In addition to our officially so-called minimal implicative criteria, there
are other restrictions one might wish to impose on implication operations. For
example, a very powerful implicative principle, the law of importation-
exportation, may be stated lattice-theoretically as:3

(IE) a /\b<ciffa<b->c.

Although both the classical4 and intuitionistic conditionals satisfy (IE), no
arrow operation satisfying (IE) can be defined on any non-Boolean OML, since
a lattice admits an arrow operation satisfying (IE) only if it is distributive.5 On
the other hand, (IE) does not seem to be a plausible candidate as a minimal
implicative criterion, since it is satisfied by neither strict nor counterfactual
conditionals. As we see later, however, there is a natural weakening of (IE) that
is plausible to require every implication operation to satisfy.

Next, we consider the law of transitivity, which may be stated lattice-
theoretically as:

(T) (a -> *) A (b -* c) < a -> c.

As an immediate consequence of (T), by substituting a A b for a, noting that
{a A b) -> b = 1 by (E), we obtain the following law of weakening:

(W) b->c<(a/\b)-*c.

Although (T) and (W) are plausible implicative criteria, they are laws that
counterfactual conditionals should definitely not satisfy, since they entail the
validity of the following (invalid) argument (cf. [26]):

(A) if I were to drop this glass, then it would break; therefore, if I were
to drop this glass and it were shatterproof, then it would break.

Since we accept counterfactual conditionals as legitimate implication connec-
tives, we cannot accept (T) or (W) as minimal implicative criteria. The same
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holds for the law of contraposition, which is another plausible implicative
criterion violated by counterfactual conditionals (cf. [26]):

(CN) a^b = bL-+a1.

Observe that every ortholattice admits at least one implication operation
satisfying (T) in addition to the minimal implicative conditions, namely the
ultrastrict implication =>, defined as:

(US) a => b = 1 if a < b; otherwise, a^b = 0.

There are two notions of strictness that apply to material implications.
First, we say that one arrow operation =*• on a lattice L is stricter than another
arrow operation -> on L if for all a, b e L, a=>b < a -> Z?. It is evident that the
"stricter than" relation among material implications on a given lattice is a
partial order relation. It is also evident that the ultrastrict implication is the
least element in the ordering; that is, => is the strictest material implication.6

Whether there is a greatest element (least strict implication) in this ordering is
not obvious in the most general case. However, as we see in Section 4, in the
special case of OMLs and BLs, if we impose one additional plausible implicative
criterion, then there is a least strict material implication as well.

In addition to the strictness-order relation, there is a qualitative notion of
strictness; (qualitatively) strict implications traditionally arise in modal logic.
In classical modal logic, either necessity (or possibility) or strict implication can
be taken as primitive, the relation between them being given as:

(ml) a-ib=N(aDb)
(ml) N(a) = 1 -3 a
(m3) N(a) = a1 S 0.

Here, N is the necessity operator (see Section 3), and -3 is the strict implication
operation.

There are general implicative principles at work in the above definitions.
Given any material implication -*, we have the following as a result of (MP) and
(MT):

(11) \-+a<a
(12) a-+0<al.

Therefore, given any material implication ->, we can define two (quasi)modal
operators:

(N) N(a)=df\-+a
(I) I(a)=dfa^0.

Whether N and / are interdefinable is not determined a priori. For example, if
-* satisfies contraposition (CN), then N and / are interdefinable in the usual
manner: I(a) = N(a1)', N(a) = I(al). However, in the case of certain counter-
factual conditionals, / is a nontrivial modal operator, but N is simply the
identity function. Thus, in the most general case, N and / are independent
modal operators.

By virtue of (N), (I), (il), and (i2), any material implication induces a pair
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of (quasi)modal operators N and /. If either of these operators is nontrivial, we
say that the implication is a strict implication (in the qualitative sense); if both
operators are trivial, then we say that the implication is nonstrict. Stating
matters formally, we say that an arrow operation -* on an ortholattice L is
nonstrict if it satisfies the following conditions; otherwise, we say that it is
strict'.

(NS1) l -*a = fl
(NS2) fl-^0 = fl1.

We refer to (NS1) and (NS2) collectively as the nonstrictness condition, which
is denoted (NS). Whereas the strict implications of modal logic, and the
counterfactual implications, are strict implications in this sense, both the
classical and intuitionistic implications are nonstrict.

At this point it is interesting to compare (NS) with the transitivity
condition (T). Their relation may be summed up in the following theorem,
which states that no material implication satisfying both (NS) and (T) can be
defined on a non-Boolean OML.

Theorem 1 Let L be an OML, and let ->be a binary operation on L satisfy-
ing (E), (MP)y (T), and (NS). Then L is Boolean.

Proof: By (T), (a -> 1) A (1 -> b) < a -> b, and (a -* 0) A (0 -> b) < a -+ b. By
(NS), 1 -> b = b, and a -> 0 = a1. By (E), a -• 1 = 1, and 0 -• b = b. Therefore,
b < a -> b, and aL < a -* b, from which it follows that a1 v b *^a -+ b. From this
it follows that a A (a1 v b) < a A {a -> &), but by (MP) a A (a -* Z>) < b, so we have
a A (tf1 v &) < &, for all a, b e L. It is a theorem about OMLs that a A(tf1 v b)<:b
iff tfCZ>. We thus have that every pair of elements of L is compatible, from
which it follows that L is Boolean.

A condition that subsumes (NS) requires that the arrow operation be
defined in terms of the standard ortholattice operations, meet, join, and
orthocomplement, which is to say that the arrow operation is an ortholattice
polynomial. Formally stated, we say that a material implication is a polynomial
conditional if it satisfies the following condition:

(P) a~*b - p(a, b), for some two-place ortholattice polynomial p.

In the case of Boolean lattices, the horseshoe is the only polynomial
function that satisfies the minimal implicative criteria. In particular, the
Boolean ortholattice freely generated by two elements has 16 elements, so there
are exactly 16 distinct two-place Boolean polynomials. Of these, only the
horseshoe satisfies (E) and (M).

In the case of orthomodular lattices, we must consider the OML freely
generated by two elements, which has 96 elements, being isomorphic to the
direct product of the 16-element Boolean lattice and the 6-element OML. This
OML turns out to be identical to the modular ortholattice freely generated by
two elements, so we can appeal to the work of Kotas [23] concerning poly-
nomial conditionals on modular ortholattices.

To begin with, the polynomial elements formed out of two OML elements
that are compatible form a Boolean subOML. Therefore, since the horseshoe is
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the only polynomial conditional on a Boolean lattice, we have the following
restriction on OML polynomial conditionals:

(LB) if aCb, then a -» ft = a1 v ft.

Kotas shows (in effect) that there are exactly six OML polynomials satisfying
(LB), defined as:

(cl) Cj(a, b)=dfa
L v {a A b)

(c2) c2(a, b) =df (a
1
 A ft1) v ft

(c3) c3(a, b) =df (a A b) v (a1
 A b) v (a1

 A bl)
(c4) c4(a, 6) =# (a A 6) v (aL

 A ft) v ((aL v ft) A ft1)
(c5) c5(a, ft) =# (a A (a1 v ft)) v (a1

 A ft) v (a1
 A ft1)

(c6) ce(a,b)=dfa
l v ft.

It is routine to verify the following facts:

(Fl) ct satisfies (LB) for / = 1-6
(F2) ct satisfies (NG) for / = 1-6
(F3) c/ satisfies (E) for i = 1-5
(F4) c/ satisfies (MP) for / = 1-4
(F5) ct satisfies (MT) for /= 1-3, 5.

Thus, whereas the horseshoe c6 satisfies only one of the minimal implicative
criteria, there are three polynomials, ch c2, c3, that satisfy all of them.

Since (NS) follows from (LB), we see that every Kotas conditional is
nonstrict, and so no Kotas conditional is transitive, by virtue of Theorem 1.
Nevertheless, the corresponding biconditionals satisfy an analogous transitivity
law. Given a conditional cz-, the associated biconditional ft/ is defined as:

(BC) bi(a, ft) =df ct(fl, ft) A c,-(M).

Concerning the associated Kotas biconditionals, the following facts may be
routinely verified:

(F6) bfia, ft) = (a A ft) v (a1 A ft1) for i = 1-5
(F7) bf(a, ft) A ftz(ft, c) < bM, c) for / = 1-5.

So in particular, although the three polynomial conditionals are different, they
all give rise to the same biconditional, and this operation satisfies the corres-
ponding transitivity law.

3 Residuation and implication In this section, we consider an additional
plausible implicative criterion, which is a generalization of the classical
importation-exportation law (IE). Recall that (IE) may be stated lattice-
theoretically as:

(IE) a Aft <ciffa<b-+c.

Allowing ourselves the benefit of higher-order conditions, as we did in the case
of (P), we can generalize (IE) in the following way:

(R) a + ft < c iff a < ft -> c, for some binary operation +.

If an arrow operation -> satisfies (R), we say that it is residual.7
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Let us briefly explain our terminology, which is borrowed from mathe-
matics [2]. In the theory of partially ordered sets (posets), including lattices, a
function (map) / from a poset P to a poset P* is said to be residuated if the
pre-image of every principal ideal on P* is a principal ideal on P, and / i s said to
be dually residuated, or residual, if the pre-image of every principal filter on P*
is a principal filter on P. Residuated and residual maps come in pairs: for every
residuated (resp., residual) map / from P into P*, there is a residual (resp.,
residuated) map / + from P* into P. This correspondence allows us to char-
acterize residuated and residual maps as follows (note: for convenience, we
specialize to the case in which P = P*):

(Rl) / i s residuated iff: there is a function / + such that, for all x, y e L,
f(x)<y iffx<f+(y).

(R2) / i s residual iff: there is a function / + such that, for all x, y e L,
x <f(y) iff r(x)<y.

To see how residuation relates to (R) and (IE), consider a lattice L and
element b e L, and define a map fb from L into L as follows:

(*b) fbM=dfX A 6.

To say that fa is residuated is to say the following holds, for some function f£
on L, for all a, c e L:

(Rl*) fb(a)<c iff a <ft(c).

Writing "a A 6" in place of "/&(#)", and writing "6 -> c" in place of "/jj"(c)'\ we
obtain:

(IE) a Ab<c iff a <b-+c.

Turning things around, given a lattice L, an arrow operation -* on L, and an
element b e L, we can define the function g^ on L as:

(gb) gbto=dfb-+x.

To say that g^ is residual is to say the following holds for some function gb on
L, for all a, c e L:

(R2*) fl<ft(c)iffg£(fl)<c.

Writing "b ->• c" in place of "g&(c)'\ and writing "a + Z?" in place of "#£(#)", we
obtain the converse of (R), less the quantifier expression:

(R*) a<b-*ciffa + b<c.

Thus, (IE) may be understood as saying that the family (fb'.beL)of maps are
all residuated, where (g&: b e L) are the corresponding residual maps (i.e.,
fb = £&)• Alternatively, (IE) may be understood as saying that the family
(gb: b e L) of maps are all residual, where (/&: b e L) are the corresponding
residuated maps (i.e., g£ = fb).

On the other hand, condition (R) generalizes (IE), saying that the family
(gb'- b e L) are all residual, without specifying the exact nature of the cor-
responding family (g£: b e L) of residuated maps. In short, a material implica-
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tion -> is residual (in the derivative sense) if and only if the family (g^:
b e L)— where g^(x) = b -+ x— are all residual (in the strict sense).8

There is another very important class of examples of residual maps in
classical logic. In classical modal logic, if we suppose that propositions are
sets of worlds, and we suppose that the necessity operator N is definable in
terms of an accessibility relation R on W, then the necessity operator may be
defined as a one-place propositional operation, as follows:

(Nl) w e N(B) iff w* eB for all w* such that wRw*.

Given the accessibility relation R on W, one can define a corresponding
accessibility function r on the set of propositions:

(r) r(A) -df \w e W: aRw for some a e A\.

Using (r), we can restate (Nl) as:

(N2) A C N(B) iff r(A) C B.

Translating this into the lattice context, we obtain:

(N3) a <N(b) iff r(a)<b.

Comparing (N3) with (Rl) and (R2), we see that TV is residual, where N+ is r,
and r is residua ted, where r+ is N. It may be similarly shown that every classical
possibility operator is residuated.

By a normal necessity operator, we mean one for which N(a) < a for all
a e L. This is equivalent to requiring that R is reflexive, which is equivalent to
requiring that a < r{a) for all a e L. Since we are exclusively concerned with
normal residual necessity operators, we will simply refer to them as necessity
operators.

As noted in Section 2, the strict implications of classical modal logic may
be defined in terms of the horseshoe together with a (normal residual) necessity
operator N. Since the horseshoe is residual, and since every classical necessity
operator is residual, it follows that every classical strict implication is residual.
More generally, let L be any (ortho)lattice, let -+ be any residual conditional on
L, and let TV be any (normal residual) necessity operator on L. Then the as-
sociated strict implication -3, defined as follows, is also residual:9

H ) a-lb=dfN(a~+b).

We can actually state things much more generally. Let L be any (ortho)lat-
tice, let -* be any residual conditional on L, and let (Na: a e L) be any family of
necessity operators on L, indexed by L. Then the "variably strict" implication
>, defined as follows, is also residual:9

(>) a>b=dfNa{a-*b).

In the special case that Na = 7V̂  for all a, b e Z, we have a nonvariably strict
implication.

Our most general result has a converse. Specifically, given any residual
implication ->, there is a corresponding family (Na: a e L) of necessity operators,
where each Na is defined as follows (see Section 4, Lemma 3):
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(Na) Na(x)=dfx A(a-+x).

Thus, every family of necessity operators induces a residual conditional, and
every residual conditional induces a family of necessity operators. The cor-
respondence, however, is not unique.

Variably strict implications have arisen in the investigation of counter-
factual conditionals (cf. [26]). In the case of certain kinds of counterfactual
conditionals, a more direct method may be used to show that they are residual.
As vanFraassen [32] has shown (cf. [26]), the Stalnaker analysis and the Lewis
analysis (accepting the Limit Assumption) can be subsumed under a common
framework, which employs a special selection function/. Specifically, where w
is a possible world, and A is a proposition (set of worlds), f(w,A) is a set of
worlds, which may (but need not) be thought of as the set of possible worlds in
A that are "minimally distant" from w.10

Various restrictions may be placed on / , by which one obtains various
sorts of counterfactual conditionals. However, from our viewpoint, the only
relevant feature of / is the way it is utilized in characterizing the associated
conditional, which we generically denote >. Given a selection function, / , one
may characterize the associated conditional > as:11

(CC1) aeB>Cifff(a,B)CC.

Associated with / is a corresponding image function, also denoted / ,
defined as:

(f) f(A, B) =df \w eW.w e f{a, B) for some a e A}.

This allows us to restate (CC1) as:

(CC2) A CB>Cifff(A,B)CC.

Restating this in lattice-theoretic terms, we obtain:

(CC3) a < b > c iff f(a, b) < c.

So > is residual, where a + b = f(a, b). Thus, we see that any counterfactual
conditional that is characterizable by reference to a selection function, as in
(CC1), is residual.

In addition to the abovementioned connectives, the arrow connective of
relevant logic R [5] is also residual. The + operation is defined as:

(r+) a + b -df i(b -» id).

Here, "a + b" is read "a is cotenable with b", and i is the negation of relevant
logic, which incidentally is not an orthocomplementation.

Having shown that many implication connectives are residual, we now ask
whether there are any residual conditionals definable on general OMLs. The
answer is affirmative; indeed, there is an abundance of such operations.

To begin with, as is generally well-known, the family (s^ b e L) of Sasaki
projections on an OML L are all residuated. Each Sasaki projection s^ is defined
as follows [7, 8]:

(sb) sb(x)=df(xybi)Ab.



MATERIAL IMPLICATION 173

Note that when b and x are compatible, Sb(x) =/&(x) = x A b. To say that sjy is
residuated is to say that the following holds for some arrow operation ->:

(R3) (a v 61) A b < c iff a < b -> c.

Now, condition (R3) uniquely specifies an arrow operation, namely, the Sasaki
arrow, which is identical to polynomial cx from Section 2:

( S A ) b - > s c =df b
L v ( b A c).

Also, as a result of (R3), the Sasaki arrow is residual, where the associated
family of residuated maps is the family of Sasaki projections; in particular,
a + b = (a v b1) A b. Notice that a + b = (b ->s a

1)1, which is analogous to classical
logic [(b D a1)1 = a A b], as well as relevant logic [see (r+)].

As noted earlier, given any residual conditional -+ on a lattice L, and given
any (normal residual) necessity operator TV on L, the corresponding strict
implication -3, defined so that a-^b- N(a -* ft), is also a residual conditional.
We accordingly have a residual conditional on an OML L for each necessity
operator on I . For example, if we define N as:12

(N) N(a) = 1 if a = 1; otherwise, N(a) = 0,

then we obtain the ultrastrict implication on L:

(US) a =» Z? = 1 if a < b\ otherwise, a =» b = 0.

There are other special cases worth considering. If iV is a residual interior
operator, that is, a necessity operator satisfying the following additional
restriction:

(In) N(a)<N(N(a)),

then we obtain the class of S4 strict implications definable on L.13 If TV is a
symmetric necessity operator, that is, a necessity operator satisfying the follow-
ing additional restriction:14

(S) r(a) = (N(al))L,

then we obtain the class of B strict implications definable on L. Finally, if N is
a symmetric residual interior operator, then we obtain the class of S5 strict
implications definable on L. For example, the ultrastrict implication => is an 55
implication.

We also noted earlier that, given any residual conditional -> on a lattice L,
and given any family (Na: a e L) of necessity operators on L, the corresponding
variably strict implication > , defined so that a>b= Na(a -> b), is also a residual
conditional on L. We accordingly have a residual conditional on an OMLL for
each family of necessity operators on L, definable on the basis of the Sasaki
arrow.

There is at least one natural family of necessity operators on an OML L.
For any a e L, define Na as:15

(Na) Na(x) =df (aAx)v (aL A X).
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It is routine to show that each Na is a symmetric residual interior operator on
L, and hence an S5 necessity operator. On the other hand, Na(x) = x iff aCx,
and aCa -+sb. It follows that the associated variably strict implication > is iden-
tical to the Sasaki arrow. That the Sasaki arrow has a completely natural inter-
pretation as a Stalnaker conditional in the context of conventional (Hilbert
space) quantum logic is discussed elsewhere [10, 12, 13, 17] ,16

4 The fundamental character of the Sasaki arrow We have now considered
five restrictions that are plausible to impose on any binary (ortho)lattice
operation that is to be regarded as a material implication: the officially so-called
minimal implicative conditions (E), (MP), (MT), (NG), and the residual condi-
tion (R). As we have seen, there are numerous operations, both in Boolean and
in the orthomodular context, that satisfy all five restrictions. First, the Sasaki
arrow (horseshoe) satisfies all five restrictions; second, if(Na: a e L) is a family
of (normal residual) necessity operators on L, then the variably strict implica-
tion > , defined so that a>b - Na(a ->s b) [= Na(a D b)], also satisfies all five
restrictions. In the special case that the family consists of exactly one necessity
operator TV, we have a (nonvariably) strict implication -3, defined so that
a-ib=N(a-+ib)(rN(aDb)).

In the present section, we show that this representation is canonical: if-•
is an operation on an OML (BL) satisfying the five implicative restrictions, then
there is a family (Na: a e L) of necessity operators, not necessarily unique, such
that a-> b = Na(a -»s b) [= Na(a D b)]. Toward this end we show that the Sasaki
arrow (horseshoe) is the least strict material implication (satisfying the five
restrictions) definable on an OML (BL). These two results strongly suggest that
the role of the Sasaki arrow in orthomodular-based logics closely parallels the
role of the horseshoe in Boolean-based logics.

Our first key lemma states that the Sasaki arrow (horseshoe) is the least
strict operation definable on an OML (BL) satisfying the five implicative
criteria. In order to prove this, we first prove an important lemma concerning
residual conditionals.

Lemma 1 Let L be a lattice, and let -* be any binary operation on L satisfy-
ing (E), (MP), and (R). Then for all a, b e L, a^ {a A 6) = a^ b.

Proof: Assume the hypothesis, and let + be the operation cited in (R). By (R),
(a -> b) + a < b, since a -> b < a -* b. By (R) and (E), (a -* b) + a < a, since
#-» b < a -* a = 1. Therefore, (a -> b) + a<a A 6, so by (R), a~+ b <a^> (a /\b).
Similarly, [a -• (a A b)] + a <a A b, so [a -+ (a A b)] + a < b. Therefore, by (R),
a -+ (a A b) < a -+ b. Thus, 0 -> (a A 6) = a -» b.

Lemma 2 Let L be any ortholattice, and let -> be any operation on L
satisfying (E), (MP), (NG), and (R). Then for all a, b e L, a-+ b <a ->8i6 [= a1 v
(a A & ) ] .

Proof: Assume the hypothesis. Then by Lemma 1, a -» (a A b) = a -> b. By (NG)
a A cl < (a -^ c)1, so a -> c < (a A C 1 ) 1 = a1 v c, so in particular, a -> (a A b) <
a1 v (a A 6). But a-+ (a Ab) = a-* b, so a ̂ > b < a1 v (a A b).
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As noted in Section 3, every residual conditional -> on a lattice L induces a
family (Na: a e L) of (normal residual) necessity operators on L, where for each
a e L, Na(x) =df x A (a -> x). We now officially state this result as Lemma 3.

Lemma 3 Let L be any lattice, and let -* be any operation on L satisfying
(R). For each a e L, define the function Na on L as follows: Na{x) =<#• x A
(a -> x). Then Na is a normal residual necessity operator.

Proof: Assume the hypothesis, and let + be the operation cited in (R). Then
x <Na(y) iffx<y/\(a-*y) iff x <y and JC <a-+y. But by (R), x < a -*y iff
x + a < y, so x < Na(y) iff x < y and x + a < y iff x v (x + a) < >\ Thus, Na is
residual, where the associated residuated map NQ is defined so that Nfix) =
i v ( x + a). That A^ is normal follows immediately from the definition.

With one more lemma, we can prove our major result, Theorem 2.

Lemma 4 Let L be any OML (BL) and let -» be any operation on L satisfy-
ing (E), (MP), and (R). Then a -* b = a -* (a ->s Z>) [= a ->(aD b)].

Proof: Assume the hypothesis, and let + be the operation cited in (R). Then (as
in Lemma 1) (a -* b) + a < a A b, but a A b <aL v (a A b) -a ->s Z?, so (a -»Z?) +
a < (3 ->S|Z?. Therefore, by (R), a-> b < a -> (a ->sb). Similarly, [a -+ (a ->s Z?)] +
a < a A(a ~+s b), but by (MP), a A (a -+s b) < b, so [a -> (a ->s ft)] + a < Z?. There-
fore, by (R), a-+(a->sb)<a-+ b. Thus, a ->• (a ->s Z?) = a-> Z?,and if L is Boolean,

Theorem 2 Le/1 Z Z?̂  any OML (BL), and let -* Z?̂  <2̂ 7 operation on L
satisfying (E), (MP), (NG), and (R). Then there is a family (Na: a e L) of
(normal residual) necessity operators on L such that for all a, b e L: a ->• b =
Na(a^b)[=Na(aDb)].

Proof: Assume the hypothesis. Define Na so that Na(x) ~df x A (a -> x). By
Lemma 3, (Na: a e L) is a family of necessity operators on L. Therefore,
Na(Q ~*s b) ~df (a ~*s\b)A(a~+(a ^ s b),but by Lemma 4, a -> (a ->s Z?) = a -* Z?, and
by Lemma 2, a -> 6 < a -*si&. It follows that Na(a ->s Z?) = a -> Z?. In the case L is
Boolean, A^(a D b)~ a -> 6.

In concluding this section, we add one more detail. As noted earlier, the
the Sasaki arrow is "locally Boolean" in the sense that it agrees with the
horseshoe for all compatible pairs:

(LB) a->sb=aDb=aLy b, if aCb.

There are numerous binary OML operations satisfying (LB), including for
example, all the Kotas connectives (see Section 2). However, only one OML
operation, the Sasaki arrow, satisfies (LB) in addition to the proposed implica-
tive criteria. As we see in Lemma 2, if an arrow operation -> is residual, then
a -* (a A b) - a -> b, for all a, b e L. But aCa A 6, so by (LB), a -> (a A b) =
# D (a A Z?) = a1 v (# A Z?). Thus, a ~* b = aL v (aA b). This result can be summa-
rized by saying that the Sasaki arrow is the unique locally Boolean residual
orthomodular conditional.
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5 Concluding remarks We have argued that the Sasaki arrow plays a
privileged role in orthomodular-based logics, parallel to the role of the horse-
shoe in Boolean-based logics. In particular, if we grant certain implicative
criteria, then we can show that the Sasaki arrow is the least strict material
implication, that every material implication can be defined in terms of the
Sasaki arrow and a family of necessity operators. Although the Sasaki arrow
plays a privileged role in orthomodular logics, it is by no means the only
plausible orthomodular material implication. On the contrary, this investigation
suggests that the variety of orthomodular material implications is at least as
rich as the variety of Boolean material implications, including strict and
variably strict (counterfactual) implications.

The present investigation suggests a number of lines of research: a more
detailed investigation of the various strict and variably strict implications
definable on OMLs; and the investigation of how the general results can be
transferred to other non-Boolean logics, including intuitionistic logic (pseudo-
Boolean lattices), and relevant logic (deMorgan lattices).

Appendix: Orthomodular lattices A partially ordered set (poset) is, by
definition, a set A together with a binary relation < on A satisfying the follow-
ing restrictions for all a, b, c e A:

(pi) a<a
(p2) if a < b, and b < c, then a < c
(p3) if a <Z>, and b <# , then# = b.

A poset (A, <) is said to be a lattice if every pair of elements a, b has both a
greatest lower bound (meet) a A b, and a least upper bound (join) a v b, with
respect to <. The following respectively characterize the meet and join of a
and b :

(m) x<a/\b iffx<a and x < b
(j) a v b < x iff a < x and b < x.

A lattice may also be equationally characterized as a set A together with
two binary operations, meet A, and join v, satisfying the following restrictions
for all a, b, c e A:

(LI) a f \ b = b A a
(L2) a A (b A c) = (a A b) A C

(L3) aA(avb)=a
(L4) ay b ~b v a
(L5) av (b v c) = (av b)v c
(L6) a v (a A b) -a.

Given a structure satisfying (L1)-(L6), the associated partial order relation <
may be defined in either of the following ways:

(df 1) a < b iffyf a A 6 = a
(df2) a < b iffdf a v b = b.

Given a lattice L, a subset F of L is said to be a filter on L if it satisfies the
following restrictions for all a, b e L:
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(fl) if a e F, and a < b, then b e F
(f2) if a e F, and b e F, then a A b e F.

A filter F is said to be a principal filter if there is an element a e L such that the
following holds for every x e L:

(pf) xeFiffa<x.

Note that this notion can also be applied to general posets; a subset F of a
poset P is a principal filter on P if and only if there is an a e P satisfying (pf).

Given a lattice L, a subset / of L is said to be an ideal on L if it satisfies
the following restrictions for all a, b e L:

(11) if a e I, and b < a, then b e I
(12) if a e /, and Z? e /, then ay b e I.

An ideal / is said to be a principal ideal if there is an element a e l such that the
following holds for every x e L\

(pi) x e I iff x < <2.

The notion of principal ideal also applies to general posets.
A poset (lattice) P is said to be bounded if there are distinguished elements

0, 1 e P satisfying the following restrictions for all b e P:

(bl) 0<b
(b2) b<l.

By virtue of (p3), 0 and 1 are unique.
Given a bounded lattice L, and an element b e L, an element c e L is said

to be a complement of Z? if the following conditions obtain:

(cl) cAb = 0
(c2) c v 6 = l .

A lattice Z, is said to be complemented if I is bounded and every element of L
has at least one complement, and L is said to be uniquely complemented if L is
bounded and every element of L has exactly one complement.

Given a complemented lattice L, an orthocomplementation on L is, by
definition, any function o from Z, into L satisfying the following conditions for
all a, b e L:

(01) o(a) is a complement of a
(02) o(o(a)) = a
(03) if a < 6, then o(6) < o{a).

An ortholattice is, by definition, a complemented lattice I together with an
orthocomplementation function o onL. Every ortholattice satisfies deMorgan's
laws:

(dMl) o(a A b) = o(a) v o(b)
(dM2) o(fl v 6) = o(fl) A o(6).

Henceforth, we write ".x1" in place of "o(x)".
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Given an ortholattice L, one can define an orthogonality relation 1 on L
as follows:

(df3) alb iffdf a<b1.

It is easy to show that 1 satisfies the following:

(Fl) alb iff b la
(F2) a la only ifa = 0.

One can also define a compatibility relation C on L as:

(df4) aCb if% a = (a A b) v (a A 61).

In spite of its name, the C relation is not automatically symmetric (aCb iff
bCa). Indeed, C is symmetric on an ortholattice L if and only if L is an ortho-
modular lattice. We could use the symmetry of C as the definition of ortho-
modular lattices, but this is not the customary route.

Given a lattice L, a (nonordered) triple {a, b, c\ of elements of L is said to
be a distributive triple if every ordered triple of its elements satisfies the
following equations:

(dl) x A (y v z) = (x A y) v (JC A Z)

(d2) xv (y A z) = (xv y) A(XV Z).

A lattice Z, is said to be distributive if every triple of elements of L is distribu-
tive. A distributive complemented lattice is called a Boolean lattice, and a
distributive ortholattice is called a Boolean ortholattice. Obviously every
Boolean ortholattice is a Boolean lattice. On the other hand, every Boolean
lattice induces a unique ortholattice, since every Boolean lattice is uniquely
complemented. Thus Boolean lattices and Boolean ortholattices are co-
extensive.

Given a lattice L, an ordered pair (a, b) of elements of L is said to be
modular if the following holds for all c e L:

(ml) if c < b , then \a, b, c\ is distributive.

A lattice L is said to be modular if every ordered pair of elements of L is
modular; alternately, L is modular if it satisfies either of the following
conditions:

(m2) if a < c, then av (b A c) = (av b) A C
( m 3 ) a v (b A ( a v c)) = ( a v b ) A ( a v c).

An ortholattice L is said to be orthomodular if every orthogonal pair is
modular: a l b only if (a, b) is modular. Alternately, an orthomodular
(ortho)lattice is an ortholattice L satisfying either of the following conditions
for all a, b e L:

(oml) if a < 6 , then b = a v (a1 A b)
(om2) a v (a1

 A (a v b)) = a v b.

The key calculational theorem of orthomodular lattice theory is the
Foulis-Holland Theorem [9, 20], which states that in order to apply the distri-
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butive laws to a triple of elements of an orthomodular lattice, it is sufficient
that any one of the elements be compatible with the remaining two:

(FH) if aCb, and aCc, then [a, b, c\ is distributive.

This theorem is quite useful in connection with the following easily proved
facts about compatibility:

(Cl) aCa
(C2) aCb iff bCa
(C3) if a <b, then aCb
(C4) iffllfe, then aCb
(C5) if aCb, then aCb1

(C6) if a Cb, and aCc, then aCb A C
(C7) if aCb, and aCc , then aCb v c.

NOTES

1. Concern over this question was expressed as early as 1940 by Weyl [33]. More recent
work on this subject includes: Clark [4], Finch [6], Hardegree [10]-[17], Herman, et al.
[18], Herman and Piziak [19], Kalmbach [22], Kotas [23], Kunsemuller [24],
Mittelstaedt [27], [28], Piziak [30],Zeman [34].

2. This term is borrowed from Herman, et al. [18], who refer to it as the "Sasaki hook";
the justification for this terminology is given in Section 3.

3. Note that (IE) amounts to saying that the conditional propositions ->Z> is the weakest
proposition for which modus ponens holds: a~* b = sup{*: a A x < b\.

4. By classical conditional, I mean the horseshoe.

5. Let r = (a A c) v (b A c). Then a A C < r, so by (IE), a<c-+r. Also, b A c < r, so by (IE),
b < c -* r. Therefore, a v b < c -* r, so by (IE), (a v b) A C < r = (a A c) v (Z? A c). From
this it follows that the lattice in question is distributive.

6. Let => be the ultrastrict implication, and let -* be any operation satisfying (E). Consider
two elements a, b. There are two cases: a < b\ in this case a-> b = l^oa^b^a-^b',
not a < Z?; in this case (2=^^ = 0, soa=>Z?<a->Z?.

7. Note very carefully that the binary operation + need not be syntactically expressible in
the object language. In particular, propositions a, b may correspond to formulas without
a + b corresponding to a formula in the object language. On the other hand, in many
actual cases, + is in fact syntactically expressible. For example, in the case of the
classical horseshoe, + corresponds to conjunction.

8. It might be useful to consider what residuation amounts to in the specialized (though
common) case of a complete lattice—for example, the set JP(W) of all subsets of a set W.
A function / on a complete lattice L is residual if and only if it meets the following
requirement for any subset \bf. i e I] of L:

(RC) /(A[6,]) = A[M)] .

Accordingly, an arrow operation -* is residual (in the derivative sense) if and only if it
meets the following requirement for any element a of L and any subset {&,•: / e/J of L:

(RC*) a->[Afy] = l\[a->bi\.
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Thus, in the special case of complete lattices, the question whether a conditional is
residual amounts to the question whether it distributes over infinite conjunction.
Distribution over finite conjunction [a -> (b A c) = (a -> b) A {a -> c)\ is nonproblematic,
and can be captured syntactically. Distribution over infinite conjunction cannot be
captured syntactically (without an inflnitary language), but it can be captured semanti-
cally (algebraically), provided the propositions (as opposed to formulas) are closed
under infinite conjunction. If we regard every subset of possible worlds to be a proposi-
tion, then infinite propositional conjunction corresponds to infinite intersection. More
generally, if the propositions form a complete lattice, then infinite conjunction cor-
responds to infinite infimum (meet).

9. Let ->• be residual, where + is the associated operation, and let (Na: a e L) be a family of
residual functions, where (ra\ a e L) are the associated residuated functions. Define => so
that a=> b =df Na(a -* b). Then a < b => c iff a <Nb(b -> c) iff rb(a) <b->c iff rb(a) +
b < c. Thus, => is residual, where the associated operation +* is defined so that
a+*b=dfrb(a) + b.

10. Note very carefully that the selection function / is defined on propositions, not
formulas, as in some treatments of counterfactual conditionals. The conditional is then
defined as a binary operation on propositions, which is the algebraic counterpart of the
syntactic conditional connective.

11. A more general treatment of selection function semantics for counterfactual condi-
tionals is given by Nute in [29]. Note, however, that in his treatment the selection
function is defined on formulas, rather than propositions. Nevertheless, it appears that
this semantics can be algebraically reformulated, so that the selection function is
defined on propositions, rather than formulas. In such a reformulation, (CC1) would be
a central postulate.

12. N\= r) is defined so that r(x) = 0 if x = 0, and otherwise r(x) = 1.

13. This might be compared with the class of "S4" strict implications investigated by
Herman and Piziak [19]. They do not require the interior operators to be residual; in
fact, they do not even require them to be topological interior operators. Whereas the
former preserve all existing meets, the latter preserve only finite meets.

14. The term 'symmetric' is adapted from Blyth and Janowitz [2]. Note that symmetric
necessity operators are associated with symmetric accessibility relations.

15. As noted in Lemma 3 (Section 4), each residual conditional -» induces a family
(Na: a e L) of normal residual necessity operators, where Na(x) =df x A (# -* x). The
family (A^: a e L), where Na(x) =df (aAx)\j (aL A x), is the family of necessity operators
so induced by the Sasaki arrow.

16. The thesis that the Sasaki arrow may be interpreted as a Stalnaker conditional has been
disputed by Bugajski [3]. In [17], I disarm his criticisms, uncovering a number of
mistaken assumptions, and clarifying the precise nature of our disagreement.
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